rust-bitcoin-unsafe-fast/io/src/lib.rs

180 lines
6.5 KiB
Rust
Raw Normal View History

//! Rust-Bitcoin IO Library
//!
//! Because the core `std::io` module is not yet exposed in `no-std` Rust, building `no-std`
//! applications which require reading and writing objects via standard traits is not generally
//! possible. While there is ongoing work to improve this situation, this module is not likely to
//! be available for applications with broad rustc version support for some time.
//!
//! Thus, this library exists to export a minmal version of `std::io`'s traits which `no-std`
//! applications may need. With the `std` feature, these traits are also implemented for the
//! `std::io` traits, allowing standard objects to be used wherever the traits from this crate are
//! required.
//!
//! This traits are not one-for-one drop-ins, but are as close as possible while still implementing
//! `std::io`'s traits without unnecessary complexity.
// Experimental features we need.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(all(not(feature = "std"), not(feature = "core2")))]
compile_error!("At least one of std or core2 must be enabled");
#[cfg(feature = "std")]
pub use std::error;
#[cfg(not(feature = "std"))]
pub use core2::error;
#[cfg(any(feature = "alloc", feature = "std"))]
extern crate alloc;
/// Standard I/O stream definitions which are API-equivalent to `std`'s `io` module. See
/// [`std::io`] for more info.
pub mod io {
#[cfg(all(not(feature = "std"), not(feature = "core2")))]
compile_error!("At least one of std or core2 must be enabled");
#[cfg(feature = "std")]
pub use std::io::{Read, Cursor, Take, Error, ErrorKind, Result};
#[cfg(not(feature = "std"))]
pub use core2::io::{Read, Cursor, Take, Error, ErrorKind, Result};
/// A generic trait describing an output stream. See [`std::io::Write`] for more info.
pub trait Write {
fn write(&mut self, buf: &[u8]) -> Result<usize>;
fn flush(&mut self) -> Result<()>;
#[inline]
fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
while !buf.is_empty() {
match self.write(buf) {
Ok(0) => return Err(Error::new(ErrorKind::UnexpectedEof, "")),
Ok(len) => buf = &buf[len..],
Err(e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
}
#[cfg(feature = "std")]
impl<W: std::io::Write> Write for W {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
<W as std::io::Write>::write(self, buf)
}
#[inline]
fn flush(&mut self) -> Result<()> {
<W as std::io::Write>::flush(self)
}
}
#[cfg(all(feature = "alloc", not(feature = "std")))]
impl Write for alloc::vec::Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
#[cfg(not(feature = "std"))]
impl<'a> Write for &'a mut [u8] {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
let cnt = core::cmp::min(self.len(), buf.len());
self[..cnt].copy_from_slice(&buf[..cnt]);
*self = &mut core::mem::take(self)[cnt..];
Ok(cnt)
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
/// A sink to which all writes succeed. See [`std::io::Sink`] for more info.
pub struct Sink;
#[cfg(not(feature = "std"))]
impl Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, _: &[u8]) -> Result<()> { Ok(()) }
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
#[cfg(feature = "std")]
impl std::io::Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
Ok(buf.len())
}
#[inline]
fn write_all(&mut self, _: &[u8]) -> std::io::Result<()> { Ok(()) }
#[inline]
fn flush(&mut self) -> std::io::Result<()> { Ok(()) }
}
/// Returns a sink to which all writes succeed. See [`std::io::sink`] for more info.
pub fn sink() -> Sink { Sink }
}
#[doc(hidden)]
#[cfg(feature = "std")]
/// Re-export std for the below macro
pub use std as _std;
#[macro_export]
/// Because we cannot provide a blanket implementation of [`std::io::Write`] for all implementers
/// of this crate's `io::Write` trait, we provide this macro instead.
///
/// This macro will implement `Write` given a `write` and `flush` fn, either by implementing the
/// crate's native `io::Write` trait directly, or a more generic trait from `std` for users using
/// that feature. In any case, this crate's `io::Write` feature will be implemented for the given
/// type, even if indirectly.
#[cfg(not(feature = "std"))]
macro_rules! impl_write {
($ty: ty, $write_fn: expr, $flush_fn: expr $(, $bounded_ty: ident : $bounds: path),*) => {
impl<$($bounded_ty: $bounds),*> $crate::io::Write for $ty {
#[inline]
fn write(&mut self, buf: &[u8]) -> $crate::io::Result<usize> {
$write_fn(self, buf)
}
#[inline]
fn flush(&mut self) -> $crate::io::Result<()> {
$flush_fn(self)
}
}
}
}
#[macro_export]
/// Because we cannot provide a blanket implementation of [`std::io::Write`] for all implementers
/// of this crate's `io::Write` trait, we provide this macro instead.
///
/// This macro will implement `Write` given a `write` and `flush` fn, either by implementing the
/// crate's native `io::Write` trait directly, or a more generic trait from `std` for users using
/// that feature. In any case, this crate's `io::Write` feature will be implemented for the given
/// type, even if indirectly.
#[cfg(feature = "std")]
macro_rules! impl_write {
($ty: ty, $write_fn: expr, $flush_fn: expr $(, $bounded_ty: ident : $bounds: path),*) => {
impl<$($bounded_ty: $bounds),*> $crate::_std::io::Write for $ty {
#[inline]
fn write(&mut self, buf: &[u8]) -> $crate::_std::io::Result<usize> {
$write_fn(self, buf)
}
#[inline]
fn flush(&mut self) -> $crate::_std::io::Result<()> {
$flush_fn(self)
}
}
}
}