rust-bitcoin-unsafe-fast/src/network/encodable.rs

559 lines
19 KiB
Rust
Raw Normal View History

// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Consensus-encodable types
//!
//! This is basically a replacement of the `Encodable` trait which does
//! normalization for endianness, etc., to ensure that the encoding
//! matches for endianness, etc., to ensure that the encoding matches
//! the network consensus encoding.
//!
//! Essentially, anything that must go on the -disk- or -network- must
//! be encoded using the `ConsensusEncodable` trait, since this data
//! must be the same for all systems. Any data going to the -user-, e.g.
//! over JSONRPC, should use the ordinary `Encodable` trait. (This
//! should also be the same across systems, of course, but has some
//! critical differences from the network format, e.g. scripts come
//! with an opcode decode, hashes are big-endian, numbers are typically
//! big-endian decimals, etc.)
//!
use std::collections::HashMap;
use std::default::Default;
use std::hash::{Hash, Hasher};
use std::u32;
use util::thinvec::ThinVec;
use util::hash::Sha256dHash;
use network::serialize::{SimpleDecoder, SimpleEncoder};
/// Data which can be encoded in a consensus-consistent way
pub trait ConsensusEncodable<S:SimpleEncoder<E>, E> {
/// Encode an object with a well-defined format
fn consensus_encode(&self, e: &mut S) -> Result<(), E>;
}
/// Data which can be encoded in a consensus-consistent way
pub trait ConsensusDecodable<D:SimpleDecoder<E>, E> {
/// Decode an object with a well-defined format
fn consensus_decode(d: &mut D) -> Result<Self, E>;
}
/// A variable-length unsigned integer
#[deriving(PartialEq, Show)]
pub struct VarInt(pub u64);
/// Data which must be preceded by a 4-byte checksum
#[deriving(PartialEq, Clone, Show)]
pub struct CheckedData(pub Vec<u8>);
// Primitive types
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for u8 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_u8(*self) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for u16 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_u16(self.to_le()) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for u32 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_u32(self.to_le()) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for u64 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_u64(self.to_le()) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for i32 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_i32(self.to_le()) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for i64 {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_i64(self.to_le()) }
}
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for VarInt {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
let &VarInt(n) = self;
match n {
0..0xFC => { (n as u8).consensus_encode(s) }
0xFD..0xFFFF => { try!(s.emit_u8(0xFD)); (n as u16).consensus_encode(s) }
0x10000..0xFFFFFFFF => { try!(s.emit_u8(0xFE)); (n as u32).consensus_encode(s) }
_ => { try!(s.emit_u8(0xFF)); (n as u64).consensus_encode(s) }
}
}
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for u8 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<u8, E> { d.read_u8() }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for u16 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<u16, E> { d.read_u16().map(|n| Int::from_le(n)) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for u32 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<u32, E> { d.read_u32().map(|n| Int::from_le(n)) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for u64 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<u64, E> { d.read_u64().map(|n| Int::from_le(n)) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for i32 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<i32, E> { d.read_i32().map(|n| Int::from_le(n)) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for i64 {
#[inline]
fn consensus_decode(d: &mut D) -> Result<i64, E> { d.read_i64().map(|n| Int::from_le(n)) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for VarInt {
#[inline]
fn consensus_decode(d: &mut D) -> Result<VarInt, E> {
let n = try!(d.read_u8());
match n {
0xFF => d.read_u64().map(|n| VarInt(Int::from_le(n))),
0xFE => d.read_u32().map(|n| VarInt(Int::from_le(n) as u64)),
0xFD => d.read_u16().map(|n| VarInt(Int::from_le(n) as u64)),
n => Ok(VarInt(n as u64))
}
}
}
// Booleans
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for bool {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { s.emit_u8(if *self {1} else {0}) }
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for bool {
#[inline]
fn consensus_decode(d: &mut D) -> Result<bool, E> { d.read_u8().map(|n| n != 0) }
}
// Strings
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for String {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
self.as_bytes().consensus_encode(s)
}
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for String {
#[inline]
fn consensus_decode(d: &mut D) -> Result<String, E> {
String::from_utf8(try!(ConsensusDecodable::consensus_decode(d))).map_err(|_| d.error("String was not valid UTF8"))
}
}
// Arrays
macro_rules! impl_array(
( $size:expr ) => (
impl<S:SimpleEncoder<E>, E, T:ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for [T, ..$size] {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
for i in self.iter() { try!(i.consensus_encode(s)); }
Ok(())
}
}
impl<D:SimpleDecoder<E>, E, T:ConsensusDecodable<D, E>+Copy> ConsensusDecodable<D, E> for [T, ..$size] {
#[inline]
fn consensus_decode(d: &mut D) -> Result<[T, ..$size], E> {
// Set everything to the first decode
let mut ret = [try!(ConsensusDecodable::consensus_decode(d)), ..$size];
// Set the rest
for i in range(1, $size) { ret[i] = try!(ConsensusDecodable::consensus_decode(d)); }
Ok(ret)
}
}
);
)
impl_array!(2)
impl_array!(4)
impl_array!(8)
impl_array!(12)
impl_array!(16)
impl_array!(32)
impl<'a, S:SimpleEncoder<E>, E, T:ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for &'a [T] {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
try!(VarInt(self.len() as u64).consensus_encode(s));
for c in self.iter() { try!(c.consensus_encode(s)); }
Ok(())
}
}
// Cannot decode a slice
// Vectors
impl<S:SimpleEncoder<E>, E, T:ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for Vec<T> {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { self.as_slice().consensus_encode(s) }
}
impl<D:SimpleDecoder<E>, E, T:ConsensusDecodable<D, E>> ConsensusDecodable<D, E> for Vec<T> {
#[inline]
fn consensus_decode(d: &mut D) -> Result<Vec<T>, E> {
let VarInt(len): VarInt = try!(ConsensusDecodable::consensus_decode(d));
let mut ret = Vec::with_capacity(len as uint);
for _ in range(0, len) { ret.push(try!(ConsensusDecodable::consensus_decode(d))); }
Ok(ret)
}
}
impl<S:SimpleEncoder<E>, E, T:ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for ThinVec<T> {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { self.as_slice().consensus_encode(s) }
}
impl<D:SimpleDecoder<E>, E, T:ConsensusDecodable<D, E>> ConsensusDecodable<D, E> for ThinVec<T> {
#[inline]
fn consensus_decode(d: &mut D) -> Result<ThinVec<T>, E> {
let VarInt(len): VarInt = try!(ConsensusDecodable::consensus_decode(d));
if len > u32::MAX as u64 {
return Err(d.error("ThinVec length out of range!"));
}
unsafe {
let mut ret = ThinVec::with_capacity(len as u32);
// Huge danger: if this fails, the remaining uninitialized part of the ThinVec
// will be freed. This is ok, but only because the memory is u8, which has no
// destructor...and assuming there are no trap representations...very fragile.
for i in range(0, len as uint) { ret.init(i, try!(ConsensusDecodable::consensus_decode(d))); }
Ok(ret)
}
}
}
// Options (encoded as vectors of length 0 or 1)
impl<S:SimpleEncoder<E>, E, T:ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for Option<T> {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
match *self {
Some(ref data) => {
try!(1u8.consensus_encode(s));
try!(data.consensus_encode(s));
}
None => { try!(0u8.consensus_encode(s)); }
}
Ok(())
}
}
impl<D:SimpleDecoder<E>, E, T:ConsensusDecodable<D, E>> ConsensusDecodable<D, E> for Option<T> {
#[inline]
fn consensus_decode(d: &mut D) -> Result<Option<T>, E> {
let bit: u8 = try!(ConsensusDecodable::consensus_decode(d));
Ok(if bit != 0 {
Some(try!(ConsensusDecodable::consensus_decode(d)))
} else {
None
})
}
}
/// Do a double-SHA256 on some data and return the first 4 bytes
fn sha2_checksum(data: &[u8]) -> [u8, ..4] {
let checksum = Sha256dHash::from_data(data);
[checksum[0u], checksum[1u], checksum[2u], checksum[3u]]
}
// Checked data
impl<S:SimpleEncoder<E>, E> ConsensusEncodable<S, E> for CheckedData {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
let &CheckedData(ref data) = self;
try!((data.len() as u32).consensus_encode(s));
try!(sha2_checksum(data.as_slice()).consensus_encode(s))
// We can't just pass to the slice encoder since it'll insert a length
for ch in data.iter() {
try!(ch.consensus_encode(s));
}
Ok(())
}
}
impl<D:SimpleDecoder<E>, E> ConsensusDecodable<D, E> for CheckedData {
#[inline]
fn consensus_decode(d: &mut D) -> Result<CheckedData, E> {
let len: u32 = try!(ConsensusDecodable::consensus_decode(d));
let checksum: [u8, ..4] = try!(ConsensusDecodable::consensus_decode(d));
let mut ret = Vec::with_capacity(len as uint);
for _ in range(0, len) { ret.push(try!(ConsensusDecodable::consensus_decode(d))); }
let expected_checksum = sha2_checksum(ret.as_slice());
if expected_checksum != checksum {
Err(d.error("bad checksum"))
} else {
Ok(CheckedData(ret))
}
}
}
// Tuples
impl<S:SimpleEncoder<E>, E, T: ConsensusEncodable<S, E>, U: ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for (T, U) {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
let &(ref s1, ref s2) = self;
try!(s1.consensus_encode(s));
try!(s2.consensus_encode(s));
Ok(())
}
}
impl<D:SimpleDecoder<E>, E, T: ConsensusDecodable<D, E>, U: ConsensusDecodable<D, E>> ConsensusDecodable<D, E> for (T, U) {
#[inline]
fn consensus_decode(d: &mut D) -> Result<(T, U), E> {
Ok((try!(ConsensusDecodable::consensus_decode(d)),
try!(ConsensusDecodable::consensus_decode(d))))
}
}
// References
impl<S:SimpleEncoder<E>, E, T: ConsensusEncodable<S, E>> ConsensusEncodable<S, E> for Box<T> {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> { (**self).consensus_encode(s) }
}
impl<D:SimpleDecoder<E>, E, T: ConsensusDecodable<D, E>> ConsensusDecodable<D, E> for Box<T> {
#[inline]
fn consensus_decode(d: &mut D) -> Result<Box<T>, E> {
ConsensusDecodable::consensus_decode(d).map(|res| box res)
}
}
// HashMap
impl<S:SimpleEncoder<E>, E, T,
K:ConsensusEncodable<S,E>+Eq+Hash<T>,
V:ConsensusEncodable<S,E>,
H:Hasher<T>+Default> ConsensusEncodable<S, E> for HashMap<K, V, H> {
#[inline]
fn consensus_encode(&self, s: &mut S) -> Result<(), E> {
try!(VarInt(self.len() as u64).consensus_encode(s));
for (key, value) in self.iter() {
try!(key.consensus_encode(s));
try!(value.consensus_encode(s));
}
Ok(())
}
}
impl<D:SimpleDecoder<E>, E, T,
K:ConsensusDecodable<D,E>+Eq+Hash<T>,
V:ConsensusDecodable<D,E>,
H:Hasher<T>+Default> ConsensusDecodable<D, E> for HashMap<K, V, H> {
#[inline]
fn consensus_decode(d: &mut D) -> Result<HashMap<K, V, H>, E> {
let VarInt(len): VarInt = try!(ConsensusDecodable::consensus_decode(d));
let mut ret = HashMap::with_capacity_and_hasher(len as uint, Default::default());
for _ in range(0, len) {
ret.insert(try!(ConsensusDecodable::consensus_decode(d)),
try!(ConsensusDecodable::consensus_decode(d)));
}
Ok(ret)
}
}
// Tests
#[cfg(test)]
mod tests {
use super::{CheckedData, VarInt};
use std::io::IoResult;
use network::serialize::{deserialize, serialize};
#[test]
fn serialize_int_test() {
// bool
assert_eq!(serialize(&false), Ok(vec![0u8]));
assert_eq!(serialize(&true), Ok(vec![1u8]));
// u8
assert_eq!(serialize(&1u8), Ok(vec![1u8]));
assert_eq!(serialize(&0u8), Ok(vec![0u8]));
assert_eq!(serialize(&255u8), Ok(vec![255u8]));
// u16
assert_eq!(serialize(&1u16), Ok(vec![1u8, 0]));
assert_eq!(serialize(&256u16), Ok(vec![0u8, 1]));
assert_eq!(serialize(&5000u16), Ok(vec![136u8, 19]));
// u32
assert_eq!(serialize(&1u32), Ok(vec![1u8, 0, 0, 0]));
assert_eq!(serialize(&256u32), Ok(vec![0u8, 1, 0, 0]));
assert_eq!(serialize(&5000u32), Ok(vec![136u8, 19, 0, 0]));
assert_eq!(serialize(&500000u32), Ok(vec![32u8, 161, 7, 0]));
assert_eq!(serialize(&168430090u32), Ok(vec![10u8, 10, 10, 10]));
// TODO: test negative numbers
assert_eq!(serialize(&1i32), Ok(vec![1u8, 0, 0, 0]));
assert_eq!(serialize(&256i32), Ok(vec![0u8, 1, 0, 0]));
assert_eq!(serialize(&5000i32), Ok(vec![136u8, 19, 0, 0]));
assert_eq!(serialize(&500000i32), Ok(vec![32u8, 161, 7, 0]));
assert_eq!(serialize(&168430090i32), Ok(vec![10u8, 10, 10, 10]));
// u64
assert_eq!(serialize(&1u64), Ok(vec![1u8, 0, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&256u64), Ok(vec![0u8, 1, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&5000u64), Ok(vec![136u8, 19, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&500000u64), Ok(vec![32u8, 161, 7, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&723401728380766730u64), Ok(vec![10u8, 10, 10, 10, 10, 10, 10, 10]));
// TODO: test negative numbers
assert_eq!(serialize(&1i64), Ok(vec![1u8, 0, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&256i64), Ok(vec![0u8, 1, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&5000i64), Ok(vec![136u8, 19, 0, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&500000i64), Ok(vec![32u8, 161, 7, 0, 0, 0, 0, 0]));
assert_eq!(serialize(&723401728380766730i64), Ok(vec![10u8, 10, 10, 10, 10, 10, 10, 10]));
}
#[test]
fn serialize_varint_test() {
assert_eq!(serialize(&VarInt(10)), Ok(vec![10u8]));
assert_eq!(serialize(&VarInt(0xFC)), Ok(vec![0xFCu8]));
assert_eq!(serialize(&VarInt(0xFD)), Ok(vec![0xFDu8, 0xFD, 0]));
assert_eq!(serialize(&VarInt(0xFFF)), Ok(vec![0xFDu8, 0xFF, 0xF]));
assert_eq!(serialize(&VarInt(0xF0F0F0F)), Ok(vec![0xFEu8, 0xF, 0xF, 0xF, 0xF]));
assert_eq!(serialize(&VarInt(0xF0F0F0F0F0E0)), Ok(vec![0xFFu8, 0xE0, 0xF0, 0xF0, 0xF0, 0xF0, 0xF0, 0, 0]));
}
#[test]
fn serialize_checkeddata_test() {
let cd = CheckedData(vec![1u8, 2, 3, 4, 5]);
assert_eq!(serialize(&cd), Ok(vec![5, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]));
}
#[test]
fn serialize_vector_test() {
assert_eq!(serialize(&vec![1u8, 2, 3]), Ok(vec![3u8, 1, 2, 3]));
assert_eq!(serialize(&&[1u8, 2, 3]), Ok(vec![3u8, 1, 2, 3]));
// TODO: test vectors of more interesting objects
}
#[test]
fn serialize_strbuf_test() {
assert_eq!(serialize(&"Andrew".to_string()), Ok(vec![6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]));
}
#[test]
fn serialize_box_test() {
assert_eq!(serialize(&box 1u8), Ok(vec![1u8]));
assert_eq!(serialize(&box 1u16), Ok(vec![1u8, 0]));
assert_eq!(serialize(&box 1u64), Ok(vec![1u8, 0, 0, 0, 0, 0, 0, 0]));
}
#[test]
fn serialize_option_test() {
let none: Option<u8> = None;
let none_ser = serialize(&none);
let some_ser = serialize(&Some(0xFFu8));
assert_eq!(none_ser, Ok(vec![0]));
assert_eq!(some_ser, Ok(vec![1, 0xFF]));
}
#[test]
fn deserialize_int_test() {
// bool
assert_eq!(deserialize(vec![58u8, 0]), Ok(true));
assert_eq!(deserialize(vec![58u8]), Ok(true));
assert_eq!(deserialize(vec![1u8]), Ok(true));
assert_eq!(deserialize(vec![0u8]), Ok(false));
assert_eq!(deserialize(vec![0u8, 1]), Ok(false));
// u8
assert_eq!(deserialize(vec![58u8]), Ok(58u8));
// u16
assert_eq!(deserialize(vec![0x01u8, 0x02]), Ok(0x0201u16));
assert_eq!(deserialize(vec![0xABu8, 0xCD]), Ok(0xCDABu16));
assert_eq!(deserialize(vec![0xA0u8, 0x0D]), Ok(0xDA0u16));
let failure16: IoResult<u16> = deserialize(vec![1u8]);
assert!(failure16.is_err());
// u32
assert_eq!(deserialize(vec![0xABu8, 0xCD, 0, 0]), Ok(0xCDABu32));
assert_eq!(deserialize(vec![0xA0u8, 0x0D, 0xAB, 0xCD]), Ok(0xCDAB0DA0u32));
let failure32: IoResult<u32> = deserialize(vec![1u8, 2, 3]);
assert!(failure32.is_err());
// TODO: test negative numbers
assert_eq!(deserialize(vec![0xABu8, 0xCD, 0, 0]), Ok(0xCDABi32));
assert_eq!(deserialize(vec![0xA0u8, 0x0D, 0xAB, 0x2D]), Ok(0x2DAB0DA0i32));
let failurei32: IoResult<i32> = deserialize(vec![1u8, 2, 3]);
assert!(failurei32.is_err());
// u64
assert_eq!(deserialize(vec![0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]), Ok(0xCDABu64));
assert_eq!(deserialize(vec![0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]), Ok(0x99000099CDAB0DA0u64));
let failure64: IoResult<u64> = deserialize(vec![1u8, 2, 3, 4, 5, 6, 7]);
assert!(failure64.is_err());
// TODO: test negative numbers
assert_eq!(deserialize(vec![0xABu8, 0xCD, 0, 0, 0, 0, 0, 0]), Ok(0xCDABi64));
assert_eq!(deserialize(vec![0xA0u8, 0x0D, 0xAB, 0xCD, 0x99, 0, 0, 0x99]), Ok(-0x66ffff663254f260i64));
let failurei64: IoResult<i64> = deserialize(vec![1u8, 2, 3, 4, 5, 6, 7]);
assert!(failurei64.is_err());
}
#[test]
fn deserialize_vec_test() {
assert_eq!(deserialize(vec![3u8, 2, 3, 4]), Ok(vec![2u8, 3, 4]));
assert_eq!(deserialize(vec![4u8, 2, 3, 4, 5, 6]), Ok(vec![2u8, 3, 4, 5]));
}
#[test]
fn deserialize_strbuf_test() {
assert_eq!(deserialize(vec![6u8, 0x41, 0x6e, 0x64, 0x72, 0x65, 0x77]), Ok(String::from_str("Andrew")));
}
#[test]
fn deserialize_checkeddata_test() {
let cd: IoResult<CheckedData> = deserialize(vec![5u8, 0, 0, 0, 162, 107, 175, 90, 1, 2, 3, 4, 5]);
assert_eq!(cd, Ok(CheckedData(vec![1u8, 2, 3, 4, 5])));
}
#[test]
fn deserialize_option_test() {
let none: IoResult<Option<u8>> = deserialize(vec![0u8]);
let good: IoResult<Option<u8>> = deserialize(vec![1u8, 0xFF]);
let bad: IoResult<Option<u8>> = deserialize(vec![2u8]);
assert!(bad.is_err());
assert_eq!(none, Ok(None));
assert_eq!(good, Ok(Some(0xFF)));
}
#[test]
fn deserialize_box_test() {
let zero: IoResult<Box<u8>> = deserialize(vec![0u8]);
let one: IoResult<Box<u8>> = deserialize(vec![1u8]);
assert_eq!(zero, Ok(box 0));
assert_eq!(one, Ok(box 1));
}
}