rust-bitcoin-unsafe-fast/src/util/taproot.rs

982 lines
40 KiB
Rust
Raw Normal View History

2019-05-14 17:07:53 +00:00
// Rust Bitcoin Library
// Written in 2019 by
// The rust-bitcoin developers.
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Taproot
//!
use prelude::*;
use io;
2021-11-03 18:21:44 +00:00
use secp256k1::{self, Secp256k1};
use core::fmt;
#[cfg(feature = "std")]
use std::error;
2019-05-14 17:07:53 +00:00
2021-11-03 18:21:44 +00:00
use hashes::{sha256, sha256t, Hash, HashEngine};
use schnorr;
2021-11-03 18:21:44 +00:00
use Script;
2019-05-14 17:07:53 +00:00
2021-10-08 20:08:08 +00:00
use consensus::Encodable;
2019-05-14 17:07:53 +00:00
/// The SHA-256 midstate value for the TapLeaf hash.
const MIDSTATE_TAPLEAF: [u8; 32] = [
156, 224, 228, 230, 124, 17, 108, 57, 56, 179, 202, 242, 195, 15, 80, 137, 211, 243, 147, 108,
71, 99, 110, 96, 125, 179, 62, 234, 221, 198, 240, 201,
];
// 9ce0e4e67c116c3938b3caf2c30f5089d3f3936c47636e607db33eeaddc6f0c9
/// The SHA-256 midstate value for the TapBranch hash.
const MIDSTATE_TAPBRANCH: [u8; 32] = [
35, 168, 101, 169, 184, 164, 13, 167, 151, 124, 30, 4, 196, 158, 36, 111, 181, 190, 19, 118,
157, 36, 201, 183, 181, 131, 181, 212, 168, 210, 38, 210,
];
// 23a865a9b8a40da7977c1e04c49e246fb5be13769d24c9b7b583b5d4a8d226d2
/// The SHA-256 midstate value for the TapTweak hash.
const MIDSTATE_TAPTWEAK: [u8; 32] = [
209, 41, 162, 243, 112, 28, 101, 93, 101, 131, 182, 195, 185, 65, 151, 39, 149, 244, 226, 50,
148, 253, 84, 244, 162, 174, 141, 133, 71, 202, 89, 11,
];
// d129a2f3701c655d6583b6c3b941972795f4e23294fd54f4a2ae8d8547ca590b
/// The SHA-256 midstate value for the TapSigHash hash.
const MIDSTATE_TAPSIGHASH: [u8; 32] = [
245, 4, 164, 37, 215, 248, 120, 59, 19, 99, 134, 138, 227, 229, 86, 88, 110, 238, 148, 93, 188,
120, 136, 221, 2, 166, 226, 195, 24, 115, 254, 159,
];
// f504a425d7f8783b1363868ae3e556586eee945dbc7888dd02a6e2c31873fe9f
/// Internal macro to speficy the different taproot tagged hashes.
macro_rules! sha256t_hash_newtype {
($newtype:ident, $tag:ident, $midstate:ident, $midstate_len:expr, $docs:meta, $reverse: expr) => {
sha256t_hash_newtype!($newtype, $tag, $midstate, $midstate_len, $docs, $reverse, stringify!($newtype));
};
($newtype:ident, $tag:ident, $midstate:ident, $midstate_len:expr, $docs:meta, $reverse: expr, $sname:expr) => {
#[doc = "The tag used for ["]
#[doc = $sname]
#[doc = "]"]
2019-05-14 17:07:53 +00:00
pub struct $tag;
impl sha256t::Tag for $tag {
fn engine() -> sha256::HashEngine {
let midstate = sha256::Midstate::from_inner($midstate);
sha256::HashEngine::from_midstate(midstate, $midstate_len)
}
}
hash_newtype!($newtype, sha256t::Hash<$tag>, 32, $docs, $reverse);
};
}
// Currently all taproot hashes are defined as being displayed backwards,
// but that can be specified individually per hash.
sha256t_hash_newtype!(TapLeafHash, TapLeafTag, MIDSTATE_TAPLEAF, 64,
doc="Taproot-tagged hash for tapscript Merkle tree leafs", true
);
sha256t_hash_newtype!(TapBranchHash, TapBranchTag, MIDSTATE_TAPBRANCH, 64,
doc="Taproot-tagged hash for tapscript Merkle tree branches", true
);
sha256t_hash_newtype!(TapTweakHash, TapTweakTag, MIDSTATE_TAPTWEAK, 64,
doc="Taproot-tagged hash for public key tweaks", true
);
sha256t_hash_newtype!(TapSighashHash, TapSighashTag, MIDSTATE_TAPSIGHASH, 64,
doc="Taproot-tagged hash for the taproot signature hash", true
);
2021-11-03 18:21:44 +00:00
impl TapTweakHash {
/// Create a new BIP341 [`TapTweakHash`] from key and tweak
/// Produces H_taptweak(P||R) where P is internal key and R is the merkle root
pub fn from_key_and_tweak(
internal_key: schnorr::PublicKey,
merkle_root: Option<TapBranchHash>,
) -> TapTweakHash {
let mut eng = TapTweakHash::engine();
// always hash the key
eng.input(&internal_key.serialize());
if let Some(h) = merkle_root {
eng.input(&h);
} else {
// nothing to hash
}
TapTweakHash::from_engine(eng)
}
}
impl TapLeafHash {
/// function to compute leaf hash from components
pub fn from_script(script: &Script, ver: LeafVersion) -> TapLeafHash {
let mut eng = TapLeafHash::engine();
ver.as_u8()
.consensus_encode(&mut eng)
.expect("engines don't err");
script
.consensus_encode(&mut eng)
.expect("engines don't err");
TapLeafHash::from_engine(eng)
}
}
/// Maximum depth of a Taproot Tree Script spend path
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L229
pub const TAPROOT_CONTROL_MAX_NODE_COUNT: usize = 128;
/// Size of a taproot control node
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L228
pub const TAPROOT_CONTROL_NODE_SIZE: usize = 32;
/// Tapleaf mask for getting the leaf version from first byte of control block
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L225
pub const TAPROOT_LEAF_MASK: u8 = 0xfe;
/// Tapscript leaf version
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L226
pub const TAPROOT_LEAF_TAPSCRIPT: u8 = 0xc0;
/// Tapscript control base size
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L227
pub const TAPROOT_CONTROL_BASE_SIZE: usize = 33;
/// Tapscript control max size
// https://github.com/bitcoin/bitcoin/blob/e826b22da252e0599c61d21c98ff89f366b3120f/src/script/interpreter.h#L230
pub const TAPROOT_CONTROL_MAX_SIZE: usize =
TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * TAPROOT_CONTROL_MAX_NODE_COUNT;
// type alias for versioned tap script corresponding merkle proof
type ScriptMerkleProofMap = BTreeMap<(Script, LeafVersion), BTreeSet<TaprootMerkleBranch>>;
2021-11-03 18:21:44 +00:00
/// Data structure for representing Taproot spending information.
/// Taproot output corresponds to a combination of a
/// single public key condition (known the internal key), and zero or more
/// general conditions encoded in scripts organized in the form of a binary tree.
///
/// Taproot can be spent be either:
/// - Spending using the key path i.e., with secret key corresponding to the output_key
/// - By satisfying any of the scripts in the script spent path. Each script can be satisfied by providing
/// a witness stack consisting of the script's inputs, plus the script itself and the control block.
///
/// If one or more of the spending conditions consist of just a single key (after aggregation),
/// the most likely one should be made the internal key.
/// See [BIP341](https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki) for more details
/// on choosing internal keys for a taproot application
///
/// Note: This library currently does not support [annex](https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki#cite_note-5)
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct TaprootSpendInfo {
/// The BIP341 internal key.
internal_key: schnorr::PublicKey,
/// The Merkle root of the script tree (None if there are no scripts)
merkle_root: Option<TapBranchHash>,
/// The sign final output pubkey as per BIP 341
output_key_parity: bool,
/// The tweaked output key
output_key: schnorr::PublicKey,
/// Map from (script, leaf_version) to (sets of) [`TaprootMerkleBranch`].
/// More than one control block for a given script is only possible if it
/// appears in multiple branches of the tree. In all cases, keeping one should
/// be enough for spending funds, but we keep all of the paths so that
/// a full tree can be constructed again from spending data if required.
script_map: ScriptMerkleProofMap,
2021-11-03 18:21:44 +00:00
}
impl TaprootSpendInfo {
2021-11-06 11:56:51 +00:00
/// Create a new [`TaprootSpendInfo`] from a list of script(with default script version) and
/// weights of satisfaction for that script. The weights represent the probability of
/// each branch being taken. If probabilities/weights for each condition are known,
/// constructing the tree as a Huffman tree is the optimal way to minimize average
/// case satisfaction cost. This function takes input an iterator of tuple(u64, &Script)
/// where usize represents the satisfaction weights of the branch.
/// For example, [(3, S1), (2, S2), (5, S3)] would construct a TapTree that has optimal
/// satisfaction weight when probability for S1 is 30%, S2 is 20% and S3 is 50%.
///
/// # Errors:
///
/// - When the optimal huffman tree has a depth more than 128
/// - If the provided list of script weights is empty
/// - If the script weight calculations overflow. This should not happen unless you are
/// dealing with numbers close to 2^64.
pub fn with_huffman_tree<C, I>(
secp: &Secp256k1<C>,
internal_key: schnorr::PublicKey,
script_weights: I,
) -> Result<Self, TaprootBuilderError>
where
I: IntoIterator<Item = (u64, Script)>,
C: secp256k1::Verification,
{
let mut node_weights = BinaryHeap::<(u64, NodeInfo)>::new();
for (p, leaf) in script_weights {
node_weights.push((p, NodeInfo::new_leaf_with_ver(leaf, LeafVersion::default())));
}
if node_weights.is_empty() {
return Err(TaprootBuilderError::IncompleteTree);
}
while node_weights.len() > 1 {
// Combine the last two elements and insert a new node
let (p1, s1) = node_weights.pop().expect("len must be at least two");
let (p2, s2) = node_weights.pop().expect("len must be at least two");
// Insert the sum of first two in the tree as a new node
let p = p1.checked_add(p2).ok_or(TaprootBuilderError::ScriptWeightOverflow)?;
node_weights.push((p, NodeInfo::combine(s1, s2)?));
}
// Every iteration of the loop reduces the node_weights.len() by exactly 1
// Therefore, the loop will eventually terminate with exactly 1 element
debug_assert!(node_weights.len() == 1);
let node = node_weights.pop().expect("huffman tree algorithm is broken").1;
return Ok(Self::from_node_info(secp, internal_key, node));
}
2021-11-03 18:21:44 +00:00
/// Create a new key spend with internal key and proided merkle root.
/// Provide [`None`] for merkle_root if there is no script path.
///
/// *Note*: As per BIP341
///
/// When the merkle root is [`None`], the output key commits to an unspendable
/// script path instead of having no script path. This is achieved by computing
/// the output key point as Q = P + int(hashTapTweak(bytes(P)))G.
/// See also [`TaprootSpendInfo::tap_tweak`].
/// Refer to BIP 341 footnote (Why should the output key always have
/// a taproot commitment, even if there is no script path?) for more details
///
pub fn new_key_spend<C: secp256k1::Verification>(
secp: &Secp256k1<C>,
internal_key: schnorr::PublicKey,
merkle_root: Option<TapBranchHash>,
) -> Self {
let tweak = TapTweakHash::from_key_and_tweak(internal_key, merkle_root);
let mut output_key = internal_key;
// # Panics:
//
// This would return Err if the merkle root hash is the negation of the secret
// key corresponding to the internal key.
// Because the tweak is derived as specified in BIP341 (hash output of a function),
// this is unlikely to occur (1/2^128) in real life usage, it is safe to unwrap this
let parity = output_key
.tweak_add_assign(&secp, &tweak)
.expect("TapTweakHash::from_key_and_tweak is broken");
Self {
internal_key: internal_key,
merkle_root: merkle_root,
output_key_parity: parity,
output_key: output_key,
script_map: BTreeMap::new(),
}
}
/// Obtain the tweak and parity used to compute the output_key
pub fn tap_tweak(&self) -> TapTweakHash {
TapTweakHash::from_key_and_tweak(self.internal_key, self.merkle_root)
}
/// Obtain the internal key
pub fn internal_key(&self) -> schnorr::PublicKey {
self.internal_key
}
/// Obtain the merkle root
pub fn merkle_root(&self) -> Option<TapBranchHash> {
self.merkle_root
}
/// Output key(the key used in script pubkey) from Spend data. See also
/// [`TaprootSpendInfo::output_key_parity`]
pub fn output_key(&self) -> schnorr::PublicKey {
2021-11-03 18:21:44 +00:00
self.output_key
}
/// Parity of the output key. See also [`TaprootSpendInfo::output_key`]
pub fn output_key_parity(&self) -> bool {
self.output_key_parity
}
2021-10-08 20:08:08 +00:00
// Internal function to compute [`TaprootSpendInfo`] from NodeInfo
fn from_node_info<C: secp256k1::Verification>(
secp: &Secp256k1<C>,
internal_key: schnorr::PublicKey,
node: NodeInfo,
) -> TaprootSpendInfo {
// Create as if it is a key spend path with the given merkle root
let root_hash = Some(TapBranchHash::from_inner(node.hash.into_inner()));
let mut info = TaprootSpendInfo::new_key_spend(secp, internal_key, root_hash);
for leaves in node.leaves {
let key = (leaves.script, leaves.ver);
let value = leaves.merkle_branch;
match info.script_map.get_mut(&key) {
Some(set) => {
set.insert(value);
continue; // NLL fix
}
None => {}
}
let mut set = BTreeSet::new();
set.insert(value);
info.script_map.insert(key, set);
}
info
}
/// Access the internal script map
pub fn as_script_map(&self) -> &ScriptMerkleProofMap {
&self.script_map
}
/// Obtain a [`ControlBlock`] for particular script with the given version.
/// Returns [`None`] if the script is not contained in the [`TaprootSpendInfo`]
/// If there are multiple ControlBlocks possible, this returns the shortest one.
pub fn control_block(&self, script_ver: &(Script, LeafVersion)) -> Option<ControlBlock> {
let merkle_branch_set = self.script_map.get(script_ver)?;
// Choose the smallest one amongst the multiple script maps
let smallest = merkle_branch_set
.iter()
.min_by(|x, y| x.0.len().cmp(&y.0.len()))
.expect("Invariant: Script map key must contain non-empty set value");
Some(ControlBlock {
internal_key: self.internal_key,
output_key_parity: self.output_key_parity,
leaf_version: LeafVersion::default(),
merkle_branch: smallest.clone(),
})
}
2021-10-08 20:08:08 +00:00
}
/// Builder for building taproot iteratively. Users can specify tap leaf or omitted/hidden
/// branches in a DFS(Depth first search) walk to construct this tree.
// Similar to Taproot Builder in bitcoin core
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct TaprootBuilder {
// The following doc-comment is from bitcoin core, but modified for rust
// The comment below describes the current state of the builder for a given tree.
//
// For each level in the tree, one NodeInfo object may be present. branch at index 0
// is information about the root; further values are for deeper subtrees being
// explored.
//
// During the construction of Taptree, for every right branch taken to
// reach the position we're currently working in, there will be a (Some(_))
// entry in branch corresponding to the left branch at that level.
//
// For example, imagine this tree: - N0 -
// / \
// N1 N2
// / \ / \
// A B C N3
// / \
// D E
//
// Initially, branch is empty. After processing leaf A, it would become
// {None, None, A}. When processing leaf B, an entry at level 2 already
// exists, and it would thus be combined with it to produce a level 1 one,
// resulting in {None, N1}. Adding C and D takes us to {None, N1, C}
// and {None, N1, C, D} respectively. When E is processed, it is combined
// with D, and then C, and then N1, to produce the root, resulting in {N0}.
//
// This structure allows processing with just O(log n) overhead if the leaves
// are computed on the fly.
//
// As an invariant, there can never be None entries at the end. There can
// also not be more than 128 entries (as that would mean more than 128 levels
// in the tree). The depth of newly added entries will always be at least
// equal to the current size of branch (otherwise it does not correspond
// to a depth-first traversal of a tree). branch is only empty if no entries
// have ever be processed. branch having length 1 corresponds to being done.
//
branch: Vec<Option<NodeInfo>>,
2021-11-03 18:21:44 +00:00
}
2021-10-08 20:08:08 +00:00
impl TaprootBuilder {
/// Create a new instance of [`TaprootBuilder`]
pub fn new() -> Self {
TaprootBuilder { branch: vec![] }
}
/// Just like [`TaprootBuilder::add_leaf`] but allows to specify script version
pub fn add_leaf_with_ver(
self,
depth: usize,
script: Script,
ver: LeafVersion,
) -> Result<Self, TaprootBuilderError> {
let leaf = NodeInfo::new_leaf_with_ver(script, ver);
self.insert(leaf, depth)
}
/// Add a leaf script at a depth `depth` to the builder with default script version.
/// This will error if the leave are not provided in a DFS walk order. The depth of the
/// root node is 0 and it's immediate child would be at depth 1.
/// See [`TaprootBuilder::add_leaf_with_ver`] for adding a leaf with specific version
/// See [Wikipedia](https://en.wikipedia.org/wiki/Depth-first_search) for more details
pub fn add_leaf(self, depth: usize, script: Script) -> Result<Self, TaprootBuilderError> {
self.add_leaf_with_ver(depth, script, LeafVersion::default())
}
/// Add a hidden/omitted node at a depth `depth` to the builder.
/// This will error if the node are not provided in a DFS walk order. The depth of the
/// root node is 0 and it's immediate child would be at depth 1.
pub fn add_hidden(self, depth: usize, hash: sha256::Hash) -> Result<Self, TaprootBuilderError> {
let node = NodeInfo::new_hidden(hash);
self.insert(node, depth)
}
/// Create [`TaprootSpendInfo`] with the given internal key
pub fn finalize<C: secp256k1::Verification>(
mut self,
secp: &Secp256k1<C>,
internal_key: schnorr::PublicKey,
) -> Result<TaprootSpendInfo, TaprootBuilderError> {
if self.branch.len() > 1 {
return Err(TaprootBuilderError::IncompleteTree);
}
let node = self
.branch
.pop()
.ok_or(TaprootBuilderError::EmptyTree)?
.expect("Builder invariant: last element of the branch must be some");
Ok(TaprootSpendInfo::from_node_info(secp, internal_key, node))
}
// Helper function to insert a leaf at a depth
fn insert(mut self, mut node: NodeInfo, mut depth: usize) -> Result<Self, TaprootBuilderError> {
// early error on invalid depth. Though this will be checked later
// while constructing TaprootMerkelBranch
if depth > TAPROOT_CONTROL_MAX_NODE_COUNT {
return Err(TaprootBuilderError::InvalidMerkleTreeDepth(depth));
}
// We cannot insert a leaf at a lower depth while a deeper branch is unfinished. Doing
// so would mean the add_leaf/add_hidden invocations do not correspond to a DFS traversal of a
// binary tree.
if depth + 1 < self.branch.len() {
return Err(TaprootBuilderError::NodeNotInDfsOrder);
}
while self.branch.len() == depth + 1 {
let child = match self.branch.pop() {
None => unreachable!("Len of branch checked to be >= 1"),
Some(Some(child)) => child,
// Needs an explicit push to add the None that we just popped.
// Cannot use .last() because of borrow checker issues.
Some(None) => {
self.branch.push(None);
break;
} // Cannot combine further
};
if depth == 0 {
// We are trying to combine two nodes at root level.
// Can't propagate further up than the root
return Err(TaprootBuilderError::OverCompleteTree);
}
node = NodeInfo::combine(node, child)?;
// Propagate to combine nodes at a lower depth
depth -= 1;
}
if self.branch.len() < depth + 1 {
// add enough nodes so that we can insert node at depth `depth`
let num_extra_nodes = depth + 1 - self.branch.len();
self.branch
.extend((0..num_extra_nodes).into_iter().map(|_| None));
}
// Push the last node to the branch
self.branch[depth] = Some(node);
Ok(self)
}
}
// Internally used structure to represent the node information in taproot tree
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct NodeInfo {
/// Merkle Hash for this node
hash: sha256::Hash,
/// information about leaves inside this node
leaves: Vec<LeafInfo>,
}
impl NodeInfo {
// Create a new NodeInfo with omitted/hidden info
fn new_hidden(hash: sha256::Hash) -> Self {
Self {
hash: hash,
leaves: vec![],
}
}
// Create a new leaf with NodeInfo
fn new_leaf_with_ver(script: Script, ver: LeafVersion) -> Self {
let leaf = LeafInfo::new(script, ver);
Self {
hash: leaf.hash(),
leaves: vec![leaf],
}
}
// Combine two NodeInfo's to create a new parent
fn combine(a: Self, b: Self) -> Result<Self, TaprootBuilderError> {
let mut all_leaves = Vec::with_capacity(a.leaves.len() + b.leaves.len());
for mut a_leaf in a.leaves {
a_leaf.merkle_branch.push(b.hash)?; // add hashing partner
all_leaves.push(a_leaf);
}
for mut b_leaf in b.leaves {
b_leaf.merkle_branch.push(a.hash)?; // add hashing partner
all_leaves.push(b_leaf);
}
let mut eng = TapBranchHash::engine();
if a.hash < b.hash {
eng.input(&a.hash);
eng.input(&b.hash);
} else {
eng.input(&b.hash);
eng.input(&a.hash);
};
Ok(Self {
hash: sha256::Hash::from_engine(eng),
leaves: all_leaves,
})
}
}
// Internally used structure to store information about taproot leaf node
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct LeafInfo {
// The underlying script
script: Script,
// The leaf version
ver: LeafVersion,
// The merkle proof(hashing partners) to get this node
merkle_branch: TaprootMerkleBranch,
}
impl LeafInfo {
// Create an instance of Self from Script with default version and no merkle branch
fn new(script: Script, ver: LeafVersion) -> Self {
Self {
script: script,
ver: ver,
merkle_branch: TaprootMerkleBranch(vec![]),
}
}
// Compute a leaf hash for the given leaf
fn hash(&self) -> sha256::Hash {
let leaf_hash = TapLeafHash::from_script(&self.script, self.ver);
sha256::Hash::from_inner(leaf_hash.into_inner())
2021-10-08 20:08:08 +00:00
}
}
/// The Merkle proof for inclusion of a tree in a taptree hash
// The type of hash is sha256::Hash because the vector might contain
// both TapBranchHash and TapLeafHash
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct TaprootMerkleBranch(Vec<sha256::Hash>);
impl TaprootMerkleBranch {
/// Obtain a reference to inner
pub fn as_inner(&self) -> &[sha256::Hash] {
&self.0
}
/// Create a merkle proof from slice
pub fn from_slice(sl: &[u8]) -> Result<Self, TaprootError> {
if sl.len() % TAPROOT_CONTROL_NODE_SIZE != 0 {
Err(TaprootError::InvalidMerkleBranchSize(sl.len()))
} else if sl.len() > TAPROOT_CONTROL_NODE_SIZE * TAPROOT_CONTROL_MAX_NODE_COUNT {
Err(TaprootError::InvalidMerkleTreeDepth(
sl.len() / TAPROOT_CONTROL_NODE_SIZE,
))
} else {
let inner = sl
// TODO: Use chunks_exact after MSRV changes to 1.31
.chunks(TAPROOT_CONTROL_NODE_SIZE)
.map(|chunk| {
sha256::Hash::from_slice(chunk)
.expect("chunk exact always returns the correct size")
})
.collect();
Ok(TaprootMerkleBranch(inner))
}
}
/// Serialize to a writer. Returns the number of bytes written
pub fn encode<Write: io::Write>(&self, mut writer: Write) -> io::Result<usize> {
let mut written = 0;
for hash in self.0.iter() {
written += writer.write(hash)?;
}
Ok(written)
}
/// Serialize self as bytes
pub fn serialize(&self) -> Vec<u8> {
self.0.iter().map(|e| e.as_inner()).flatten().map(|x| *x).collect::<Vec<u8>>()
}
2021-10-08 20:08:08 +00:00
// Internal function to append elements to proof
fn push(&mut self, h: sha256::Hash) -> Result<(), TaprootBuilderError> {
if self.0.len() >= TAPROOT_CONTROL_MAX_NODE_COUNT {
Err(TaprootBuilderError::InvalidMerkleTreeDepth(self.0.len()))
} else {
self.0.push(h);
Ok(())
}
}
/// Create a MerkleProof from Vec<[`sha256::Hash`]>. Returns an error when
/// inner proof len is more than TAPROOT_CONTROL_MAX_NODE_COUNT (128)
pub fn from_inner(inner: Vec<sha256::Hash>) -> Result<Self, TaprootError> {
if inner.len() > TAPROOT_CONTROL_MAX_NODE_COUNT {
Err(TaprootError::InvalidMerkleTreeDepth(inner.len()))
} else {
Ok(TaprootMerkleBranch(inner))
}
}
/// Consume Self to get Vec<[`sha256::Hash`]>
pub fn into_inner(self) -> Vec<sha256::Hash> {
self.0
}
}
/// Control Block data structure used in Tapscript satisfaction
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ControlBlock {
/// The tapleaf version,
pub leaf_version: LeafVersion,
/// The parity of the output key (NOT THE INTERNAL KEY WHICH IS ALWAYS XONLY)
pub output_key_parity: bool,
/// The internal key
pub internal_key: schnorr::PublicKey,
/// The merkle proof of a script associated with this leaf
pub merkle_branch: TaprootMerkleBranch,
}
impl ControlBlock {
/// Obtain a ControlBlock from slice. This is an extra witness element
/// that provides the proof that taproot script pubkey is correctly computed
/// with some specified leaf hash. This is the last element in
/// taproot witness when spending a output via script path.
///
/// # Errors:
/// - If the control block size is not of the form 33 + 32m where
/// 0 <= m <= 128, InvalidControlBlock is returned
pub fn from_slice(sl: &[u8]) -> Result<ControlBlock, TaprootError> {
if sl.len() < TAPROOT_CONTROL_BASE_SIZE
|| (sl.len() - TAPROOT_CONTROL_BASE_SIZE) % TAPROOT_CONTROL_NODE_SIZE != 0
{
return Err(TaprootError::InvalidControlBlockSize(sl.len()));
}
let output_key_parity = (sl[0] & 1) == 1;
let leaf_version = LeafVersion::from_u8(sl[0] & TAPROOT_LEAF_MASK)?;
let internal_key = schnorr::PublicKey::from_slice(&sl[1..TAPROOT_CONTROL_BASE_SIZE])
.map_err(TaprootError::InvalidInternalKey)?;
let merkle_branch = TaprootMerkleBranch::from_slice(&sl[TAPROOT_CONTROL_BASE_SIZE..])?;
Ok(ControlBlock {
leaf_version,
output_key_parity,
internal_key,
merkle_branch,
})
}
/// Obtain the size of control block. Faster and more efficient than calling
/// serialize() followed by len(). Can be handy for fee estimation
pub fn size(&self) -> usize {
TAPROOT_CONTROL_BASE_SIZE + TAPROOT_CONTROL_NODE_SIZE * self.merkle_branch.as_inner().len()
}
/// Serialize to a writer. Returns the number of bytes written
pub fn encode<Write: io::Write>(&self, mut writer: Write) -> io::Result<usize> {
let first_byte: u8 =
(if self.output_key_parity { 1 } else { 0 }) | self.leaf_version.as_u8();
let mut bytes_written = 0;
bytes_written += writer.write(&[first_byte])?;
bytes_written += writer.write(&self.internal_key.serialize())?;
bytes_written += self.merkle_branch.encode(&mut writer)?;
Ok(bytes_written)
}
/// Serialize the control block. This would be required when
/// using ControlBlock as a witness element while spending an output via
/// script path. This serialization does not include the VarInt prefix that would be
/// applied when encoding this element as a witness.
pub fn serialize(&self) -> Vec<u8> {
let mut buf = Vec::with_capacity(self.size());
self.encode(&mut buf)
.expect("writers don't error");
buf
}
/// Verify that a control block is correct proof for a given output key and script
/// This only checks that script is contained inside the taptree described by
/// output key, full verification must also execute the script with witness data
pub fn verify_taproot_commitment<C: secp256k1::Verification>(
&self,
secp: &Secp256k1<C>,
output_key: &schnorr::PublicKey,
script: &Script,
) -> bool {
// compute the script hash
// Initially the curr_hash is the leaf hash
let leaf_hash = TapLeafHash::from_script(&script, self.leaf_version);
let mut curr_hash = TapBranchHash::from_inner(leaf_hash.into_inner());
// Verify the proof
for elem in self.merkle_branch.as_inner() {
let mut eng = TapBranchHash::engine();
if curr_hash.as_inner() < elem.as_inner() {
eng.input(&curr_hash);
eng.input(elem);
} else {
eng.input(elem);
eng.input(&curr_hash);
}
// Recalculate the curr hash as parent hash
curr_hash = TapBranchHash::from_engine(eng);
}
// compute the taptweak
let tweak = TapTweakHash::from_key_and_tweak(self.internal_key, Some(curr_hash));
self.internal_key.tweak_add_check(
secp,
output_key,
self.output_key_parity,
tweak.into_inner(),
)
}
}
/// The leaf version for tapleafs
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct LeafVersion(u8);
impl Default for LeafVersion {
fn default() -> Self {
LeafVersion(TAPROOT_LEAF_TAPSCRIPT)
}
}
impl LeafVersion {
/// Obtain LeafVersion from u8, will error when last bit of ver is even or
/// when ver is 0x50 (ANNEX_TAG)
// Text from BIP341:
// In order to support some forms of static analysis that rely on
// being able to identify script spends without access to the output being
// spent, it is recommended to avoid using any leaf versions that would conflict
// with a valid first byte of either a valid P2WPKH pubkey or a valid P2WSH script
// (that is, both v and v | 1 should be an undefined, invalid or disabled opcode
// or an opcode that is not valid as the first opcode).
// The values that comply to this rule are the 32 even values between
// 0xc0 and 0xfe and also 0x66, 0x7e, 0x80, 0x84, 0x96, 0x98, 0xba, 0xbc, 0xbe
pub fn from_u8(ver: u8) -> Result<Self, TaprootError> {
if ver & TAPROOT_LEAF_MASK == ver && ver != 0x50 {
Ok(LeafVersion(ver))
} else {
Err(TaprootError::InvalidTaprootLeafVersion(ver))
}
}
/// Get the inner version from LeafVersion
pub fn as_u8(&self) -> u8 {
self.0
}
}
impl Into<u8> for LeafVersion {
fn into(self) -> u8 {
self.0
}
}
2021-10-08 20:08:08 +00:00
/// Detailed error type for taproot builder
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum TaprootBuilderError {
/// Merkle Tree depth must not be more than 128
InvalidMerkleTreeDepth(usize),
/// Nodes must be added specified in DFS order
NodeNotInDfsOrder,
/// Two nodes at depth 0 are not allowed
OverCompleteTree,
/// Invalid taproot internal key
InvalidInternalKey(secp256k1::Error),
/// Called finalize on an incomplete tree
IncompleteTree,
/// Called finalize on a empty tree
EmptyTree,
2021-11-06 11:56:51 +00:00
/// Script weight overflow
ScriptWeightOverflow,
2021-10-08 20:08:08 +00:00
}
impl fmt::Display for TaprootBuilderError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TaprootBuilderError::NodeNotInDfsOrder => {
write!(f, "add_leaf/add_hidden must be called in DFS walk order",)
}
TaprootBuilderError::OverCompleteTree => write!(
f,
"Attempted to create a tree with two nodes at depth 0. There must\
only be a exactly one node at depth 0",
),
TaprootBuilderError::InvalidMerkleTreeDepth(d) => write!(
f,
"Merkle Tree depth({}) must be less than {}",
d, TAPROOT_CONTROL_MAX_NODE_COUNT
),
TaprootBuilderError::InvalidInternalKey(e) => {
write!(f, "Invalid Internal XOnly key : {}", e)
}
TaprootBuilderError::IncompleteTree => {
write!(f, "Called finalize on an incomplete tree")
}
TaprootBuilderError::EmptyTree => {
write!(f, "Called finalize on an empty tree")
}
2021-11-06 11:56:51 +00:00
TaprootBuilderError::ScriptWeightOverflow => {
write!(f, "Script weight overflow in Huffman tree construction")
},
2021-10-08 20:08:08 +00:00
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl error::Error for TaprootBuilderError {}
/// Detailed error type for taproot utilities
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum TaprootError {
/// Proof size must be a multiple of 32
InvalidMerkleBranchSize(usize),
/// Merkle Tree depth must not be more than 128
InvalidMerkleTreeDepth(usize),
/// The last bit of tapleaf version must be zero
InvalidTaprootLeafVersion(u8),
/// Invalid Control Block Size
InvalidControlBlockSize(usize),
/// Invalid taproot internal key
InvalidInternalKey(secp256k1::Error),
2021-10-08 20:08:08 +00:00
/// Empty TapTree
EmptyTree,
}
impl fmt::Display for TaprootError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match *self {
TaprootError::InvalidMerkleBranchSize(sz) => write!(
f,
"Merkle branch size({}) must be a multiple of {}",
sz, TAPROOT_CONTROL_NODE_SIZE
),
TaprootError::InvalidMerkleTreeDepth(d) => write!(
f,
"Merkle Tree depth({}) must be less than {}",
d, TAPROOT_CONTROL_MAX_NODE_COUNT
),
TaprootError::InvalidTaprootLeafVersion(v) => write!(
f,
"Leaf version({}) must have the least significant bit 0",
v
),
TaprootError::InvalidControlBlockSize(sz) => write!(
f,
"Control Block size({}) must be of the form 33 + 32*m where 0 <= m <= {} ",
sz, TAPROOT_CONTROL_MAX_NODE_COUNT
),
// TODO: add source when in MSRV
TaprootError::InvalidInternalKey(e) => write!(f, "Invalid Internal XOnly key : {}", e),
2021-10-08 20:08:08 +00:00
TaprootError::EmptyTree => write!(f, "Taproot Tree must contain at least one script"),
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl error::Error for TaprootError {}
2019-05-14 17:07:53 +00:00
#[cfg(test)]
mod test {
use super::*;
use hashes::hex::ToHex;
use hashes::sha256t::Tag;
use hashes::{sha256, Hash, HashEngine};
fn tag_engine(tag_name: &str) -> sha256::HashEngine {
let mut engine = sha256::Hash::engine();
let tag_hash = sha256::Hash::hash(tag_name.as_bytes());
engine.input(&tag_hash[..]);
engine.input(&tag_hash[..]);
engine
}
#[test]
fn test_midstates() {
// check midstate against hard-coded values
assert_eq!(MIDSTATE_TAPLEAF, tag_engine("TapLeaf").midstate().into_inner());
assert_eq!(MIDSTATE_TAPBRANCH, tag_engine("TapBranch").midstate().into_inner());
assert_eq!(MIDSTATE_TAPTWEAK, tag_engine("TapTweak").midstate().into_inner());
assert_eq!(MIDSTATE_TAPSIGHASH, tag_engine("TapSighash").midstate().into_inner());
// test that engine creation roundtrips
assert_eq!(tag_engine("TapLeaf").midstate(), TapLeafTag::engine().midstate());
assert_eq!(tag_engine("TapBranch").midstate(), TapBranchTag::engine().midstate());
assert_eq!(tag_engine("TapTweak").midstate(), TapTweakTag::engine().midstate());
assert_eq!(tag_engine("TapSighash").midstate(), TapSighashTag::engine().midstate());
// check that hash creation is the same as building into the same engine
fn empty_hash(tag_name: &str) -> [u8; 32] {
let mut e = tag_engine(tag_name);
e.input(&[]);
sha256::Hash::from_engine(e).into_inner()
}
assert_eq!(empty_hash("TapLeaf"), TapLeafHash::hash(&[]).into_inner());
assert_eq!(empty_hash("TapBranch"), TapBranchHash::hash(&[]).into_inner());
assert_eq!(empty_hash("TapTweak"), TapTweakHash::hash(&[]).into_inner());
assert_eq!(empty_hash("TapSighash"), TapSighashHash::hash(&[]).into_inner());
}
#[test]
fn test_vectors_core() {
//! Test vectors taken from Core
// uninitialized writers
// CHashWriter writer = HasherTapLeaf;
// writer.GetSHA256().GetHex()
assert_eq!(
TapLeafHash::from_engine(TapLeafTag::engine()).to_hex(),
"cbfa0621df37662ca57697e5847b6abaf92934a1a5624916f8d177a388c21252"
);
assert_eq!(
TapBranchHash::from_engine(TapBranchTag::engine()).to_hex(),
"dffd9fbe4c21c893fa934f8774eda0e1efdc06f52ffbf5c1533c6f4dec73c353"
);
assert_eq!(
TapTweakHash::from_engine(TapTweakTag::engine()).to_hex(),
"e4156b45ff9b277dd92a042af9eed8c91f1d037f68f0d6b20001ab749422a48a"
);
assert_eq!(
TapSighashHash::from_engine(TapSighashTag::engine()).to_hex(),
"03c8b9d47cdb5f7bf924e282ce99ba8d2fe581262a04002907d8bc4a9111bcda"
);
// 0-byte
// CHashWriter writer = HasherTapLeaf;
// writer << std::vector<unsigned char>{};
// writer.GetSHA256().GetHex()
// Note that Core writes the 0 length prefix when an empty vector is written.
assert_eq!(
TapLeafHash::hash(&[0]).to_hex(),
"29589d5122ec666ab5b4695070b6debc63881a4f85d88d93ddc90078038213ed"
);
assert_eq!(
TapBranchHash::hash(&[0]).to_hex(),
"1deb45569eb6b2da88b5c2ab46d6a64ab08d58a2fdd5f75a24e6c760194b5392"
);
assert_eq!(
TapTweakHash::hash(&[0]).to_hex(),
"1eea90d42a359c89bbf702ddf6bde140349e95b9e8036ff1c37f04e6b53787cd"
);
assert_eq!(
TapSighashHash::hash(&[0]).to_hex(),
"cd10c023c300fb9a507dff136370fba1d8a0566667cfafc4099a8803e00dfdc2"
);
}
}