code/early_research_code/bx_seed_walker_bip39_mnemonic/sha256.c

282 lines
7.8 KiB
C
Raw Permalink Normal View History

/* libsodium: hash_sha256.c, v0.4.5 2014/04/16 */
/**
* Copyright 2005,2007,2009 Colin Percival. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "sha256.h"
#include <stdint.h>
#include <string.h>
// #include "zeroize.h"
// dummy
static void zeroize(void* dummy, size_t dummysize) {
// do nothing
}
static uint32_t be32dec(const void* pp)
{
const uint8_t* p = (uint8_t const*)pp;
return ((uint32_t)(p[3]) + ((uint32_t)(p[2]) << 8) +
((uint32_t)(p[1]) << 16) + ((uint32_t)(p[0]) << 24));
}
static void be32enc(void* pp, uint32_t x)
{
uint8_t* p = (uint8_t*)pp;
p[3] = x & 0xff;
p[2] = (x >> 8) & 0xff;
p[1] = (x >> 16) & 0xff;
p[0] = (x >> 24) & 0xff;
}
static void be32enc_vect(uint8_t* dst, const uint32_t* src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
{
be32enc(dst + i * 4, src[i]);
}
}
static void be32dec_vect(uint32_t* dst, const uint8_t* src, size_t len)
{
size_t i;
for (i = 0; i < len / 4; i++)
{
dst[i] = be32dec(src + i * 4);
}
}
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define SHR(x, n) (x >> n)
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define RND(a, b, c, d, e, f, g, h, k) \
t0 = h + S1(e) + Ch(e, f, g) + k; \
t1 = S0(a) + Maj(a, b, c); \
d += t0; \
h = t0 + t1;
#define RNDr(S, W, i, k) \
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
S[(66 - i) % 8], S[(67 - i) % 8], \
S[(68 - i) % 8], S[(69 - i) % 8], \
S[(70 - i) % 8], S[(71 - i) % 8], \
W[i] + k)
static unsigned char PAD[SHA256_BLOCK_LENGTH] =
{
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
void SHA256Pad(SHA256CTX* context);
void SHA256Transform(uint32_t state[SHA256_STATE_LENGTH],
const uint8_t block[SHA256_BLOCK_LENGTH]);
void SHA256_(const uint8_t* input, size_t length,
uint8_t digest[SHA256_DIGEST_LENGTH])
{
SHA256CTX context;
SHA256Init(&context);
SHA256Update(&context, input, length);
SHA256Final(&context, digest);
}
void SHA256Init(SHA256CTX* context)
{
context->count[0] = context->count[1] = 0;
context->state[0] = 0x6A09E667;
context->state[1] = 0xBB67AE85;
context->state[2] = 0x3C6EF372;
context->state[3] = 0xA54FF53A;
context->state[4] = 0x510E527F;
context->state[5] = 0x9B05688C;
context->state[6] = 0x1F83D9AB;
context->state[7] = 0x5BE0CD19;
}
void SHA256Update(SHA256CTX* context, const uint8_t* input, size_t length)
{
uint32_t bitlen[2];
uint32_t r = (context->count[1] >> 3) & 0x3f;
bitlen[1] = ((uint32_t)length) << 3;
bitlen[0] = (uint32_t)(length >> 29);
if ((context->count[1] += bitlen[1]) < bitlen[1])
{
context->count[0]++;
}
context->count[0] += bitlen[0];
if (length < 64 - r)
{
memcpy(&context->buf[r], input, length);
return;
}
memcpy(&context->buf[r], input, 64 - r);
SHA256Transform(context->state, context->buf);
input += 64 - r;
length -= 64 - r;
while (length >= 64)
{
SHA256Transform(context->state, input);
input += 64;
length -= 64;
}
memcpy(context->buf, input, length);
}
void SHA256Final(SHA256CTX* context, uint8_t digest[SHA256_DIGEST_LENGTH])
{
SHA256Pad(context);
be32enc_vect(digest, context->state, SHA256_DIGEST_LENGTH);
zeroize((void*)context, sizeof *context);
}
/* Local */
void SHA256Pad(SHA256CTX* context)
{
uint8_t len[8];
uint32_t r, plen;
be32enc_vect(len, context->count, 8);
r = (context->count[1] >> 3) & 0x3f;
plen = (r < 56) ? (56 - r) : (120 - r);
SHA256Update(context, PAD, plen);
SHA256Update(context, len, 8);
}
void SHA256Transform(uint32_t state[SHA256_STATE_LENGTH],
const uint8_t block[SHA256_BLOCK_LENGTH])
{
int i;
uint32_t W[64];
uint32_t S[8];
uint32_t t0, t1;
be32dec_vect(W, block, SHA256_BLOCK_LENGTH);
for (i = 16; i < 64; i++)
{
W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
}
memcpy(S, state, 32);
RNDr(S, W, 0, 0x428a2f98);
RNDr(S, W, 1, 0x71374491);
RNDr(S, W, 2, 0xb5c0fbcf);
RNDr(S, W, 3, 0xe9b5dba5);
RNDr(S, W, 4, 0x3956c25b);
RNDr(S, W, 5, 0x59f111f1);
RNDr(S, W, 6, 0x923f82a4);
RNDr(S, W, 7, 0xab1c5ed5);
RNDr(S, W, 8, 0xd807aa98);
RNDr(S, W, 9, 0x12835b01);
RNDr(S, W, 10, 0x243185be);
RNDr(S, W, 11, 0x550c7dc3);
RNDr(S, W, 12, 0x72be5d74);
RNDr(S, W, 13, 0x80deb1fe);
RNDr(S, W, 14, 0x9bdc06a7);
RNDr(S, W, 15, 0xc19bf174);
RNDr(S, W, 16, 0xe49b69c1);
RNDr(S, W, 17, 0xefbe4786);
RNDr(S, W, 18, 0x0fc19dc6);
RNDr(S, W, 19, 0x240ca1cc);
RNDr(S, W, 20, 0x2de92c6f);
RNDr(S, W, 21, 0x4a7484aa);
RNDr(S, W, 22, 0x5cb0a9dc);
RNDr(S, W, 23, 0x76f988da);
RNDr(S, W, 24, 0x983e5152);
RNDr(S, W, 25, 0xa831c66d);
RNDr(S, W, 26, 0xb00327c8);
RNDr(S, W, 27, 0xbf597fc7);
RNDr(S, W, 28, 0xc6e00bf3);
RNDr(S, W, 29, 0xd5a79147);
RNDr(S, W, 30, 0x06ca6351);
RNDr(S, W, 31, 0x14292967);
RNDr(S, W, 32, 0x27b70a85);
RNDr(S, W, 33, 0x2e1b2138);
RNDr(S, W, 34, 0x4d2c6dfc);
RNDr(S, W, 35, 0x53380d13);
RNDr(S, W, 36, 0x650a7354);
RNDr(S, W, 37, 0x766a0abb);
RNDr(S, W, 38, 0x81c2c92e);
RNDr(S, W, 39, 0x92722c85);
RNDr(S, W, 40, 0xa2bfe8a1);
RNDr(S, W, 41, 0xa81a664b);
RNDr(S, W, 42, 0xc24b8b70);
RNDr(S, W, 43, 0xc76c51a3);
RNDr(S, W, 44, 0xd192e819);
RNDr(S, W, 45, 0xd6990624);
RNDr(S, W, 46, 0xf40e3585);
RNDr(S, W, 47, 0x106aa070);
RNDr(S, W, 48, 0x19a4c116);
RNDr(S, W, 49, 0x1e376c08);
RNDr(S, W, 50, 0x2748774c);
RNDr(S, W, 51, 0x34b0bcb5);
RNDr(S, W, 52, 0x391c0cb3);
RNDr(S, W, 53, 0x4ed8aa4a);
RNDr(S, W, 54, 0x5b9cca4f);
RNDr(S, W, 55, 0x682e6ff3);
RNDr(S, W, 56, 0x748f82ee);
RNDr(S, W, 57, 0x78a5636f);
RNDr(S, W, 58, 0x84c87814);
RNDr(S, W, 59, 0x8cc70208);
RNDr(S, W, 60, 0x90befffa);
RNDr(S, W, 61, 0xa4506ceb);
RNDr(S, W, 62, 0xbef9a3f7);
RNDr(S, W, 63, 0xc67178f2);
for (i = 0; i < 8; i++)
{
state[i] += S[i];
}
zeroize((void*)W, sizeof W);
zeroize((void*)S, sizeof S);
zeroize((void*)&t0, sizeof t0);
zeroize((void*)&t1, sizeof t1);
}