rust-bitcoin-unsafe-fast/bitcoin/src/sighash.rs

1721 lines
72 KiB
Rust
Raw Normal View History

// SPDX-License-Identifier: CC0-1.0
//! Generalized, efficient, signature hash implementation.
//!
//! Implementation of the algorithm to compute the message to be signed according to
//! [Bip341](https://github.com/bitcoin/bips/blob/150ab6f5c3aca9da05fccc5b435e9667853407f4/bip-0341.mediawiki),
//! [Bip143](https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki)
//! and legacy (before Bip143).
//!
use core::borrow::Borrow;
use core::ops::{Deref, DerefMut};
use core::{fmt, str};
use crate::{io, Script, ScriptBuf, Transaction, TxIn, TxOut, Sequence};
use crate::blockdata::transaction::EncodeSigningDataResult;
use crate::blockdata::witness::Witness;
use crate::consensus::{encode, Encodable};
use crate::error::impl_std_error;
use crate::hashes::{sha256, sha256d, Hash};
use crate::hash_types::Sighash;
use crate::prelude::*;
use crate::taproot::{LeafVersion, TapLeafHash, TapSighashHash, TAPROOT_ANNEX_PREFIX};
/// Used for signature hash for invalid use of SIGHASH_SINGLE.
#[rustfmt::skip]
pub(crate) const UINT256_ONE: [u8; 32] = [
1, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0
];
/// Efficiently calculates signature hash message for legacy, segwit and taproot inputs.
#[derive(Debug)]
pub struct SighashCache<T: Deref<Target = Transaction>> {
/// Access to transaction required for transaction introspection. Moreover, type
/// `T: Deref<Target=Transaction>` allows us to use borrowed and mutable borrowed types,
/// the latter in particular is necessary for [`SighashCache::witness_mut`].
tx: T,
/// Common cache for taproot and segwit inputs, `None` for legacy inputs.
common_cache: Option<CommonCache>,
/// Cache for segwit v0 inputs (the result of another round of sha256 on `common_cache`).
segwit_cache: Option<SegwitCache>,
/// Cache for taproot v1 inputs.
taproot_cache: Option<TaprootCache>,
}
/// Common values cached between segwit and taproot inputs.
#[derive(Debug)]
struct CommonCache {
prevouts: sha256::Hash,
sequences: sha256::Hash,
/// In theory `outputs` could be an `Option` since `SIGHASH_NONE` and `SIGHASH_SINGLE` do not
/// need it, but since `SIGHASH_ALL` is by far the most used variant we don't bother.
outputs: sha256::Hash,
}
/// Values cached for segwit inputs, equivalent to [`CommonCache`] plus another round of `sha256`.
#[derive(Debug)]
struct SegwitCache {
prevouts: sha256d::Hash,
sequences: sha256d::Hash,
outputs: sha256d::Hash,
}
/// Values cached for taproot inputs.
#[derive(Debug)]
struct TaprootCache {
amounts: sha256::Hash,
script_pubkeys: sha256::Hash,
}
/// Contains outputs of previous transactions. In the case [`SchnorrSighashType`] variant is
/// `SIGHASH_ANYONECANPAY`, [`Prevouts::One`] may be used.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Prevouts<'u, T>
where
T: 'u + Borrow<TxOut>,
{
/// `One` variant allows provision of the single prevout needed. It's useful, for example, when
/// modifier `SIGHASH_ANYONECANPAY` is provided, only prevout of the current input is needed.
/// The first `usize` argument is the input index this [`TxOut`] is referring to.
One(usize, T),
/// When `SIGHASH_ANYONECANPAY` is not provided, or when the caller is giving all prevouts so
/// the same variable can be used for multiple inputs.
All(&'u [T]),
}
2021-07-16 14:46:57 +00:00
const KEY_VERSION_0: u8 = 0u8;
/// Information related to the script path spending.
///
/// This can be hashed into a [`TapLeafHash`].
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct ScriptPath<'s> {
script: &'s Script,
leaf_version: LeafVersion,
}
/// Hashtype of an input's signature, encoded in the last byte of the signature.
/// Fixed values so they can be cast as integer types for encoding.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum SchnorrSighashType {
/// 0x0: Used when not explicitly specified, defaults to [`SchnorrSighashType::All`]
Default = 0x00,
/// 0x1: Sign all outputs.
All = 0x01,
/// 0x2: Sign no outputs --- anyone can choose the destination.
None = 0x02,
/// 0x3: Sign the output whose index matches this input's index. If none exists,
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
/// to follow it.)
Single = 0x03,
/// 0x81: Sign all outputs but only this input.
AllPlusAnyoneCanPay = 0x81,
/// 0x82: Sign no outputs and only this input.
NonePlusAnyoneCanPay = 0x82,
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means).
SinglePlusAnyoneCanPay = 0x83,
}
#[cfg(feature = "serde")]
crate::serde_utils::serde_string_impl!(SchnorrSighashType, "a SchnorrSighashType data");
impl fmt::Display for SchnorrSighashType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
SchnorrSighashType::Default => "SIGHASH_DEFAULT",
SchnorrSighashType::All => "SIGHASH_ALL",
SchnorrSighashType::None => "SIGHASH_NONE",
SchnorrSighashType::Single => "SIGHASH_SINGLE",
SchnorrSighashType::AllPlusAnyoneCanPay => "SIGHASH_ALL|SIGHASH_ANYONECANPAY",
SchnorrSighashType::NonePlusAnyoneCanPay => "SIGHASH_NONE|SIGHASH_ANYONECANPAY",
SchnorrSighashType::SinglePlusAnyoneCanPay => "SIGHASH_SINGLE|SIGHASH_ANYONECANPAY",
};
f.write_str(s)
}
}
impl str::FromStr for SchnorrSighashType {
type Err = SighashTypeParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"SIGHASH_DEFAULT" => Ok(SchnorrSighashType::Default),
"SIGHASH_ALL" => Ok(SchnorrSighashType::All),
"SIGHASH_NONE" => Ok(SchnorrSighashType::None),
"SIGHASH_SINGLE" => Ok(SchnorrSighashType::Single),
"SIGHASH_ALL|SIGHASH_ANYONECANPAY" => Ok(SchnorrSighashType::AllPlusAnyoneCanPay),
"SIGHASH_NONE|SIGHASH_ANYONECANPAY" => Ok(SchnorrSighashType::NonePlusAnyoneCanPay),
"SIGHASH_SINGLE|SIGHASH_ANYONECANPAY" => Ok(SchnorrSighashType::SinglePlusAnyoneCanPay),
_ => Err(SighashTypeParseError { unrecognized: s.to_owned() }),
}
}
}
/// Possible errors in computing the signature message.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[non_exhaustive]
pub enum Error {
/// Could happen only by using `*_encode_signing_*` methods with custom writers, engines writers
/// like the ones used in methods `*_signature_hash` do not error.
Io(io::ErrorKind),
/// Requested index is greater or equal than the number of inputs in the transaction.
IndexOutOfInputsBounds {
/// Requested index.
index: usize,
/// Number of transaction inputs.
inputs_size: usize,
},
/// Using `SIGHASH_SINGLE` without a "corresponding output" (an output with the same index as
/// the input being verified) is a validation failure.
SingleWithoutCorrespondingOutput {
/// Requested index.
index: usize,
/// Number of transaction outputs.
outputs_size: usize,
},
/// There are mismatches in the number of prevouts provided compared to the number of inputs in
/// the transaction.
PrevoutsSize,
/// Requested a prevout index which is greater than the number of prevouts provided or a
/// [`Prevouts::One`] with different index.
PrevoutIndex,
/// A single prevout has been provided but all prevouts are needed unless using
/// `SIGHASH_ANYONECANPAY`.
PrevoutKind,
/// Annex must be at least one byte long and the first bytes must be `0x50`.
WrongAnnex,
2021-10-27 13:04:23 +00:00
/// Invalid Sighash type.
InvalidSighashType(u32),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Error::Io(error_kind) => write!(f, "writer errored: {:?}", error_kind),
Error::IndexOutOfInputsBounds { index, inputs_size } => write!(f, "Requested index ({}) is greater or equal than the number of transaction inputs ({})", index, inputs_size),
Error::SingleWithoutCorrespondingOutput { index, outputs_size } => write!(f, "SIGHASH_SINGLE for input ({}) haven't a corresponding output (#outputs:{})", index, outputs_size),
Error::PrevoutsSize => write!(f, "Number of supplied prevouts differs from the number of inputs in transaction"),
Error::PrevoutIndex => write!(f, "The index requested is greater than available prevouts or different from the provided [Provided::Anyone] index"),
Error::PrevoutKind => write!(f, "A single prevout has been provided but all prevouts are needed without `ANYONECANPAY`"),
Error::WrongAnnex => write!(f, "Annex must be at least one byte long and the first bytes must be `0x50`"),
Error::InvalidSighashType(hash_ty) => write!(f, "Invalid schnorr Signature hash type : {} ", hash_ty),
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use self::Error::*;
match self {
Io(_)
| IndexOutOfInputsBounds { .. }
| SingleWithoutCorrespondingOutput { .. }
| PrevoutsSize
| PrevoutIndex
| PrevoutKind
| WrongAnnex
| InvalidSighashType(_) => None,
}
}
}
impl<'u, T> Prevouts<'u, T>
where
T: Borrow<TxOut>,
{
fn check_all(&self, tx: &Transaction) -> Result<(), Error> {
if let Prevouts::All(prevouts) = self {
if prevouts.len() != tx.input.len() {
return Err(Error::PrevoutsSize);
}
}
Ok(())
}
fn get_all(&self) -> Result<&[T], Error> {
match self {
Prevouts::All(prevouts) => Ok(*prevouts),
_ => Err(Error::PrevoutKind),
}
}
fn get(&self, input_index: usize) -> Result<&TxOut, Error> {
match self {
Prevouts::One(index, prevout) =>
if input_index == *index {
Ok(prevout.borrow())
} else {
Err(Error::PrevoutIndex)
},
Prevouts::All(prevouts) =>
prevouts.get(input_index).map(|x| x.borrow()).ok_or(Error::PrevoutIndex),
}
}
}
impl<'s> ScriptPath<'s> {
/// Creates a new `ScriptPath` structure.
pub fn new(script: &'s Script, leaf_version: LeafVersion) -> Self {
ScriptPath { script, leaf_version }
}
/// Creates a new `ScriptPath` structure using default leaf version value.
pub fn with_defaults(script: &'s Script) -> Self { Self::new(script, LeafVersion::TapScript) }
/// Computes the leaf hash for this `ScriptPath`.
pub fn leaf_hash(&self) -> TapLeafHash {
let mut enc = TapLeafHash::engine();
self.leaf_version
.to_consensus()
.consensus_encode(&mut enc)
.expect("Writing to hash enging should never fail");
self.script.consensus_encode(&mut enc).expect("Writing to hash enging should never fail");
TapLeafHash::from_engine(enc)
}
}
impl<'s> From<ScriptPath<'s>> for TapLeafHash {
fn from(script_path: ScriptPath<'s>) -> TapLeafHash { script_path.leaf_hash() }
}
/// Hashtype of an input's signature, encoded in the last byte of the signature.
///
/// Fixed values so they can be cast as integer types for encoding (see also
/// [`SchnorrSighashType`]).
#[derive(PartialEq, Eq, Debug, Copy, Clone, Hash)]
pub enum EcdsaSighashType {
/// 0x1: Sign all outputs.
All = 0x01,
/// 0x2: Sign no outputs --- anyone can choose the destination.
None = 0x02,
/// 0x3: Sign the output whose index matches this input's index. If none exists,
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
/// to follow it.)
Single = 0x03,
/// 0x81: Sign all outputs but only this input.
AllPlusAnyoneCanPay = 0x81,
/// 0x82: Sign no outputs and only this input.
NonePlusAnyoneCanPay = 0x82,
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means).
SinglePlusAnyoneCanPay = 0x83,
}
#[cfg(feature = "serde")]
crate::serde_utils::serde_string_impl!(EcdsaSighashType, "a EcdsaSighashType data");
impl fmt::Display for EcdsaSighashType {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
EcdsaSighashType::All => "SIGHASH_ALL",
EcdsaSighashType::None => "SIGHASH_NONE",
EcdsaSighashType::Single => "SIGHASH_SINGLE",
EcdsaSighashType::AllPlusAnyoneCanPay => "SIGHASH_ALL|SIGHASH_ANYONECANPAY",
EcdsaSighashType::NonePlusAnyoneCanPay => "SIGHASH_NONE|SIGHASH_ANYONECANPAY",
EcdsaSighashType::SinglePlusAnyoneCanPay => "SIGHASH_SINGLE|SIGHASH_ANYONECANPAY",
};
f.write_str(s)
}
}
impl str::FromStr for EcdsaSighashType {
type Err = SighashTypeParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
match s {
"SIGHASH_ALL" => Ok(EcdsaSighashType::All),
"SIGHASH_NONE" => Ok(EcdsaSighashType::None),
"SIGHASH_SINGLE" => Ok(EcdsaSighashType::Single),
"SIGHASH_ALL|SIGHASH_ANYONECANPAY" => Ok(EcdsaSighashType::AllPlusAnyoneCanPay),
"SIGHASH_NONE|SIGHASH_ANYONECANPAY" => Ok(EcdsaSighashType::NonePlusAnyoneCanPay),
"SIGHASH_SINGLE|SIGHASH_ANYONECANPAY" => Ok(EcdsaSighashType::SinglePlusAnyoneCanPay),
_ => Err(SighashTypeParseError { unrecognized: s.to_owned() }),
}
}
}
impl EcdsaSighashType {
/// Splits the sighash flag into the "real" sighash flag and the ANYONECANPAY boolean.
pub(crate) fn split_anyonecanpay_flag(self) -> (EcdsaSighashType, bool) {
match self {
EcdsaSighashType::All => (EcdsaSighashType::All, false),
EcdsaSighashType::None => (EcdsaSighashType::None, false),
EcdsaSighashType::Single => (EcdsaSighashType::Single, false),
EcdsaSighashType::AllPlusAnyoneCanPay => (EcdsaSighashType::All, true),
EcdsaSighashType::NonePlusAnyoneCanPay => (EcdsaSighashType::None, true),
EcdsaSighashType::SinglePlusAnyoneCanPay => (EcdsaSighashType::Single, true),
}
}
/// Creates a [`EcdsaSighashType`] from a raw `u32`.
///
/// **Note**: this replicates consensus behaviour, for current standardness rules correctness
/// you probably want [`Self::from_standard`].
///
/// This might cause unexpected behavior because it does not roundtrip. That is,
/// `EcdsaSighashType::from_consensus(n) as u32 != n` for non-standard values of `n`. While
/// verifying signatures, the user should retain the `n` and use it compute the signature hash
/// message.
pub fn from_consensus(n: u32) -> EcdsaSighashType {
// In Bitcoin Core, the SignatureHash function will mask the (int32) value with
// 0x1f to (apparently) deactivate ACP when checking for SINGLE and NONE bits.
// We however want to be matching also against on ACP-masked ALL, SINGLE, and NONE.
// So here we re-activate ACP.
let mask = 0x1f | 0x80;
match n & mask {
// "real" sighashes
0x01 => EcdsaSighashType::All,
0x02 => EcdsaSighashType::None,
0x03 => EcdsaSighashType::Single,
0x81 => EcdsaSighashType::AllPlusAnyoneCanPay,
0x82 => EcdsaSighashType::NonePlusAnyoneCanPay,
0x83 => EcdsaSighashType::SinglePlusAnyoneCanPay,
// catchalls
x if x & 0x80 == 0x80 => EcdsaSighashType::AllPlusAnyoneCanPay,
_ => EcdsaSighashType::All,
}
}
/// Creates a [`EcdsaSighashType`] from a raw `u32`.
///
/// # Errors
///
/// If `n` is a non-standard sighash value.
pub fn from_standard(n: u32) -> Result<EcdsaSighashType, NonStandardSighashType> {
match n {
// Standard sighashes, see https://github.com/bitcoin/bitcoin/blob/b805dbb0b9c90dadef0424e5b3bf86ac308e103e/src/script/interpreter.cpp#L189-L198
0x01 => Ok(EcdsaSighashType::All),
0x02 => Ok(EcdsaSighashType::None),
0x03 => Ok(EcdsaSighashType::Single),
0x81 => Ok(EcdsaSighashType::AllPlusAnyoneCanPay),
0x82 => Ok(EcdsaSighashType::NonePlusAnyoneCanPay),
0x83 => Ok(EcdsaSighashType::SinglePlusAnyoneCanPay),
non_standard => Err(NonStandardSighashType(non_standard)),
}
}
/// Converts [`EcdsaSighashType`] to a `u32` sighash flag.
///
/// The returned value is guaranteed to be a valid according to standardness rules.
pub fn to_u32(self) -> u32 { self as u32 }
}
impl From<EcdsaSighashType> for SchnorrSighashType {
fn from(s: EcdsaSighashType) -> Self {
match s {
EcdsaSighashType::All => SchnorrSighashType::All,
EcdsaSighashType::None => SchnorrSighashType::None,
EcdsaSighashType::Single => SchnorrSighashType::Single,
EcdsaSighashType::AllPlusAnyoneCanPay => SchnorrSighashType::AllPlusAnyoneCanPay,
EcdsaSighashType::NonePlusAnyoneCanPay => SchnorrSighashType::NonePlusAnyoneCanPay,
EcdsaSighashType::SinglePlusAnyoneCanPay => SchnorrSighashType::SinglePlusAnyoneCanPay,
}
}
}
impl SchnorrSighashType {
/// Breaks the sighash flag into the "real" sighash flag and the `SIGHASH_ANYONECANPAY` boolean.
pub(crate) fn split_anyonecanpay_flag(self) -> (SchnorrSighashType, bool) {
match self {
SchnorrSighashType::Default => (SchnorrSighashType::Default, false),
SchnorrSighashType::All => (SchnorrSighashType::All, false),
SchnorrSighashType::None => (SchnorrSighashType::None, false),
SchnorrSighashType::Single => (SchnorrSighashType::Single, false),
SchnorrSighashType::AllPlusAnyoneCanPay => (SchnorrSighashType::All, true),
SchnorrSighashType::NonePlusAnyoneCanPay => (SchnorrSighashType::None, true),
SchnorrSighashType::SinglePlusAnyoneCanPay => (SchnorrSighashType::Single, true),
}
}
2021-10-27 13:04:23 +00:00
/// Constructs a [`SchnorrSighashType`] from a raw `u8`.
pub fn from_consensus_u8(hash_ty: u8) -> Result<Self, Error> {
use SchnorrSighashType::*;
Ok(match hash_ty {
0x00 => Default,
0x01 => All,
0x02 => None,
0x03 => Single,
0x81 => AllPlusAnyoneCanPay,
0x82 => NonePlusAnyoneCanPay,
0x83 => SinglePlusAnyoneCanPay,
x => return Err(Error::InvalidSighashType(x as u32)),
})
2021-10-27 13:04:23 +00:00
}
}
/// This type is consensus valid but an input including it would prevent the transaction from
/// being relayed on today's Bitcoin network.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct NonStandardSighashType(pub u32);
impl fmt::Display for NonStandardSighashType {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Non standard sighash type {}", self.0)
}
}
impl_std_error!(NonStandardSighashType);
/// Error returned for failure during parsing one of the sighash types.
///
/// This is currently returned for unrecognized sighash strings.
#[derive(Debug, Clone)]
pub struct SighashTypeParseError {
/// The unrecognized string we attempted to parse.
pub unrecognized: String,
}
impl fmt::Display for SighashTypeParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "Unrecognized SIGHASH string '{}'", self.unrecognized)
}
}
impl_std_error!(SighashTypeParseError);
impl<R: Deref<Target = Transaction>> SighashCache<R> {
/// Constructs a new `SighashCache` from an unsigned transaction.
///
/// The sighash components are computed in a lazy manner when required. For the generated
/// sighashes to be valid, no fields in the transaction may change except for script_sig and
/// witness.
pub fn new(tx: R) -> Self {
SighashCache { tx, common_cache: None, taproot_cache: None, segwit_cache: None }
}
/// Encodes the BIP341 signing data for any flag type into a given object implementing a
/// [`io::Write`] trait.
pub fn taproot_encode_signing_data_to<Write: io::Write, T: Borrow<TxOut>>(
&mut self,
mut writer: Write,
input_index: usize,
prevouts: &Prevouts<T>,
annex: Option<Annex>,
leaf_hash_code_separator: Option<(TapLeafHash, u32)>,
sighash_type: SchnorrSighashType,
) -> Result<(), Error> {
prevouts.check_all(&self.tx)?;
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
// epoch
0u8.consensus_encode(&mut writer)?;
// * Control:
// hash_type (1).
(sighash_type as u8).consensus_encode(&mut writer)?;
// * Transaction Data:
// nVersion (4): the nVersion of the transaction.
self.tx.version.consensus_encode(&mut writer)?;
// nLockTime (4): the nLockTime of the transaction.
self.tx.lock_time.consensus_encode(&mut writer)?;
// If the hash_type & 0x80 does not equal SIGHASH_ANYONECANPAY:
// sha_prevouts (32): the SHA256 of the serialization of all input outpoints.
// sha_amounts (32): the SHA256 of the serialization of all spent output amounts.
// sha_scriptpubkeys (32): the SHA256 of the serialization of all spent output scriptPubKeys.
// sha_sequences (32): the SHA256 of the serialization of all input nSequence.
if !anyone_can_pay {
self.common_cache().prevouts.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?).amounts.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?).script_pubkeys.consensus_encode(&mut writer)?;
self.common_cache().sequences.consensus_encode(&mut writer)?;
}
// If hash_type & 3 does not equal SIGHASH_NONE or SIGHASH_SINGLE:
// sha_outputs (32): the SHA256 of the serialization of all outputs in CTxOut format.
if sighash != SchnorrSighashType::None && sighash != SchnorrSighashType::Single {
self.common_cache().outputs.consensus_encode(&mut writer)?;
}
// * Data about this input:
// spend_type (1): equal to (ext_flag * 2) + annex_present, where annex_present is 0
// if no annex is present, or 1 otherwise
let mut spend_type = 0u8;
if annex.is_some() {
spend_type |= 1u8;
}
if leaf_hash_code_separator.is_some() {
spend_type |= 2u8;
}
spend_type.consensus_encode(&mut writer)?;
// If hash_type & 0x80 equals SIGHASH_ANYONECANPAY:
// outpoint (36): the COutPoint of this input (32-byte hash + 4-byte little-endian).
// amount (8): value of the previous output spent by this input.
// scriptPubKey (35): scriptPubKey of the previous output spent by this input, serialized as script inside CTxOut. Its size is always 35 bytes.
// nSequence (4): nSequence of this input.
if anyone_can_pay {
let txin = &self.tx.input.get(input_index).ok_or(Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
let previous_output = prevouts.get(input_index)?;
txin.previous_output.consensus_encode(&mut writer)?;
previous_output.value.consensus_encode(&mut writer)?;
previous_output.script_pubkey.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
} else {
(input_index as u32).consensus_encode(&mut writer)?;
}
// If an annex is present (the lowest bit of spend_type is set):
// sha_annex (32): the SHA256 of (compact_size(size of annex) || annex), where annex
// includes the mandatory 0x50 prefix.
if let Some(annex) = annex {
let mut enc = sha256::Hash::engine();
annex.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// * Data about this output:
// If hash_type & 3 equals SIGHASH_SINGLE:
// sha_single_output (32): the SHA256 of the corresponding output in CTxOut format.
if sighash == SchnorrSighashType::Single {
let mut enc = sha256::Hash::engine();
self.tx
.output
.get(input_index)
.ok_or(Error::SingleWithoutCorrespondingOutput {
index: input_index,
outputs_size: self.tx.output.len(),
})?
.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// if (scriptpath):
// ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
// ss += bytes([0])
// ss += struct.pack("<i", codeseparator_pos)
if let Some((hash, code_separator_pos)) = leaf_hash_code_separator {
hash.into_inner().consensus_encode(&mut writer)?;
2021-07-16 14:46:57 +00:00
KEY_VERSION_0.consensus_encode(&mut writer)?;
code_separator_pos.consensus_encode(&mut writer)?;
}
Ok(())
}
/// Computes the BIP341 sighash for any flag type.
pub fn taproot_signature_hash<T: Borrow<TxOut>>(
&mut self,
input_index: usize,
prevouts: &Prevouts<T>,
annex: Option<Annex>,
leaf_hash_code_separator: Option<(TapLeafHash, u32)>,
sighash_type: SchnorrSighashType,
) -> Result<TapSighashHash, Error> {
let mut enc = TapSighashHash::engine();
self.taproot_encode_signing_data_to(
&mut enc,
input_index,
prevouts,
annex,
leaf_hash_code_separator,
sighash_type,
)?;
Ok(TapSighashHash::from_engine(enc))
}
/// Computes the BIP341 sighash for a key spend.
pub fn taproot_key_spend_signature_hash<T: Borrow<TxOut>>(
&mut self,
input_index: usize,
prevouts: &Prevouts<T>,
sighash_type: SchnorrSighashType,
) -> Result<TapSighashHash, Error> {
let mut enc = TapSighashHash::engine();
self.taproot_encode_signing_data_to(
&mut enc,
input_index,
prevouts,
None,
None,
sighash_type,
)?;
Ok(TapSighashHash::from_engine(enc))
}
/// Computes the BIP341 sighash for a script spend.
///
/// Assumes the default `OP_CODESEPARATOR` position of `0xFFFFFFFF`. Custom values can be
/// provided through the more fine-grained API of [`SighashCache::taproot_encode_signing_data_to`].
pub fn taproot_script_spend_signature_hash<S: Into<TapLeafHash>, T: Borrow<TxOut>>(
&mut self,
input_index: usize,
prevouts: &Prevouts<T>,
leaf_hash: S,
sighash_type: SchnorrSighashType,
) -> Result<TapSighashHash, Error> {
let mut enc = TapSighashHash::engine();
self.taproot_encode_signing_data_to(
&mut enc,
input_index,
prevouts,
None,
Some((leaf_hash.into(), 0xFFFFFFFF)),
sighash_type,
)?;
Ok(TapSighashHash::from_engine(enc))
}
/// Encodes the BIP143 signing data for any flag type into a given object implementing a
/// [`std::io::Write`] trait.
pub fn segwit_encode_signing_data_to<Write: io::Write>(
&mut self,
mut writer: Write,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: EcdsaSighashType,
) -> Result<(), Error> {
2022-06-07 02:39:25 +00:00
let zero_hash = sha256d::Hash::all_zeros();
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
self.tx.version.consensus_encode(&mut writer)?;
if !anyone_can_pay {
self.segwit_cache().prevouts.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
if !anyone_can_pay
&& sighash != EcdsaSighashType::Single
&& sighash != EcdsaSighashType::None
{
self.segwit_cache().sequences.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
{
let txin = &self.tx.input.get(input_index).ok_or(Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
txin.previous_output.consensus_encode(&mut writer)?;
script_code.consensus_encode(&mut writer)?;
value.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
}
if sighash != EcdsaSighashType::Single && sighash != EcdsaSighashType::None {
self.segwit_cache().outputs.consensus_encode(&mut writer)?;
} else if sighash == EcdsaSighashType::Single && input_index < self.tx.output.len() {
let mut single_enc = Sighash::engine();
self.tx.output[input_index].consensus_encode(&mut single_enc)?;
let hash = Sighash::from_engine(single_enc);
writer.write_all(&hash[..])?;
} else {
writer.write_all(&zero_hash[..])?;
}
self.tx.lock_time.consensus_encode(&mut writer)?;
sighash_type.to_u32().consensus_encode(&mut writer)?;
Ok(())
}
/// Computes the BIP143 sighash for any flag type.
pub fn segwit_signature_hash(
&mut self,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: EcdsaSighashType,
) -> Result<Sighash, Error> {
let mut enc = Sighash::engine();
self.segwit_encode_signing_data_to(
&mut enc,
input_index,
script_code,
value,
sighash_type,
)?;
Ok(Sighash::from_engine(enc))
}
/// Encodes the legacy signing data from which a signature hash for a given input index with a
/// given sighash flag can be computed.
///
/// To actually produce a scriptSig, this hash needs to be run through an ECDSA signer, the
/// [`EcdsaSighashType`] appended to the resulting sig, and a script written around this, but
/// this is the general (and hard) part.
///
/// The `sighash_type` supports an arbitrary `u32` value, instead of just [`EcdsaSighashType`],
/// because internally 4 bytes are being hashed, even though only the lowest byte is appended to
/// signature in a transaction.
///
/// # Warning
///
/// - Does NOT attempt to support OP_CODESEPARATOR. In general this would require evaluating
/// `script_pubkey` to determine which separators get evaluated and which don't, which we don't
/// have the information to determine.
/// - Does NOT handle the sighash single bug (see "Return type" section)
///
/// # Returns
///
/// This function can't handle the SIGHASH_SINGLE bug internally, so it returns [`EncodeSigningDataResult`]
/// that must be handled by the caller (see [`EncodeSigningDataResult::is_sighash_single_bug`]).
pub fn legacy_encode_signing_data_to<Write: io::Write, U: Into<u32>>(
&self,
writer: Write,
input_index: usize,
script_pubkey: &Script,
sighash_type: U,
) -> EncodeSigningDataResult<Error> {
if input_index >= self.tx.input.len() {
return EncodeSigningDataResult::WriteResult(Err(Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
}));
}
let sighash_type: u32 = sighash_type.into();
if is_invalid_use_of_sighash_single(sighash_type, input_index, self.tx.output.len()) {
// We cannot correctly handle the SIGHASH_SINGLE bug here because usage of this function
// will result in the data written to the writer being hashed, however the correct
// handling of the SIGHASH_SINGLE bug is to return the 'one array' - either implement
// this behaviour manually or use `signature_hash()`.
return EncodeSigningDataResult::SighashSingleBug;
}
fn encode_signing_data_to_inner<Write: io::Write>(
self_: &Transaction,
mut writer: Write,
input_index: usize,
script_pubkey: &Script,
sighash_type: u32,
) -> Result<(), io::Error> {
let (sighash, anyone_can_pay) =
EcdsaSighashType::from_consensus(sighash_type).split_anyonecanpay_flag();
// Build tx to sign
let mut tx = Transaction {
version: self_.version,
lock_time: self_.lock_time,
input: vec![],
output: vec![],
};
// Add all inputs necessary..
if anyone_can_pay {
tx.input = vec![TxIn {
previous_output: self_.input[input_index].previous_output,
script_sig: script_pubkey.to_owned(),
sequence: self_.input[input_index].sequence,
witness: Witness::default(),
}];
} else {
tx.input = Vec::with_capacity(self_.input.len());
for (n, input) in self_.input.iter().enumerate() {
tx.input.push(TxIn {
previous_output: input.previous_output,
script_sig: if n == input_index {
script_pubkey.to_owned()
} else {
ScriptBuf::new()
},
sequence: if n != input_index
&& (sighash == EcdsaSighashType::Single
|| sighash == EcdsaSighashType::None)
{
Sequence::ZERO
} else {
input.sequence
},
witness: Witness::default(),
});
}
}
// ..then all outputs
tx.output = match sighash {
EcdsaSighashType::All => self_.output.clone(),
EcdsaSighashType::Single => {
let output_iter = self_
.output
.iter()
.take(input_index + 1) // sign all outputs up to and including this one, but erase
.enumerate() // all of them except for this one
.map(
|(n, out)| {
if n == input_index {
out.clone()
} else {
TxOut::default()
}
},
);
output_iter.collect()
}
EcdsaSighashType::None => vec![],
_ => unreachable!(),
};
// hash the result
tx.consensus_encode(&mut writer)?;
sighash_type.to_le_bytes().consensus_encode(&mut writer)?;
Ok(())
}
EncodeSigningDataResult::WriteResult(
encode_signing_data_to_inner(
&self.tx,
writer,
input_index,
script_pubkey,
sighash_type,
)
.map_err(|e| Error::Io(e.kind())),
)
}
/// Computes a legacy signature hash for a given input index with a given sighash flag.
///
/// To actually produce a scriptSig, this hash needs to be run through an ECDSA signer, the
/// [`EcdsaSighashType`] appended to the resulting sig, and a script written around this, but
/// this is the general (and hard) part.
///
/// The `sighash_type` supports an arbitrary `u32` value, instead of just [`EcdsaSighashType`],
/// because internally 4 bytes are being hashed, even though only the lowest byte is appended to
/// signature in a transaction.
///
/// This function correctly handles the sighash single bug by returning the 'one array'. The
/// sighash single bug becomes exploitable when one tries to sign a transaction with
/// `SIGHASH_SINGLE` and there is not a corresponding output with the same index as the input.
///
/// # Warning
///
/// Does NOT attempt to support OP_CODESEPARATOR. In general this would require evaluating
/// `script_pubkey` to determine which separators get evaluated and which don't, which we don't
/// have the information to determine.
pub fn legacy_signature_hash(
&self,
input_index: usize,
script_pubkey: &Script,
sighash_type: u32,
) -> Result<Sighash, Error> {
let mut enc = Sighash::engine();
if self
.legacy_encode_signing_data_to(&mut enc, input_index, script_pubkey, sighash_type)
.is_sighash_single_bug()?
{
Ok(Sighash::from_inner(UINT256_ONE))
} else {
Ok(Sighash::from_engine(enc))
}
}
#[inline]
fn common_cache(&mut self) -> &CommonCache {
Self::common_cache_minimal_borrow(&mut self.common_cache, &self.tx)
}
fn common_cache_minimal_borrow<'a>(
common_cache: &'a mut Option<CommonCache>,
tx: &R,
) -> &'a CommonCache {
common_cache.get_or_insert_with(|| {
let mut enc_prevouts = sha256::Hash::engine();
let mut enc_sequences = sha256::Hash::engine();
for txin in tx.input.iter() {
txin.previous_output.consensus_encode(&mut enc_prevouts).unwrap();
txin.sequence.consensus_encode(&mut enc_sequences).unwrap();
}
CommonCache {
prevouts: sha256::Hash::from_engine(enc_prevouts),
sequences: sha256::Hash::from_engine(enc_sequences),
outputs: {
let mut enc = sha256::Hash::engine();
for txout in tx.output.iter() {
txout.consensus_encode(&mut enc).unwrap();
}
sha256::Hash::from_engine(enc)
},
}
})
}
fn segwit_cache(&mut self) -> &SegwitCache {
let common_cache = &mut self.common_cache;
let tx = &self.tx;
self.segwit_cache.get_or_insert_with(|| {
let common_cache = Self::common_cache_minimal_borrow(common_cache, tx);
SegwitCache {
prevouts: common_cache.prevouts.hash_again(),
sequences: common_cache.sequences.hash_again(),
outputs: common_cache.outputs.hash_again(),
}
})
}
fn taproot_cache<T: Borrow<TxOut>>(&mut self, prevouts: &[T]) -> &TaprootCache {
self.taproot_cache.get_or_insert_with(|| {
let mut enc_amounts = sha256::Hash::engine();
let mut enc_script_pubkeys = sha256::Hash::engine();
for prevout in prevouts {
prevout.borrow().value.consensus_encode(&mut enc_amounts).unwrap();
prevout.borrow().script_pubkey.consensus_encode(&mut enc_script_pubkeys).unwrap();
}
TaprootCache {
amounts: sha256::Hash::from_engine(enc_amounts),
script_pubkeys: sha256::Hash::from_engine(enc_script_pubkeys),
}
})
}
}
impl<R: DerefMut<Target = Transaction>> SighashCache<R> {
/// When the `SighashCache` is initialized with a mutable reference to a transaction instead of
/// a regular reference, this method is available to allow modification to the witnesses.
///
/// This allows in-line signing such as
/// ```
/// use bitcoin::{absolute, Transaction, Script};
/// use bitcoin::sighash::{EcdsaSighashType, SighashCache};
///
/// let mut tx_to_sign = Transaction { version: 2, lock_time: absolute::LockTime::ZERO, input: Vec::new(), output: Vec::new() };
/// let input_count = tx_to_sign.input.len();
///
/// let mut sig_hasher = SighashCache::new(&mut tx_to_sign);
/// for inp in 0..input_count {
/// let prevout_script = Script::empty();
/// let _sighash = sig_hasher.segwit_signature_hash(inp, prevout_script, 42, EcdsaSighashType::All);
/// // ... sign the sighash
/// sig_hasher.witness_mut(inp).unwrap().push(&Vec::new());
/// }
/// ```
pub fn witness_mut(&mut self, input_index: usize) -> Option<&mut Witness> {
self.tx.input.get_mut(input_index).map(|i| &mut i.witness)
}
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Self { Error::Io(e.kind()) }
}
/// The `Annex` struct is a slice wrapper enforcing first byte is `0x50`.
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct Annex<'a>(&'a [u8]);
impl<'a> Annex<'a> {
/// Creates a new `Annex` struct checking the first byte is `0x50`.
pub fn new(annex_bytes: &'a [u8]) -> Result<Self, Error> {
if annex_bytes.first() == Some(&TAPROOT_ANNEX_PREFIX) {
Ok(Annex(annex_bytes))
} else {
Err(Error::WrongAnnex)
}
}
/// Returns the Annex bytes data (including first byte `0x50`).
pub fn as_bytes(&self) -> &[u8] { self.0 }
}
impl<'a> Encodable for Annex<'a> {
fn consensus_encode<W: io::Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
Take Writer/Reader by `&mut` in consensus en/decoding Fix #1020 (see more relevant discussion there) This definitely makes the amount of generics compiler has to generate by avoding generating the same functions for `R`, &mut R`, `&mut &mut R` and so on. old: ``` > ls -al target/release/deps/bitcoin-07a9dabf1f3e0266 -rwxrwxr-x 1 dpc dpc 9947832 Jun 2 22:42 target/release/deps/bitcoin-07a9dabf1f3e0266 > strip target/release/deps/bitcoin-07a9dabf1f3e0266 > ls -al target/release/deps/bitcoin-07a9dabf1f3e0266 -rwxrwxr-x 1 dpc dpc 4463024 Jun 2 22:46 target/release/deps/bitcoin-07a9dabf1f3e0266 ``` new: ``` > ls -al target/release/deps/bitcoin-07a9dabf1f3e0266 -rwxrwxr-x 1 dpc dpc 9866800 Jun 2 22:44 target/release/deps/bitcoin-07a9dabf1f3e0266 > strip target/release/deps/bitcoin-07a9dabf1f3e0266 > ls -al target/release/deps/bitcoin-07a9dabf1f3e0266 -rwxrwxr-x 1 dpc dpc 4393392 Jun 2 22:45 target/release/deps/bitcoin-07a9dabf1f3e0266 ``` In the unit-test binary itself, it saves ~100KB of data. I did not expect much performance gains, but turn out I was wrong(*): old: ``` test blockdata::block::benches::bench_block_deserialize ... bench: 1,072,710 ns/iter (+/- 21,871) test blockdata::block::benches::bench_block_serialize ... bench: 191,223 ns/iter (+/- 5,833) test blockdata::block::benches::bench_block_serialize_logic ... bench: 37,543 ns/iter (+/- 732) test blockdata::block::benches::bench_stream_reader ... bench: 1,872,455 ns/iter (+/- 149,519) test blockdata::transaction::benches::bench_transaction_deserialize ... bench: 136 ns/iter (+/- 3) test blockdata::transaction::benches::bench_transaction_serialize ... bench: 51 ns/iter (+/- 8) test blockdata::transaction::benches::bench_transaction_serialize_logic ... bench: 5 ns/iter (+/- 0) test blockdata::transaction::benches::bench_transaction_size ... bench: 3 ns/iter (+/- 0) ``` new: ``` test blockdata::block::benches::bench_block_deserialize ... bench: 1,028,574 ns/iter (+/- 10,910) test blockdata::block::benches::bench_block_serialize ... bench: 162,143 ns/iter (+/- 3,363) test blockdata::block::benches::bench_block_serialize_logic ... bench: 30,725 ns/iter (+/- 695) test blockdata::block::benches::bench_stream_reader ... bench: 1,437,071 ns/iter (+/- 53,694) test blockdata::transaction::benches::bench_transaction_deserialize ... bench: 92 ns/iter (+/- 2) test blockdata::transaction::benches::bench_transaction_serialize ... bench: 17 ns/iter (+/- 0) test blockdata::transaction::benches::bench_transaction_serialize_logic ... bench: 5 ns/iter (+/- 0) test blockdata::transaction::benches::bench_transaction_size ... bench: 4 ns/iter (+/- 0) ``` (*) - I'm benchmarking on a noisy laptop. Take this with a grain of salt. But I think at least it doesn't make anything slower. While doing all this manual labor that will probably generate conflicts, I took a liberty of changing generic type names and variable names to `r` and `R` (reader) and `w` and `W` for writer.
2022-06-03 04:50:42 +00:00
encode::consensus_encode_with_size(self.0, w)
}
}
fn is_invalid_use_of_sighash_single(sighash: u32, input_index: usize, output_len: usize) -> bool {
let ty = EcdsaSighashType::from_consensus(sighash);
ty == EcdsaSighashType::Single && input_index >= output_len
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use super::*;
use crate::address::Address;
use crate::blockdata::locktime::absolute;
use crate::consensus::deserialize;
use crate::crypto::key::PublicKey;
use crate::hash_types::Sighash;
use crate::hashes::hex::FromHex;
use crate::hashes::{Hash, HashEngine};
use crate::internal_macros::hex;
use crate::network::constants::Network;
use crate::taproot::{TapLeafHash, TapSighashHash};
2021-11-16 22:03:37 +00:00
extern crate serde_json;
#[test]
fn sighash_single_bug() {
const SIGHASH_SINGLE: u32 = 3;
// We need a tx with more inputs than outputs.
let tx = Transaction {
version: 1,
lock_time: absolute::LockTime::ZERO,
input: vec![TxIn::default(), TxIn::default()],
output: vec![TxOut::default()],
};
let script = ScriptBuf::new();
let cache = SighashCache::new(&tx);
let got = cache.legacy_signature_hash(1, &script, SIGHASH_SINGLE).expect("sighash");
let want = Sighash::from_slice(&UINT256_ONE).unwrap();
assert_eq!(got, want)
}
#[test]
#[cfg(feature = "serde")]
fn legacy_sighash() {
use serde_json::Value;
use crate::sighash::SighashCache;
fn run_test_sighash(
tx: &str,
script: &str,
input_index: usize,
hash_type: i64,
expected_result: &str,
) {
let tx: Transaction = deserialize(&Vec::from_hex(tx).unwrap()[..]).unwrap();
let script = ScriptBuf::from(Vec::from_hex(script).unwrap());
let mut raw_expected = Vec::from_hex(expected_result).unwrap();
raw_expected.reverse();
let want = Sighash::from_slice(&raw_expected[..]).unwrap();
let cache = SighashCache::new(&tx);
let got = cache.legacy_signature_hash(input_index, &script, hash_type as u32).unwrap();
assert_eq!(got, want);
}
// These test vectors were stolen from libbtc, which is Copyright 2014 Jonas Schnelli MIT
// They were transformed by replacing {...} with run_test_sighash(...), then the ones containing
// OP_CODESEPARATOR in their pubkeys were removed
let data = include_str!("../tests/data/legacy_sighash.json");
let testdata = serde_json::from_str::<Value>(data).unwrap().as_array().unwrap().clone();
for t in testdata.iter().skip(1) {
let tx = t.get(0).unwrap().as_str().unwrap();
let script = t.get(1).unwrap().as_str().unwrap_or("");
let input_index = t.get(2).unwrap().as_u64().unwrap();
let hash_type = t.get(3).unwrap().as_i64().unwrap();
let expected_sighash = t.get(4).unwrap().as_str().unwrap();
run_test_sighash(tx, script, input_index as usize, hash_type, expected_sighash);
}
}
#[test]
fn test_tap_sighash_hash() {
let bytes = hex!("00011b96877db45ffa23b307e9f0ac87b80ef9a80b4c5f0db3fbe734422453e83cc5576f3d542c5d4898fb2b696c15d43332534a7c1d1255fda38993545882df92c3e353ff6d36fbfadc4d168452afd8467f02fe53d71714fcea5dfe2ea759bd00185c4cb02bc76d42620393ca358a1a713f4997f9fc222911890afb3fe56c6a19b202df7bffdcfad08003821294279043746631b00e2dc5e52a111e213bbfe6ef09a19428d418dab0d50000000000");
let expected =
hex!("04e808aad07a40b3767a1442fead79af6ef7e7c9316d82dec409bb31e77699b0");
let mut enc = TapSighashHash::engine();
enc.input(&bytes);
let hash = TapSighashHash::from_engine(enc);
assert_eq!(expected, hash.into_inner());
}
#[test]
fn test_sighashes_keyspending() {
// following test case has been taken from Bitcoin Core test framework
test_taproot_sighash(
"020000000164eb050a5e3da0c2a65e4786f26d753b7bc69691fabccafb11f7acef36641f1846010000003101b2b404392a22000000000017a9147f2bde86fe78bf68a0544a4f290e12f0b7e0a08c87580200000000000017a91425d11723074ecfb96a0a83c3956bfaf362ae0c908758020000000000001600147e20f938993641de67bb0cdd71682aa34c4d29ad5802000000000000160014c64984dc8761acfa99418bd6bedc79b9287d652d72000000",
"01365724000000000023542156b39dab4f8f3508e0432cfb41fab110170acaa2d4c42539cb90a4dc7c093bc500",
0,
"33ca0ebfb4a945eeee9569fc0f5040221275f88690b7f8592ada88ce3bdf6703",
SchnorrSighashType::Default, None, None, None
);
test_taproot_sighash(
"0200000002fff49be59befe7566050737910f6ccdc5e749c7f8860ddc140386463d88c5ad0f3000000002cf68eb4a3d67f9d4c079249f7e4f27b8854815cb1ed13842d4fbf395f9e217fd605ee24090100000065235d9203f458520000000000160014b6d48333bb13b4c644e57c43a9a26df3a44b785e58020000000000001976a914eea9461a9e1e3f765d3af3e726162e0229fe3eb688ac58020000000000001976a9143a8869c9f2b5ea1d4ff3aeeb6a8fb2fffb1ad5fe88ac0ad7125c",
"02591f220000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece48fb310000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece",
1,
"626ab955d58c9a8a600a0c580549d06dc7da4e802eb2a531f62a588e430967a8",
SchnorrSighashType::All, None, None, None
);
test_taproot_sighash(
"0200000001350005f65aa830ced2079df348e2d8c2bdb4f10e2dde6a161d8a07b40d1ad87dae000000001611d0d603d9dc0e000000000017a914459b6d7d6bbb4d8837b4bf7e9a4556f952da2f5c8758020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88ac58020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88aca71c1f4f",
"01c4811000000000002251201bf9297d0a2968ae6693aadd0fa514717afefd218087a239afb7418e2d22e65c",
0,
"dfa9437f9c9a1d1f9af271f79f2f5482f287cdb0d2e03fa92c8a9b216cc6061c",
SchnorrSighashType::AllPlusAnyoneCanPay, None, None, None
);
test_taproot_sighash(
"020000000185bed1a6da2bffbd60ec681a1bfb71c5111d6395b99b3f8b2bf90167111bcb18f5010000007c83ace802ded24a00000000001600142c4698f9f7a773866879755aa78c516fb332af8e5802000000000000160014d38639dfbac4259323b98a472405db0c461b31fa61073747",
"0144c84d0000000000225120e3f2107989c88e67296ab2faca930efa2e3a5bd3ff0904835a11c9e807458621",
0,
"3129de36a5d05fff97ffca31eb75fcccbbbc27b3147a7a36a9e4b45d8b625067",
SchnorrSighashType::None, None, None, None
);
test_taproot_sighash(
"eb93dbb901028c8515589dac980b6e7f8e4088b77ed866ca0d6d210a7218b6fd0f6b22dd6d7300000000eb4740a9047efc0e0000000000160014913da2128d8fcf292b3691db0e187414aa1783825802000000000000160014913da2128d8fcf292b3691db0e187414aa178382580200000000000017a9143dd27f01c6f7ef9bb9159937b17f17065ed01a0c875802000000000000160014d7630e19df70ada9905ede1722b800c0005f246641000000",
"013fed110000000000225120eb536ae8c33580290630fc495046e998086a64f8f33b93b07967d9029b265c55",
0,
"2441e8b0e063a2083ee790f14f2045022f07258ddde5ee01de543c9e789d80ae",
SchnorrSighashType::NonePlusAnyoneCanPay, None, None, None
);
test_taproot_sighash(
"02000000017836b409a5fed32211407e44b971591f2032053f14701fb5b3a30c0ff382f2cc9c0100000061ac55f60288fb5600000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ac58020000000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ace4000000",
"01efa558000000000022512007071ea3dc7e331b0687d0193d1e6d6ed10e645ef36f10ef8831d5e522ac9e80",
0,
"30239345177cadd0e3ea413d49803580abb6cb27971b481b7788a78d35117a88",
SchnorrSighashType::Single, None, None, None
);
test_taproot_sighash(
"0100000001aa6deae89d5e0aaca58714fc76ef6f3c8284224888089232d4e663843ed3ab3eae010000008b6657a60450cb4c0000000000160014a3d42b5413ef0c0701c4702f3cd7d4df222c147058020000000000001976a91430b4ed8723a4ee8992aa2c8814cfe5c3ad0ab9d988ac5802000000000000160014365b1166a6ed0a5e8e9dff17a6d00bbb43454bc758020000000000001976a914bc98c51a84fe7fad5dc380eb8b39586eff47241688ac4f313247",
"0107af4e00000000002251202c36d243dfc06cb56a248e62df27ecba7417307511a81ae61aa41c597a929c69",
0,
"bf9c83f26c6dd16449e4921f813f551c4218e86f2ec906ca8611175b41b566df",
SchnorrSighashType::SinglePlusAnyoneCanPay, None, None, None
);
}
#[test]
fn test_sighashes_with_annex() {
test_taproot_sighash(
"0200000001df8123752e8f37d132c4e9f1ff7e4f9b986ade9211267e9ebd5fd22a5e718dec6d01000000ce4023b903cb7b23000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787580200000000000017a914afd0d512a2c5c2b40e25669e9cc460303c325b8b87580200000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787f6020000",
"01ea49260000000000225120ab5e9800806bf18cb246edcf5fe63441208fe955a4b5a35bbff65f5db622a010",
0,
"3b003000add359a364a156e73e02846782a59d0d95ca8c4638aaad99f2ef915c",
SchnorrSighashType::SinglePlusAnyoneCanPay,
Some("507b979802e62d397acb29f56743a791894b99372872fc5af06a4f6e8d242d0615cda53062bb20e6ec79756fe39183f0c128adfe85559a8fa042b042c018aa8010143799e44f0893c40e1e"),
None,
None,
);
}
#[test]
fn test_sighashes_with_script_path() {
test_taproot_sighash(
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
0,
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
SchnorrSighashType::All,
None,
Some("20cc4e1107aea1d170c5ff5b6817e1303010049724fb3caa7941792ea9d29b3e2bacab"),
None,
);
}
#[test]
fn test_sighashes_with_script_path_raw_hash() {
test_taproot_sighash(
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
0,
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
SchnorrSighashType::All,
None,
None,
Some("15a2530514e399f8b5cf0b3d3112cf5b289eaa3e308ba2071b58392fdc6da68a"),
);
}
#[test]
fn test_sighashes_with_annex_and_script() {
test_taproot_sighash(
"020000000132fb72cb8fba496755f027a9743e2d698c831fdb8304e4d1a346ac92cbf51acba50100000026bdc7df044aad34000000000017a9144fa2554ed6174586854fa3bc01de58dcf33567d0875802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab95802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab958020000000000001600141b31217d48ccc8760dcc0710fade5866d628e733a02d5122",
"011458360000000000225120a7baec3fb9f84614e3899fcc010c638f80f13539344120e1f4d8b68a9a011a13",
0,
"a0042aa434f9a75904b64043f2a283f8b4c143c7f4f7f49a6cbe5b9f745f4c15",
SchnorrSighashType::All,
Some("50a6272b470e1460e3332ade7bb14b81671c564fb6245761bd5bd531394b28860e0b3808ab229fb51791fb6ae6fa82d915b2efb8f6df83ae1f5ab3db13e30928875e2a22b749d89358de481f19286cd4caa792ce27f9559082d227a731c5486882cc707f83da361c51b7aadd9a0cf68fe7480c410fa137b454482d9a1ebf0f96d760b4d61426fc109c6e8e99a508372c45caa7b000a41f8251305da3f206c1849985ba03f3d9592832b4053afbd23ab25d0465df0bc25a36c223aacf8e04ec736a418c72dc319e4da3e972e349713ca600965e7c665f2090d5a70e241ac164115a1f5639f28b1773327715ca307ace64a2de7f0e3df70a2ffee3857689f909c0dad46d8a20fa373a4cc6eed6d4c9806bf146f0d76baae1"),
Some("7520ab9160dd8299dc1367659be3e8f66781fe440d52940c7f8d314a89b9f2698d406ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6eadac"),
None,
);
}
#[test]
#[rustfmt::skip] // Allow long function call `taproot_signature_hash`.
fn test_sighash_errors() {
let dumb_tx = Transaction {
version: 0,
lock_time: absolute::LockTime::ZERO,
input: vec![TxIn::default()],
output: vec![],
};
let mut c = SighashCache::new(&dumb_tx);
// 1.29 fixes
let empty_vec = vec![];
let empty_prevouts : Prevouts<TxOut> = Prevouts::All(&empty_vec);
assert_eq!(
c.taproot_signature_hash(0, &empty_prevouts, None, None, SchnorrSighashType::All),
Err(Error::PrevoutsSize)
);
let two = vec![TxOut::default(), TxOut::default()];
let too_many_prevouts = Prevouts::All(&two);
assert_eq!(
c.taproot_signature_hash(0, &too_many_prevouts, None, None, SchnorrSighashType::All),
Err(Error::PrevoutsSize)
);
let tx_out = TxOut::default();
let prevout = Prevouts::One(1, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SchnorrSighashType::All),
Err(Error::PrevoutKind)
);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SchnorrSighashType::AllPlusAnyoneCanPay),
Err(Error::PrevoutIndex)
);
assert_eq!(
c.taproot_signature_hash(10, &prevout, None, None, SchnorrSighashType::AllPlusAnyoneCanPay),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
let prevout = Prevouts::One(0, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SchnorrSighashType::SinglePlusAnyoneCanPay),
Err(Error::SingleWithoutCorrespondingOutput {
index: 0,
outputs_size: 0
})
);
assert_eq!(
c.legacy_signature_hash(10, Script::empty(), 0u32),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
}
#[test]
fn test_annex_errors() {
assert_eq!(Annex::new(&[]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&[0x51]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&[0x51, 0x50]), Err(Error::WrongAnnex));
}
#[allow(clippy::too_many_arguments)]
fn test_taproot_sighash(
tx_hex: &str,
prevout_hex: &str,
input_index: usize,
expected_hash: &str,
sighash_type: SchnorrSighashType,
annex_hex: Option<&str>,
script_hex: Option<&str>,
script_leaf_hash: Option<&str>,
) {
let tx_bytes = Vec::from_hex(tx_hex).unwrap();
let tx: Transaction = deserialize(&tx_bytes).unwrap();
let prevout_bytes = Vec::from_hex(prevout_hex).unwrap();
let prevouts: Vec<TxOut> = deserialize(&prevout_bytes).unwrap();
let annex_inner;
let annex = match annex_hex {
Some(annex_hex) => {
annex_inner = Vec::from_hex(annex_hex).unwrap();
Some(Annex::new(&annex_inner).unwrap())
}
None => None,
};
let leaf_hash = match (script_hex, script_leaf_hash) {
(Some(script_hex), _) => {
let script_inner = ScriptBuf::from_hex(script_hex).unwrap();
Some(ScriptPath::with_defaults(&script_inner).leaf_hash())
}
(_, Some(script_leaf_hash)) => Some(script_leaf_hash.parse::<TapLeafHash>().unwrap()),
_ => None,
};
// All our tests use the default `0xFFFFFFFF` codeseparator value
let leaf_hash = leaf_hash.map(|lh| (lh, 0xFFFFFFFF));
let prevouts = if sighash_type.split_anyonecanpay_flag().1 && tx_bytes[0] % 2 == 0 {
// for anyonecanpay the `Prevouts::All` variant is good anyway, but sometimes we want to
// test other codepaths
Prevouts::One(input_index, prevouts[input_index].clone())
} else {
Prevouts::All(&prevouts)
};
let mut sighash_cache = SighashCache::new(&tx);
let hash = sighash_cache
.taproot_signature_hash(input_index, &prevouts, annex, leaf_hash, sighash_type)
.unwrap();
let expected = Vec::from_hex(expected_hash).unwrap();
assert_eq!(expected, hash.into_inner());
}
2021-11-16 22:03:37 +00:00
#[cfg(feature = "serde")]
2021-11-16 22:03:37 +00:00
#[test]
fn bip_341_sighash_tests() {
2022-10-19 16:51:41 +00:00
fn sighash_deser_numeric<'de, D>(deserializer: D) -> Result<SchnorrSighashType, D::Error>
where
D: actual_serde::Deserializer<'de>,
{
use actual_serde::de::{Deserialize, Error, Unexpected};
let raw = u8::deserialize(deserializer)?;
2022-10-19 16:51:41 +00:00
SchnorrSighashType::from_consensus_u8(raw).map_err(|_| {
D::Error::invalid_value(
Unexpected::Unsigned(raw.into()),
&"number in range 0-3 or 0x81-0x83",
)
})
}
2022-10-19 16:51:41 +00:00
use secp256k1::{self, SecretKey, XOnlyPublicKey};
2022-10-19 16:51:41 +00:00
use crate::consensus::serde as con_serde;
2022-12-15 15:54:32 +00:00
use crate::taproot::{TapNodeHash, TapTweakHash};
#[derive(serde::Deserialize)]
#[serde(crate = "actual_serde")]
struct UtxoSpent {
#[serde(rename = "scriptPubKey")]
script_pubkey: ScriptBuf,
#[serde(rename = "amountSats")]
value: u64,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsGiven {
#[serde(with = "con_serde::With::<con_serde::Hex>")]
raw_unsigned_tx: Transaction,
utxos_spent: Vec<UtxoSpent>,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsIntermediary {
hash_prevouts: sha256::Hash,
hash_outputs: sha256::Hash,
hash_sequences: sha256::Hash,
hash_amounts: sha256::Hash,
hash_script_pubkeys: sha256::Hash,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsInputSpendingGiven {
txin_index: usize,
internal_privkey: SecretKey,
2022-12-15 15:54:32 +00:00
merkle_root: Option<TapNodeHash>,
#[serde(deserialize_with = "sighash_deser_numeric")]
hash_type: SchnorrSighashType,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsInputSpendingIntermediary {
internal_pubkey: XOnlyPublicKey,
tweak: TapTweakHash,
tweaked_privkey: SecretKey,
sig_msg: String,
//precomputed_used: Vec<String>, // unused
sig_hash: TapSighashHash,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsInputSpendingExpected {
witness: Vec<String>,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KpsInputSpending {
given: KpsInputSpendingGiven,
intermediary: KpsInputSpendingIntermediary,
expected: KpsInputSpendingExpected,
// auxiliary: KpsAuxiliary, //unused
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct KeyPathSpending {
given: KpsGiven,
intermediary: KpsIntermediary,
input_spending: Vec<KpsInputSpending>,
}
#[derive(serde::Deserialize)]
#[serde(rename_all = "camelCase")]
#[serde(crate = "actual_serde")]
struct TestData {
version: u64,
key_path_spending: Vec<KeyPathSpending>,
//script_pubkey: Vec<ScriptPubKey>, // unused
2021-11-16 22:03:37 +00:00
}
let json_str = include_str!("../tests/data/bip341_tests.json");
2022-10-19 16:51:41 +00:00
let mut data =
serde_json::from_str::<TestData>(json_str).expect("JSON was not well-formatted");
assert_eq!(data.version, 1u64);
let secp = &secp256k1::Secp256k1::new();
let key_path = data.key_path_spending.remove(0);
let raw_unsigned_tx = key_path.given.raw_unsigned_tx;
2022-10-19 16:51:41 +00:00
let utxos = key_path
.given
.utxos_spent
.into_iter()
.map(|txo| TxOut { value: txo.value, script_pubkey: txo.script_pubkey })
.collect::<Vec<_>>();
2021-11-16 22:03:37 +00:00
// Test intermediary
let mut cache = SighashCache::new(&raw_unsigned_tx);
2021-11-16 22:03:37 +00:00
2022-09-02 00:46:01 +00:00
let expected = key_path.intermediary;
2021-11-16 22:03:37 +00:00
// Compute all caches
2022-09-02 00:46:01 +00:00
assert_eq!(expected.hash_amounts, cache.taproot_cache(&utxos).amounts);
assert_eq!(expected.hash_outputs, cache.common_cache().outputs);
assert_eq!(expected.hash_prevouts, cache.common_cache().prevouts);
assert_eq!(expected.hash_script_pubkeys, cache.taproot_cache(&utxos).script_pubkeys);
assert_eq!(expected.hash_sequences, cache.common_cache().sequences);
for mut inp in key_path.input_spending {
let tx_ind = inp.given.txin_index;
let internal_priv_key = inp.given.internal_privkey;
let merkle_root = inp.given.merkle_root;
let hash_ty = inp.given.hash_type;
2022-09-02 00:46:01 +00:00
let expected = inp.intermediary;
let sig_str = inp.expected.witness.remove(0);
2021-11-16 22:03:37 +00:00
let (expected_key_spend_sig, expected_hash_ty) = if sig_str.len() == 128 {
(
secp256k1::schnorr::Signature::from_str(&sig_str).unwrap(),
SchnorrSighashType::Default,
)
2021-11-16 22:03:37 +00:00
} else {
let hash_ty = u8::from_str_radix(&sig_str[128..130], 16).unwrap();
let hash_ty = SchnorrSighashType::from_consensus_u8(hash_ty).unwrap();
2022-01-03 02:52:44 +00:00
(secp256k1::schnorr::Signature::from_str(&sig_str[..128]).unwrap(), hash_ty)
2021-11-16 22:03:37 +00:00
};
// tests
let keypair = secp256k1::KeyPair::from_secret_key(secp, &internal_priv_key);
let (internal_key, _parity) = XOnlyPublicKey::from_keypair(&keypair);
2021-11-16 22:03:37 +00:00
let tweak = TapTweakHash::from_key_and_tweak(internal_key, merkle_root);
let tweaked_keypair = keypair.add_xonly_tweak(secp, &tweak.to_scalar()).unwrap();
2021-11-16 22:03:37 +00:00
let mut sig_msg = Vec::new();
cache
.taproot_encode_signing_data_to(
&mut sig_msg,
tx_ind,
&Prevouts::All(&utxos),
None,
None,
hash_ty,
)
.unwrap();
let sighash = cache
.taproot_signature_hash(tx_ind, &Prevouts::All(&utxos), None, None, hash_ty)
.unwrap();
2021-11-16 22:03:37 +00:00
let msg = secp256k1::Message::from(sighash);
2022-01-03 02:52:44 +00:00
let key_spend_sig = secp.sign_schnorr_with_aux_rand(&msg, &tweaked_keypair, &[0u8; 32]);
2021-11-16 22:03:37 +00:00
2022-09-02 00:46:01 +00:00
assert_eq!(expected.internal_pubkey, internal_key);
assert_eq!(expected.tweak, tweak);
assert_eq!(expected.sig_msg, sig_msg.to_lower_hex_string());
2022-09-02 00:46:01 +00:00
assert_eq!(expected.sig_hash, sighash);
2021-11-16 22:03:37 +00:00
assert_eq!(expected_hash_ty, hash_ty);
assert_eq!(expected_key_spend_sig, key_spend_sig);
let tweaked_priv_key = SecretKey::from_keypair(&tweaked_keypair);
2022-09-02 00:46:01 +00:00
assert_eq!(expected.tweaked_privkey, tweaked_priv_key);
2021-11-16 22:03:37 +00:00
}
}
#[test]
fn sighashtype_fromstr_display() {
let sighashtypes = vec![
("SIGHASH_DEFAULT", SchnorrSighashType::Default),
("SIGHASH_ALL", SchnorrSighashType::All),
("SIGHASH_NONE", SchnorrSighashType::None),
("SIGHASH_SINGLE", SchnorrSighashType::Single),
("SIGHASH_ALL|SIGHASH_ANYONECANPAY", SchnorrSighashType::AllPlusAnyoneCanPay),
("SIGHASH_NONE|SIGHASH_ANYONECANPAY", SchnorrSighashType::NonePlusAnyoneCanPay),
("SIGHASH_SINGLE|SIGHASH_ANYONECANPAY", SchnorrSighashType::SinglePlusAnyoneCanPay),
];
for (s, sht) in sighashtypes {
assert_eq!(sht.to_string(), s);
assert_eq!(SchnorrSighashType::from_str(s).unwrap(), sht);
}
let sht_mistakes = vec![
"SIGHASH_ALL | SIGHASH_ANYONECANPAY",
"SIGHASH_NONE |SIGHASH_ANYONECANPAY",
"SIGHASH_SINGLE| SIGHASH_ANYONECANPAY",
"SIGHASH_ALL SIGHASH_ANYONECANPAY",
"SIGHASH_NONE |",
"SIGHASH_SIGNLE",
"DEFAULT",
"ALL",
"sighash_none",
"Sighash_none",
"SigHash_None",
"SigHash_NONE",
];
for s in sht_mistakes {
assert_eq!(
SchnorrSighashType::from_str(s).unwrap_err().to_string(),
format!("Unrecognized SIGHASH string '{}'", s)
);
}
}
fn p2pkh_hex(pk: &str) -> ScriptBuf {
let pk: PublicKey = PublicKey::from_str(pk).unwrap();
Address::p2pkh(&pk, Network::Bitcoin).script_pubkey()
}
#[test]
fn bip143_p2wpkh() {
let tx = deserialize::<Transaction>(
&hex!(
"0100000002fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541db4e4ad969f000000\
0000eeffffffef51e1b804cc89d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a01000000\
00ffffffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093\
510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac11000000"
),
).unwrap();
let witness_script =
p2pkh_hex("025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee6357");
let value = 600_000_000;
let mut cache = SighashCache::new(&tx);
assert_eq!(
cache.segwit_signature_hash(1, &witness_script, value, EcdsaSighashType::All).unwrap(),
"c37af31116d1b27caf68aae9e3ac82f1477929014d5b917657d0eb49478cb670".parse::<Sighash>().unwrap(),
);
let cache = cache.segwit_cache();
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
assert_eq!(
cache.prevouts.into_inner().as_ref(),
&Vec::from_hex("96b827c8483d4e9b96712b6713a7b68d6e8003a781feba36c31143470b4efd37").unwrap()[..],
);
assert_eq!(
cache.sequences.into_inner().as_ref(),
&Vec::from_hex("52b0a642eea2fb7ae638c36f6252b6750293dbe574a806984b8e4d8548339a3b").unwrap()[..],
);
assert_eq!(
cache.outputs.into_inner().as_ref(),
&Vec::from_hex("863ef3e1a92afbfdb97f31ad0fc7683ee943e9abcf2501590ff8f6551f47e5e5").unwrap()[..],
);
}
#[test]
fn bip143_p2wpkh_nested_in_p2sh() {
let tx = deserialize::<Transaction>(
&hex!(
"0100000001db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092ac4d3ceb1a5477010000\
0000feffffff02b8b4eb0b000000001976a914a457b684d7f0d539a46a45bbc043f35b59d0d96388ac00\
08af2f000000001976a914fd270b1ee6abcaea97fea7ad0402e8bd8ad6d77c88ac92040000"
),
).unwrap();
let witness_script =
p2pkh_hex("03ad1d8e89212f0b92c74d23bb710c00662ad1470198ac48c43f7d6f93a2a26873");
let value = 1_000_000_000;
let mut cache = SighashCache::new(&tx);
assert_eq!(
cache.segwit_signature_hash(0, &witness_script, value, EcdsaSighashType::All).unwrap(),
"64f3b0f4dd2bb3aa1ce8566d220cc74dda9df97d8490cc81d89d735c92e59fb6".parse::<Sighash>().unwrap(),
);
let cache = cache.segwit_cache();
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
assert_eq!(
cache.prevouts.into_inner().as_ref(),
&Vec::from_hex("b0287b4a252ac05af83d2dcef00ba313af78a3e9c329afa216eb3aa2a7b4613a").unwrap()[..],
);
assert_eq!(
cache.sequences.into_inner().as_ref(),
&Vec::from_hex("18606b350cd8bf565266bc352f0caddcf01e8fa789dd8a15386327cf8cabe198").unwrap()[..],
);
assert_eq!(
cache.outputs.into_inner().as_ref(),
&Vec::from_hex("de984f44532e2173ca0d64314fcefe6d30da6f8cf27bafa706da61df8a226c83").unwrap()[..],
);
}
#[test]
fn bip143_p2wsh_nested_in_p2sh() {
let tx = deserialize::<Transaction>(
&hex!(
"010000000136641869ca081e70f394c6948e8af409e18b619df2ed74aa106c1ca29787b96e0100000000\
ffffffff0200e9a435000000001976a914389ffce9cd9ae88dcc0631e88a821ffdbe9bfe2688acc0832f\
05000000001976a9147480a33f950689af511e6e84c138dbbd3c3ee41588ac00000000"),
).unwrap();
let witness_script = ScriptBuf::from_hex(
"56210307b8ae49ac90a048e9b53357a2354b3334e9c8bee813ecb98e99a7e07e8c3ba32103b28f0c28\
bfab54554ae8c658ac5c3e0ce6e79ad336331f78c428dd43eea8449b21034b8113d703413d57761b8b\
9781957b8c0ac1dfe69f492580ca4195f50376ba4a21033400f6afecb833092a9a21cfdf1ed1376e58\
c5d1f47de74683123987e967a8f42103a6d48b1131e94ba04d9737d61acdaa1322008af9602b3b1486\
2c07a1789aac162102d8b661b0b3302ee2f162b09e07a55ad5dfbe673a9f01d9f0c19617681024306b\
56ae"
).unwrap();
let value = 987654321;
let mut cache = SighashCache::new(&tx);
assert_eq!(
cache.segwit_signature_hash(0, &witness_script, value, EcdsaSighashType::All).unwrap(),
"185c0be5263dce5b4bb50a047973c1b6272bfbd0103a89444597dc40b248ee7c".parse::<Sighash>().unwrap(),
);
let cache = cache.segwit_cache();
// Parse hex into Vec because BIP143 test vector displays forwards but our sha256d::Hash displays backwards.
assert_eq!(
cache.prevouts.into_inner().as_ref(),
&Vec::from_hex("74afdc312af5183c4198a40ca3c1a275b485496dd3929bca388c4b5e31f7aaa0").unwrap()[..],
);
assert_eq!(
cache.sequences.into_inner().as_ref(),
&Vec::from_hex("3bb13029ce7b1f559ef5e747fcac439f1455a2ec7c5f09b72290795e70665044").unwrap()[..],
);
assert_eq!(
cache.outputs.into_inner().as_ref(),
&Vec::from_hex("bc4d309071414bed932f98832b27b4d76dad7e6c1346f487a8fdbb8eb90307cc").unwrap()[..],
);
}
}