rust-bitcoin-unsafe-fast/bitcoin/src/pow.rs

1537 lines
51 KiB
Rust
Raw Normal View History

// Rust Bitcoin Library - Written by the rust-bitcoin developers.
// SPDX-License-Identifier: CC0-1.0
//! Proof-of-work related integer types.
//!
//! Provides the [`Work`] and [`Target`] types that are use in proof-of-work calculations. The
//! functions here are designed to be fast, by that we mean it is safe to use them to check headers.
//!
use core::fmt::{self, LowerHex, UpperHex};
use core::ops::{Add, Div, Mul, Not, Rem, Shl, Shr, Sub};
use crate::consensus::encode::{self, Decodable, Encodable};
#[cfg(doc)]
use crate::consensus::Params;
use crate::hash_types::BlockHash;
use crate::io::{self, Read, Write};
/// Implements $int * $ty. Requires `u64::from($int)`.
macro_rules! impl_int_mul {
($ty:ident, $($int:ident),+ $(,)?) => {
$(
impl Mul<$ty> for $int {
type Output = $ty;
#[inline]
fn mul(self, rhs: $ty) -> $ty { $ty(self.mul(rhs.0)) }
}
)+
};
}
/// Implement traits and methods shared by `Target` and `Work`.
macro_rules! do_impl {
($ty:ident) => {
impl $ty {
/// Creates `Self` from a big-endian byte array.
#[inline]
pub fn from_be_bytes(bytes: [u8; 32]) -> $ty { $ty(U256::from_be_bytes(bytes)) }
/// Creates `Self` from a little-endian byte array.
#[inline]
pub fn from_le_bytes(bytes: [u8; 32]) -> $ty { $ty(U256::from_le_bytes(bytes)) }
/// Converts `self` to a big-endian byte array.
#[inline]
pub fn to_be_bytes(self) -> [u8; 32] { self.0.to_be_bytes() }
/// Converts `self` to a little-endian byte array.
#[inline]
pub fn to_le_bytes(self) -> [u8; 32] { self.0.to_le_bytes() }
}
impl fmt::Display for $ty {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
}
impl fmt::LowerHex for $ty {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(&self.0, f) }
}
impl fmt::UpperHex for $ty {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(&self.0, f) }
}
impl<T: Into<u64>> Mul<T> for $ty {
type Output = $ty;
#[inline]
fn mul(self, rhs: T) -> Self { $ty(self.0 * rhs) }
}
impl_int_mul!($ty, u8, u16, u32, u64);
impl<T: Into<u128>> Div<T> for $ty {
type Output = $ty;
#[inline]
fn div(self, rhs: T) -> Self {
let rhs = U256::from(rhs.into());
$ty(self.0 / rhs)
}
}
};
}
/// A 256 bit integer representing work.
///
/// Work is a measure of how difficult it is to find a hash below a given [`Target`].
///
/// ref: <https://en.bitcoin.it/wiki/Work>
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct Work(U256);
impl Work {
/// Lowest possible work value for Mainnet. See comment on [`Params::pow_limit`] for more info.
pub const MAINNET_MIN: Work = Work(U256(0x0000_0000_ffff_0000_0000_0000_0000_0000_u128, 0));
/// Lowest possible work value for Testnet. See comment on [`Params::pow_limit`] for more info.
pub const TESTNET_MIN: Work = Work(U256(0x0000_0000_ffff_0000_0000_0000_0000_0000_u128, 0));
/// Lowest possible work value for Signet. See comment on [`Params::pow_limit`] for more info.
pub const SIGNET_MIN: Work = Work(U256(0x0000_0377_ae00_0000_0000_0000_0000_0000_u128, 0));
/// Lowest possible work value for Regtest. See comment on [`Params::pow_limit`] for more info.
pub const REGTEST_MIN: Work = Work(U256(0x7fff_ff00_0000_0000_0000_0000_0000_0000_u128, 0));
/// Converts this [`Work`] to [`Target`].
pub fn to_target(self) -> Target { Target(self.0.inverse()) }
}
do_impl!(Work);
impl Add for Work {
type Output = Work;
fn add(self, rhs: Self) -> Self { Work(self.0 + rhs.0) }
}
impl Sub for Work {
type Output = Work;
fn sub(self, rhs: Self) -> Self { Work(self.0 - rhs.0) }
}
/// A 256 bit integer representing target.
///
/// The SHA-256 hash of a block's header must be lower than or equal to the current target for the
/// block to be accepted by the network. The lower the target, the more difficult it is to generate
/// a block. (See also [`Work`].)
///
/// ref: <https://en.bitcoin.it/wiki/Target>
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct Target(U256);
impl Target {
/// When parsing nBits, Bitcoin Core converts a negative target threshold into a target of zero.
pub const ZERO: Target = Target(U256::ZERO);
/// The maximum possible target.
///
/// This value is used to calculate difficulty, which is defined as how difficult the current
/// target makes it to find a block relative to how difficult it would be at the highest
/// possible target. Remember highest target == lowest difficulty.
///
/// ref: <https://en.bitcoin.it/wiki/Target>
// In Bitcoind this is ~(u256)0 >> 32 stored as a floating-point type so it gets truncated, hence
// the low 208 bits are all zero.
pub const MAX: Self = Target(U256(0xFFFF_u128 << (208 - 128), 0));
/// The maximum possible target (see [`Target::MAX`]).
///
/// This is provided for consistency with Rust 1.41.1, newer code should use [`Target::MAX`].
pub fn max_value() -> Self { Target::MAX }
/// Computes the [`Target`] value from a compact representation.
///
/// ref: <https://developer.bitcoin.org/reference/block_chain.html#target-nbits>
pub fn from_compact(c: CompactTarget) -> Target {
let bits = c.0;
// This is a floating-point "compact" encoding originally used by
// OpenSSL, which satoshi put into consensus code, so we're stuck
// with it. The exponent needs to have 3 subtracted from it, hence
// this goofy decoding code. 3 is due to 3 bytes in the mantissa.
let (mant, expt) = {
let unshifted_expt = bits >> 24;
if unshifted_expt <= 3 {
((bits & 0xFFFFFF) >> (8 * (3 - unshifted_expt as usize)), 0)
} else {
(bits & 0xFFFFFF, 8 * ((bits >> 24) - 3))
}
};
// The mantissa is signed but may not be negative.
if mant > 0x7F_FFFF {
Target::ZERO
} else {
Target(U256::from(mant) << expt)
}
}
/// Computes the compact value from a [`Target`] representation.
///
/// The compact form is by definition lossy, this means that
/// `t == Target::from_compact(t.to_compact_lossy())` does not always hold.
pub fn to_compact_lossy(self) -> CompactTarget {
let mut size = (self.0.bits() + 7) / 8;
let mut compact = if size <= 3 {
(self.0.low_u64() << (8 * (3 - size))) as u32
} else {
let bn = self.0 >> (8 * (size - 3));
bn.low_u32()
};
if (compact & 0x0080_0000) != 0 {
compact >>= 8;
size += 1;
}
CompactTarget(compact | (size << 24))
}
/// Returns true if block hash is less than or equal to this [`Target`].
///
/// Proof-of-work validity for a block requires the hash of the block to be less than or equal
/// to the target.
pub fn is_met_by(&self, hash: BlockHash) -> bool {
use crate::hashes::Hash;
let hash = U256::from_le_bytes(hash.into_inner());
hash <= self.0
}
/// Converts this [`Target`] to [`Work`].
///
/// "Work" is defined as the work done to mine a block with this target value (recorded in the
/// block header in compact form as nBits). This is not the same as the difficulty to mine a
/// block with this target (see `Self::difficulty`).
pub fn to_work(self) -> Work { Work(self.0.inverse()) }
/// Computes the popular "difficulty" measure for mining.
///
/// Difficulty represents how difficult the current target makes it to find a block, relative to
/// how difficult it would be at the highest possible target (highest target == lowest difficulty).
///
/// For example, a difficulty of 6,695,826 means that at a given hash rate, it will, on average,
/// take ~6.6 million times as long to find a valid block as it would at a difficulty of 1, or
/// alternatively, it will take, again on average, ~6.6 million times as many hashes to find a
/// valid block
///
/// # Note
///
/// Difficulty is calculated using the following algorithm `max / current` where [max] is
/// defined for the Bitcoin network and `current` is the current [target] for this block. As
/// such, a low target implies a high difficulty. Since [`Target`] is represented as a 256 bit
/// integer but `difficulty()` returns only 128 bits this means for targets below approximately
/// `0xffff_ffff_ffff_ffff_ffff_ffff` `difficulty()` will saturate at `u128::MAX`.
///
/// [max]: Target::max
/// [target]: crate::blockdata::block::Header::target
pub fn difficulty(&self) -> u128 {
let d = Target::MAX.0 / self.0;
d.saturating_to_u128()
}
}
do_impl!(Target);
/// Encoding of 256-bit target as 32-bit float.
///
/// This is used to encode a target into the block header. Satoshi made this part of consensus code
/// in the original version of Bitcoin, likely copying an idea from OpenSSL.
///
/// OpenSSL's bignum (BN) type has an encoding, which is even called "compact" as in bitcoin, which
/// is exactly this format.
#[derive(Copy, Clone, Debug, Default, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
pub struct CompactTarget(u32);
impl CompactTarget {
/// Creates a [`CompactTarget`] from a consensus encoded `u32`.
pub fn from_consensus(bits: u32) -> Self { Self(bits) }
/// Returns the consensus encoded `u32` representation of this [`CompactTarget`].
pub fn to_consensus(self) -> u32 { self.0 }
}
impl From<CompactTarget> for Target {
fn from(c: CompactTarget) -> Self { Target::from_compact(c) }
}
impl Encodable for CompactTarget {
#[inline]
fn consensus_encode<W: Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
self.0.consensus_encode(w)
}
}
impl Decodable for CompactTarget {
#[inline]
fn consensus_decode<R: Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
u32::consensus_decode(r).map(CompactTarget)
}
}
/// Big-endian 256 bit integer type.
// (high, low): u.0 contains the high bits, u.1 contains the low bits.
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
struct U256(u128, u128);
impl U256 {
const MAX: U256 =
U256(0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff, 0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff);
const ZERO: U256 = U256(0, 0);
const ONE: U256 = U256(0, 1);
/// Creates [`U256`] from a big-endian array of `u8`s.
fn from_be_bytes(a: [u8; 32]) -> U256 {
let (high, low) = split_in_half(a);
let big = u128::from_be_bytes(high);
let little = u128::from_be_bytes(low);
U256(big, little)
}
/// Creates a [`U256`] from a little-endian array of `u8`s.
fn from_le_bytes(a: [u8; 32]) -> U256 {
let (high, low) = split_in_half(a);
let little = u128::from_le_bytes(high);
let big = u128::from_le_bytes(low);
U256(big, little)
}
/// Converts `Self` to a big-endian array of `u8`s.
fn to_be_bytes(self) -> [u8; 32] {
let mut out = [0; 32];
out[..16].copy_from_slice(&self.0.to_be_bytes());
out[16..].copy_from_slice(&self.1.to_be_bytes());
out
}
/// Converts `Self` to a little-endian array of `u8`s.
fn to_le_bytes(self) -> [u8; 32] {
let mut out = [0; 32];
out[..16].copy_from_slice(&self.1.to_le_bytes());
out[16..].copy_from_slice(&self.0.to_le_bytes());
out
}
/// Calculates 2^256 / (x + 1) where x is a 256 bit unsigned integer.
///
/// 2**256 / (x + 1) == ~x / (x + 1) + 1
///
/// (Equation shamelessly stolen from bitcoind)
fn inverse(&self) -> U256 {
// We should never have a target/work of zero so this doesn't matter
// that much but we define the inverse of 0 as max.
if self.is_zero() {
return U256::MAX;
}
// We define the inverse of 1 as max.
if self.is_one() {
return U256::MAX;
}
// We define the inverse of max as 1.
if self.is_max() {
return U256::ONE;
}
let ret = !*self / self.wrapping_inc();
ret.wrapping_inc()
}
fn is_zero(&self) -> bool { self.0 == 0 && self.1 == 0 }
fn is_one(&self) -> bool { self.0 == 0 && self.1 == 1 }
fn is_max(&self) -> bool { self.0 == u128::max_value() && self.1 == u128::max_value() }
/// Returns the low 32 bits.
fn low_u32(&self) -> u32 { self.low_u128() as u32 }
/// Returns the low 64 bits.
fn low_u64(&self) -> u64 { self.low_u128() as u64 }
/// Returns the low 128 bits.
fn low_u128(&self) -> u128 { self.1 }
/// Returns `self` as a `u128` saturating to `u128::MAX` if `self` is too big.
fn saturating_to_u128(&self) -> u128 {
if *self > U256::from(u128::max_value()) {
u128::max_value()
} else {
self.low_u128()
}
}
/// Returns the least number of bits needed to represent the number.
fn bits(&self) -> u32 {
if self.0 > 0 {
256 - self.0.leading_zeros()
} else {
128 - self.1.leading_zeros()
}
}
/// Wrapping multiplication by `u64`.
///
/// Returns a tuple of the addition along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
fn mul_u64(self, rhs: u64) -> (U256, bool) {
// Multiply 64 bit parts of `mul` by `rhs`.
fn mul_parts(mul: u128, rhs: u64) -> (u128, u128) {
let upper = (rhs as u128) * (mul >> 64);
let lower = (rhs as u128) * (mul & 0xFFFF_FFFF_FFFF_FFFF);
(upper, lower)
}
if self.is_zero() || rhs == 0 {
return (U256::ZERO, false);
}
let mut ret = U256::ZERO;
let mut ret_overflow = false;
let (upper, lower) = mul_parts(self.0, rhs);
ret.0 = lower + (upper << 64);
ret_overflow |= upper >> 64 > 0;
let (upper, lower) = mul_parts(self.1, rhs);
ret.1 = lower + (upper << 64);
ret.0 += upper >> 64;
(ret, ret_overflow)
}
/// Calculates quotient and remainder.
///
/// # Returns
///
/// (quotient, remainder)
///
/// # Panics
///
/// If `rhs` is zero.
fn div_rem(self, rhs: Self) -> (Self, Self) {
let mut sub_copy = self;
let mut shift_copy = rhs;
let mut ret = [0u128; 2];
let my_bits = self.bits();
let your_bits = rhs.bits();
// Check for division by 0
assert!(your_bits != 0, "attempted to divide {} by zero", self);
// Early return in case we are dividing by a larger number than us
if my_bits < your_bits {
return (U256::ZERO, sub_copy);
}
// Bitwise long division
let mut shift = my_bits - your_bits;
shift_copy = shift_copy << shift;
loop {
if sub_copy >= shift_copy {
ret[1 - (shift / 128) as usize] |= 1 << (shift % 128);
sub_copy = sub_copy.wrapping_sub(shift_copy);
}
shift_copy = shift_copy >> 1;
if shift == 0 {
break;
}
shift -= 1;
}
(U256(ret[0], ret[1]), sub_copy)
}
/// Calculates `self` + `rhs`
///
/// Returns a tuple of the addition along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn overflowing_add(self, rhs: Self) -> (Self, bool) {
let mut ret = U256::ZERO;
let mut ret_overflow = false;
let (high, overflow) = self.0.overflowing_add(rhs.0);
ret.0 = high;
ret_overflow |= overflow;
let (low, overflow) = self.1.overflowing_add(rhs.1);
ret.1 = low;
if overflow {
let (high, overflow) = ret.0.overflowing_add(1);
ret.0 = high;
ret_overflow |= overflow;
}
(ret, ret_overflow)
}
/// Calculates `self` - `rhs`
///
/// Returns a tuple of the subtraction along with a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred then the wrapped value is returned.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
let ret = self.wrapping_add(!rhs).wrapping_add(Self::ONE);
let overflow = rhs > self;
(ret, overflow)
}
/// Calculates the multiplication of `self` and `rhs`.
///
/// Returns a tuple of the multiplication along with a boolean
/// indicating whether an arithmetic overflow would occur. If an
/// overflow would have occurred then the wrapped value is returned.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
let mut ret = U256::ZERO;
let mut ret_overflow = false;
for i in 0..3 {
let to_mul = (rhs >> (64 * i)).low_u64();
let (mul_res, _) = self.mul_u64(to_mul);
ret = ret.wrapping_add(mul_res << (64 * i));
}
let to_mul = (rhs >> (192)).low_u64();
let (mul_res, overflow) = self.mul_u64(to_mul);
ret_overflow |= overflow;
let (sum, overflow) = ret.overflowing_add(mul_res);
ret = sum;
ret_overflow |= overflow;
(ret, ret_overflow)
}
/// Wrapping (modular) addition. Computes `self + rhs`, wrapping around at the boundary of the
/// type.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn wrapping_add(self, rhs: Self) -> Self {
let (ret, _overflow) = self.overflowing_add(rhs);
ret
}
/// Wrapping (modular) subtraction. Computes `self - rhs`, wrapping around at the boundary of
/// the type.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn wrapping_sub(self, rhs: Self) -> Self {
let (ret, _overflow) = self.overflowing_sub(rhs);
ret
}
/// Wrapping (modular) multiplication. Computes `self * rhs`, wrapping around at the boundary of
/// the type.
#[must_use = "this returns the result of the operation, without modifying the original"]
#[cfg(test)]
fn wrapping_mul(self, rhs: Self) -> Self {
let (ret, _overflow) = self.overflowing_mul(rhs);
ret
}
/// Returns `self` incremented by 1 wrapping around at the boundary of the type.
#[must_use = "this returns the result of the increment, without modifying the original"]
fn wrapping_inc(&self) -> U256 {
let mut ret = U256::ZERO;
ret.1 = self.1.wrapping_add(1);
if ret.1 == 0 {
ret.0 = self.0.wrapping_add(1);
} else {
ret.0 = self.0;
}
ret
}
/// Panic-free bitwise shift-left; yields `self << mask(rhs)`, where `mask` removes any
/// high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-left; the RHS of a wrapping shift-left is
/// restricted to the range of the type, rather than the bits shifted out of the LHS being
/// returned to the other end. We do not currently support `rotate_left`.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn wrapping_shl(self, rhs: u32) -> Self {
let shift = rhs & 0x000000ff;
let mut ret = U256::ZERO;
let word_shift = shift >= 128;
let bit_shift = shift % 128;
if word_shift {
ret.0 = self.1 << bit_shift
} else {
ret.0 = self.0 << bit_shift;
if bit_shift > 0 {
ret.0 += self.1.wrapping_shr(128 - bit_shift);
}
ret.1 = self.1 << bit_shift;
}
ret
}
/// Panic-free bitwise shift-right; yields `self >> mask(rhs)`, where `mask` removes any
/// high-order bits of `rhs` that would cause the shift to exceed the bitwidth of the type.
///
/// Note that this is *not* the same as a rotate-right; the RHS of a wrapping shift-right is
/// restricted to the range of the type, rather than the bits shifted out of the LHS being
/// returned to the other end. We do not currently support `rotate_right`.
#[must_use = "this returns the result of the operation, without modifying the original"]
fn wrapping_shr(self, rhs: u32) -> Self {
let shift = rhs & 0x000000ff;
let mut ret = U256::ZERO;
let word_shift = shift >= 128;
let bit_shift = shift % 128;
if word_shift {
ret.1 = self.0 >> bit_shift
} else {
ret.0 = self.0 >> bit_shift;
ret.1 = self.1 >> bit_shift;
if bit_shift > 0 {
ret.1 += self.0.wrapping_shl(128 - bit_shift);
}
}
ret
}
/// Format `self` to `f` as a decimal when value is known to be non-zero.
fn fmt_decimal(&self, f: &mut fmt::Formatter) -> fmt::Result {
const DIGITS: usize = 78; // U256::MAX has 78 base 10 digits.
const TEN: U256 = U256(0, 10);
let mut buf = [0_u8; DIGITS];
let mut i = DIGITS - 1; // We loop backwards.
let mut cur = *self;
loop {
let digit = (cur % TEN).low_u128() as u8; // Cast after rem 10 is lossless.
buf[i] = digit + b'0';
cur = cur / TEN;
if cur.is_zero() {
break;
}
i -= 1;
}
let s = core::str::from_utf8(&buf[i..]).expect("digits 0-9 are valid UTF8");
f.pad_integral(true, "", s)
}
}
impl<T: Into<u128>> From<T> for U256 {
fn from(x: T) -> Self { U256(0, x.into()) }
}
/// Error from `TryFrom<signed type>` implementations, occurs when input is negative.
#[derive(Debug)]
pub struct TryFromError(i128);
impl fmt::Display for TryFromError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "attempt to create unsigned integer type from negative number: {}", self.0)
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for TryFromError {}
impl Add for U256 {
type Output = Self;
fn add(self, rhs: Self) -> Self {
let (res, overflow) = self.overflowing_add(rhs);
debug_assert!(!overflow, "Addition of U256 values overflowed");
res
}
}
impl Sub for U256 {
type Output = Self;
fn sub(self, rhs: Self) -> Self {
let (res, overflow) = self.overflowing_sub(rhs);
debug_assert!(!overflow, "Subtraction of U256 values overflowed");
res
}
}
impl Mul for U256 {
type Output = Self;
fn mul(self, rhs: Self) -> Self {
let (res, overflow) = self.overflowing_mul(rhs);
debug_assert!(!overflow, "Multiplication of U256 values overflowed");
res
}
}
impl<T: Into<u64>> Mul<T> for U256 {
type Output = Self;
fn mul(self, rhs: T) -> Self {
let (res, overflow) = self.mul_u64(rhs.into());
debug_assert!(!overflow, "U256 multiplied by integer overflowed");
res
}
}
/// Implements mul by unsigned int in both directions. Requires `u64::from($int)`.
macro_rules! impl_int_mul_u256 {
($($int:ident),+ $(,)?) => {
$(
impl Mul<U256> for $int {
type Output = U256;
fn mul(self, rhs: U256) -> U256 {
let (res, overflow) = rhs.mul_u64(u64::from(self));
debug_assert!(!overflow, "Integer multiplied by U256 overflowed");
res
}
}
)+
};
}
impl_int_mul_u256!(u8, u16, u32, u64);
impl Div for U256 {
type Output = Self;
fn div(self, rhs: Self) -> Self { self.div_rem(rhs).0 }
}
impl Rem for U256 {
type Output = Self;
fn rem(self, rhs: Self) -> Self { self.div_rem(rhs).1 }
}
impl Not for U256 {
type Output = Self;
fn not(self) -> Self { U256(!self.0, !self.1) }
}
impl Shl<u32> for U256 {
type Output = Self;
fn shl(self, shift: u32) -> U256 { self.wrapping_shl(shift) }
}
impl Shr<u32> for U256 {
type Output = Self;
fn shr(self, shift: u32) -> U256 { self.wrapping_shr(shift) }
}
impl fmt::Display for U256 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_zero() {
f.pad_integral(true, "", "0")
} else {
self.fmt_decimal(f)
}
}
}
impl fmt::Debug for U256 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{:#x}", self) }
}
macro_rules! impl_hex {
($hex:ident, $fmt:literal) => {
impl $hex for U256 {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if f.alternate() {
write!(f, "0x")?;
}
write!(f, $fmt, self.0)?;
write!(f, $fmt, self.1)?;
Ok(())
}
}
};
}
impl_hex!(LowerHex, "{:032x}");
impl_hex!(UpperHex, "{:032X}");
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl crate::serde::Serialize for U256 {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: crate::serde::Serializer,
{
use crate::hashes::hex::ToHex;
let bytes = self.to_be_bytes();
if serializer.is_human_readable() {
// TODO: fast hex encoding.
serializer.serialize_str(&bytes.to_hex())
} else {
serializer.serialize_bytes(&bytes)
}
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de> crate::serde::Deserialize<'de> for U256 {
fn deserialize<D: crate::serde::Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
use core::convert::TryInto;
use crate::hashes::hex::FromHex;
use crate::serde::de;
if d.is_human_readable() {
struct HexVisitor;
impl<'de> de::Visitor<'de> for HexVisitor {
type Value = U256;
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("a 32 byte ASCII hex string")
}
fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
if s.len() != 64 {
return Err(de::Error::invalid_length(s.len(), &self));
}
let b = <[u8; 32]>::from_hex(s)
.map_err(|_| de::Error::invalid_value(de::Unexpected::Str(s), &self))?;
Ok(U256::from_be_bytes(b))
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
if let Ok(hex) = core::str::from_utf8(v) {
let b = <[u8; 32]>::from_hex(hex).map_err(|_| {
de::Error::invalid_value(de::Unexpected::Str(hex), &self)
})?;
Ok(U256::from_be_bytes(b))
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> serde::de::Visitor<'de> for BytesVisitor {
type Value = U256;
fn expecting(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
f.write_str("a sequence of bytes")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
let b = v.try_into().map_err(|_| de::Error::invalid_length(v.len(), &self))?;
Ok(U256::from_be_bytes(b))
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
/// Splits a 32 byte array into two 16 byte arrays.
fn split_in_half(a: [u8; 32]) -> ([u8; 16], [u8; 16]) {
let mut high = [0_u8; 16];
let mut low = [0_u8; 16];
high.copy_from_slice(&a[..16]);
low.copy_from_slice(&a[16..]);
(high, low)
}
#[cfg(test)]
mod tests {
use super::*;
impl<T: Into<u128>> From<T> for Target {
fn from(x: T) -> Self { Self(U256::from(x)) }
}
impl<T: Into<u128>> From<T> for Work {
fn from(x: T) -> Self { Self(U256::from(x)) }
}
impl U256 {
fn bit_at(&self, index: usize) -> bool {
if index > 255 {
panic!("index out of bounds");
}
let word = if index < 128 { self.1 } else { self.0 };
(word & (1 << (index % 128))) != 0
}
}
impl U256 {
/// Creates a U256 from a big-endian array of u64's
fn from_array(a: [u64; 4]) -> Self {
let mut ret = U256::ZERO;
ret.0 = (a[0] as u128) << 64 ^ (a[1] as u128);
ret.1 = (a[2] as u128) << 64 ^ (a[3] as u128);
ret
}
}
#[test]
fn u256_num_bits() {
assert_eq!(U256::from(255_u64).bits(), 8);
assert_eq!(U256::from(256_u64).bits(), 9);
assert_eq!(U256::from(300_u64).bits(), 9);
assert_eq!(U256::from(60000_u64).bits(), 16);
assert_eq!(U256::from(70000_u64).bits(), 17);
// Try to read the following lines out loud quickly
let mut shl = U256::from(70000_u64);
shl = shl << 100;
assert_eq!(shl.bits(), 117);
shl = shl << 100;
assert_eq!(shl.bits(), 217);
shl = shl << 100;
assert_eq!(shl.bits(), 0);
}
#[test]
fn u256_bit_at() {
assert!(!U256::from(10_u64).bit_at(0));
assert!(U256::from(10_u64).bit_at(1));
assert!(!U256::from(10_u64).bit_at(2));
assert!(U256::from(10_u64).bit_at(3));
assert!(!U256::from(10_u64).bit_at(4));
let u = U256(0xa000_0000_0000_0000_0000_0000_0000_0000, 0);
assert!(u.bit_at(255));
assert!(!u.bit_at(254));
assert!(u.bit_at(253));
assert!(!u.bit_at(252));
}
#[test]
fn u256_lower_hex() {
assert_eq!(
format!("{:x}", U256::from(0xDEADBEEF_u64)),
"00000000000000000000000000000000000000000000000000000000deadbeef",
);
assert_eq!(
format!("{:#x}", U256::from(0xDEADBEEF_u64)),
"0x00000000000000000000000000000000000000000000000000000000deadbeef",
);
assert_eq!(
format!("{:x}", U256::MAX),
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
);
assert_eq!(
format!("{:#x}", U256::MAX),
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
);
}
#[test]
fn u256_upper_hex() {
assert_eq!(
format!("{:X}", U256::from(0xDEADBEEF_u64)),
"00000000000000000000000000000000000000000000000000000000DEADBEEF",
);
assert_eq!(
format!("{:#X}", U256::from(0xDEADBEEF_u64)),
"0x00000000000000000000000000000000000000000000000000000000DEADBEEF",
);
assert_eq!(
format!("{:X}", U256::MAX),
"FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
);
assert_eq!(
format!("{:#X}", U256::MAX),
"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
);
}
#[test]
fn u256_display() {
assert_eq!(format!("{}", U256::from(100_u32)), "100",);
assert_eq!(format!("{}", U256::ZERO), "0",);
assert_eq!(format!("{}", U256::from(u64::max_value())), format!("{}", u64::max_value()),);
assert_eq!(
format!("{}", U256::MAX),
"115792089237316195423570985008687907853269984665640564039457584007913129639935",
);
}
macro_rules! check_format {
($($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => {
$(
#[test]
fn $test_name() {
assert_eq!(format!($format_string, U256::from($val)), $expected);
}
)*
}
}
check_format! {
check_fmt_0, 0_u32, "{}", "0";
check_fmt_1, 0_u32, "{:2}", " 0";
check_fmt_2, 0_u32, "{:02}", "00";
check_fmt_3, 1_u32, "{}", "1";
check_fmt_4, 1_u32, "{:2}", " 1";
check_fmt_5, 1_u32, "{:02}", "01";
check_fmt_10, 10_u32, "{}", "10";
check_fmt_11, 10_u32, "{:2}", "10";
check_fmt_12, 10_u32, "{:02}", "10";
check_fmt_13, 10_u32, "{:3}", " 10";
check_fmt_14, 10_u32, "{:03}", "010";
check_fmt_20, 1_u32, "{:<2}", "1 ";
check_fmt_21, 1_u32, "{:<02}", "01";
check_fmt_22, 1_u32, "{:>2}", " 1"; // This is default but check it anyways.
check_fmt_23, 1_u32, "{:>02}", "01";
check_fmt_24, 1_u32, "{:^3}", " 1 ";
check_fmt_25, 1_u32, "{:^03}", "001";
// Sanity check, for integral types precision is ignored.
check_fmt_30, 0_u32, "{:.1}", "0";
check_fmt_31, 0_u32, "{:4.1}", " 0";
check_fmt_32, 0_u32, "{:04.1}", "0000";
}
#[test]
fn u256_comp() {
let small = U256::from_array([0, 0, 0, 10]);
let big = U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x8C8C_3EE7_0C64_4118]);
let bigger = U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x9C8C_3EE7_0C64_4118]);
let biggest = U256::from_array([1, 0, 0x0209_E737_8231_E632, 0x5C8C_3EE7_0C64_4118]);
assert!(small < big);
assert!(big < bigger);
assert!(bigger < biggest);
assert!(bigger <= biggest);
assert!(biggest <= biggest);
assert!(bigger >= big);
assert!(bigger >= small);
assert!(small <= small);
}
const WANT: U256 =
U256(0x1bad_cafe_dead_beef_deaf_babe_2bed_feed, 0xbaad_f00d_defa_ceda_11fe_d2ba_d1c0_ffe0);
#[rustfmt::skip]
const BE_BYTES: [u8; 32] = [
0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed,
0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0,
];
#[rustfmt::skip]
const LE_BYTES: [u8; 32] = [
0xe0, 0xff, 0xc0, 0xd1, 0xba, 0xd2, 0xfe, 0x11, 0xda, 0xce, 0xfa, 0xde, 0x0d, 0xf0, 0xad, 0xba,
0xed, 0xfe, 0xed, 0x2b, 0xbe, 0xba, 0xaf, 0xde, 0xef, 0xbe, 0xad, 0xde, 0xfe, 0xca, 0xad, 0x1b,
];
// Sanity check that we have the bytes in the correct big-endian order.
#[test]
fn sanity_be_bytes() {
let mut out = [0_u8; 32];
out[..16].copy_from_slice(&WANT.0.to_be_bytes());
out[16..].copy_from_slice(&WANT.1.to_be_bytes());
assert_eq!(out, BE_BYTES);
}
// Sanity check that we have the bytes in the correct little-endian order.
#[test]
fn sanity_le_bytes() {
let mut out = [0_u8; 32];
out[..16].copy_from_slice(&WANT.1.to_le_bytes());
out[16..].copy_from_slice(&WANT.0.to_le_bytes());
assert_eq!(out, LE_BYTES);
}
#[test]
fn u256_to_be_bytes() {
assert_eq!(WANT.to_be_bytes(), BE_BYTES);
}
#[test]
fn u256_from_be_bytes() {
assert_eq!(U256::from_be_bytes(BE_BYTES), WANT);
}
#[test]
fn u256_to_le_bytes() {
assert_eq!(WANT.to_le_bytes(), LE_BYTES);
}
#[test]
fn u256_from_le_bytes() {
assert_eq!(U256::from_le_bytes(LE_BYTES), WANT);
}
#[test]
fn u256_from_u8() {
let u = U256::from(0xbe_u8);
assert_eq!(u, U256(0, 0xbe));
}
#[test]
fn u256_from_u16() {
let u = U256::from(0xbeef_u16);
assert_eq!(u, U256(0, 0xbeef));
}
#[test]
fn u256_from_u32() {
let u = U256::from(0xdeadbeef_u32);
assert_eq!(u, U256(0, 0xdeadbeef));
}
#[test]
fn u256_from_u64() {
let u = U256::from(0xdead_beef_cafe_babe_u64);
assert_eq!(u, U256(0, 0xdead_beef_cafe_babe));
}
#[test]
fn u256_from_u128() {
let u = U256::from(0xdead_beef_cafe_babe_0123_4567_89ab_cdefu128);
assert_eq!(u, U256(0, 0xdead_beef_cafe_babe_0123_4567_89ab_cdef));
}
macro_rules! test_from_unsigned_integer_type {
($($test_name:ident, $ty:ident);* $(;)?) => {
$(
#[test]
fn $test_name() {
// Internal representation is big-endian.
let want = U256(0, 0xAB);
let x = 0xAB as $ty;
let got = U256::from(x);
assert_eq!(got, want);
}
)*
}
}
test_from_unsigned_integer_type! {
from_unsigned_integer_type_u8, u8;
from_unsigned_integer_type_u16, u16;
from_unsigned_integer_type_u32, u32;
from_unsigned_integer_type_u64, u64;
from_unsigned_integer_type_u128, u128;
}
#[test]
fn u256_from_be_array_u64() {
let array = [
0x1bad_cafe_dead_beef,
0xdeaf_babe_2bed_feed,
0xbaad_f00d_defa_ceda,
0x11fe_d2ba_d1c0_ffe0,
];
let uint = U256::from_array(array);
assert_eq!(uint, WANT);
}
#[test]
fn u256_shift_left() {
let u = U256::from(1_u32);
assert_eq!(u << 0, u);
assert_eq!(u << 1, U256::from(2_u64));
assert_eq!(u << 63, U256::from(0x8000_0000_0000_0000_u64));
assert_eq!(u << 64, U256::from_array([0, 0, 0x0000_0000_0000_0001, 0]));
assert_eq!(u << 128, U256(1, 0));
}
#[test]
fn u256_shift_right() {
let u = U256(1, 0);
assert_eq!(u >> 0, u);
assert_eq!(u >> 1, U256(0, 0x8000_0000_0000_0000_0000_0000_0000_0000));
assert_eq!(u >> 128, U256(0, 1));
}
#[test]
fn u256_arithmetic() {
let init = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
let copy = init;
let add = init.wrapping_add(copy);
assert_eq!(add, U256::from_array([0, 0, 1, 0xBD5B_7DDF_BD5B_7DDE]));
// Bitshifts
let shl = add << 88;
assert_eq!(shl, U256::from_array([0, 0x01BD_5B7D, 0xDFBD_5B7D_DE00_0000, 0]));
let shr = shl >> 40;
assert_eq!(shr, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5B, 0x7DDE_0000_0000_0000]));
// Increment
let mut incr = shr;
incr = incr.wrapping_inc();
assert_eq!(incr, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5B, 0x7DDE_0000_0000_0001]));
// Subtraction
let sub = incr.wrapping_sub(init);
assert_eq!(sub, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5A, 0x9F30_4110_2152_4112]));
// Multiplication
let (mult, _) = sub.mul_u64(300);
assert_eq!(mult, U256::from_array([0, 0, 0x0209_E737_8231_E632, 0x8C8C_3EE7_0C64_4118]));
// Division
assert_eq!(U256::from(105_u32) / U256::from(5_u32), U256::from(21_u32));
let div = mult / U256::from(300_u32);
assert_eq!(div, U256::from_array([0, 0, 0x0001_BD5B_7DDF_BD5A, 0x9F30_4110_2152_4112]));
assert_eq!(U256::from(105_u32) % U256::from(5_u32), U256::ZERO);
assert_eq!(U256::from(35498456_u32) % U256::from(3435_u32), U256::from(1166_u32));
let rem_src = mult.wrapping_mul(U256::from(39842_u32)).wrapping_add(U256::from(9054_u32));
assert_eq!(rem_src % U256::from(39842_u32), U256::from(9054_u32));
}
#[test]
fn u256_bit_inversion() {
let v = U256(1, 0);
let want = U256(
0xffff_ffff_ffff_ffff_ffff_ffff_ffff_fffe,
0xffff_ffff_ffff_ffff_ffff_ffff_ffff_ffff,
);
assert_eq!(!v, want);
let v = U256(0x0c0c_0c0c_0c0c_0c0c_0c0c_0c0c_0c0c_0c0c, 0xeeee_eeee_eeee_eeee);
let want = U256(
0xf3f3_f3f3_f3f3_f3f3_f3f3_f3f3_f3f3_f3f3,
0xffff_ffff_ffff_ffff_1111_1111_1111_1111,
);
assert_eq!(!v, want);
}
#[test]
fn u256_mul_u64_by_one() {
let v = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
assert_eq!(v, v.mul_u64(1_u64).0);
}
#[test]
fn u256_mul_u64_by_zero() {
let v = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
assert_eq!(U256::ZERO, v.mul_u64(0_u64).0);
}
#[test]
fn u256_mul_u64() {
let u64_val = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
let u96_res = u64_val.mul_u64(0xFFFF_FFFF).0;
let u128_res = u96_res.mul_u64(0xFFFF_FFFF).0;
let u160_res = u128_res.mul_u64(0xFFFF_FFFF).0;
let u192_res = u160_res.mul_u64(0xFFFF_FFFF).0;
let u224_res = u192_res.mul_u64(0xFFFF_FFFF).0;
let u256_res = u224_res.mul_u64(0xFFFF_FFFF).0;
assert_eq!(u96_res, U256::from_array([0, 0, 0xDEAD_BEEE, 0xFFFF_FFFF_2152_4111]));
assert_eq!(
u128_res,
U256::from_array([0, 0, 0xDEAD_BEEE_2152_4110, 0x2152_4111_DEAD_BEEF])
);
assert_eq!(
u160_res,
U256::from_array([0, 0xDEAD_BEED, 0x42A4_8222_0000_0001, 0xBD5B_7DDD_2152_4111])
);
assert_eq!(
u192_res,
U256::from_array([
0,
0xDEAD_BEEC_63F6_C334,
0xBD5B_7DDF_BD5B_7DDB,
0x63F6_C333_DEAD_BEEF
])
);
assert_eq!(
u224_res,
U256::from_array([
0xDEAD_BEEB,
0x8549_0448_5964_BAAA,
0xFFFF_FFFB_A69B_4558,
0x7AB6_FBBB_2152_4111
])
);
assert_eq!(
u256_res,
U256(
0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
)
);
}
#[test]
fn u256_multiplication() {
let u64_val = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
let u128_res = u64_val.wrapping_mul(u64_val);
assert_eq!(u128_res, U256(0, 0xC1B1_CD13_A4D1_3D46_048D_1354_216D_A321));
let u256_res = u128_res.wrapping_mul(u128_res);
assert_eq!(
u256_res,
U256(
0x928D_92B4_D7F5_DF33_4AFC_FF6F_0375_C608,
0xF5CF_7F36_18C2_C886_F4E1_66AA_D40D_0A41,
)
);
}
#[test]
fn u256_increment() {
let mut val = U256(
0xEFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE,
);
val = val.wrapping_inc();
assert_eq!(
val,
U256(
0xEFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF,
)
);
val = val.wrapping_inc();
assert_eq!(
val,
U256(
0xF000_0000_0000_0000_0000_0000_0000_0000,
0x0000_0000_0000_0000_0000_0000_0000_0000,
)
);
assert_eq!(U256::MAX.wrapping_inc(), U256::ZERO);
}
#[test]
fn u256_extreme_bitshift() {
// Shifting a u64 by 64 bits gives an undefined value, so make sure that
// we're doing the Right Thing here
let init = U256::from(0xDEAD_BEEF_DEAD_BEEF_u64);
assert_eq!(init << 64, U256(0, 0xDEAD_BEEF_DEAD_BEEF_0000_0000_0000_0000));
let add = (init << 64).wrapping_add(init);
assert_eq!(add, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
assert_eq!(add >> 0, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
assert_eq!(add << 0, U256(0, 0xDEAD_BEEF_DEAD_BEEF_DEAD_BEEF_DEAD_BEEF));
assert_eq!(add >> 64, U256(0, 0x0000_0000_0000_0000_DEAD_BEEF_DEAD_BEEF));
assert_eq!(
add << 64,
U256(0xDEAD_BEEF_DEAD_BEEF, 0xDEAD_BEEF_DEAD_BEEF_0000_0000_0000_0000)
);
}
#[cfg(feature = "serde")]
#[test]
fn u256_serde() {
let check = |uint, hex| {
let json = format!("\"{}\"", hex);
assert_eq!(::serde_json::to_string(&uint).unwrap(), json);
assert_eq!(::serde_json::from_str::<U256>(&json).unwrap(), uint);
let bin_encoded = bincode::serialize(&uint).unwrap();
let bin_decoded: U256 = bincode::deserialize(&bin_encoded).unwrap();
assert_eq!(bin_decoded, uint);
};
check(U256::ZERO, "0000000000000000000000000000000000000000000000000000000000000000");
check(
U256::from(0xDEADBEEF_u32),
"00000000000000000000000000000000000000000000000000000000deadbeef",
);
check(
U256::from_array([0xdd44, 0xcc33, 0xbb22, 0xaa11]),
"000000000000dd44000000000000cc33000000000000bb22000000000000aa11",
);
check(U256::MAX, "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
check(
U256(
0xDEAD_BEEA_A69B_455C_D41B_B662_A69B_4550,
0xA69B_455C_D41B_B662_A69B_4555_DEAD_BEEF,
),
"deadbeeaa69b455cd41bb662a69b4550a69b455cd41bb662a69b4555deadbeef",
);
assert!(::serde_json::from_str::<U256>(
"\"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffg\""
)
.is_err()); // invalid char
assert!(::serde_json::from_str::<U256>(
"\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\""
)
.is_err()); // invalid length
assert!(::serde_json::from_str::<U256>(
"\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\""
)
.is_err()); // invalid length
}
#[test]
fn target_from_compact() {
// (nBits, target)
let tests = vec![
(0x0100_3456_u32, 0x00_u64), // High bit set.
(0x0112_3456_u32, 0x12_u64),
(0x0200_8000_u32, 0x80_u64),
(0x0500_9234_u32, 0x9234_0000_u64),
(0x0492_3456_u32, 0x00_u64), // High bit set (0x80 in 0x92).
(0x0412_3456_u32, 0x1234_5600_u64), // Inverse of above; no high bit.
];
for (n_bits, target) in tests {
let want = Target::from(target);
let got = Target::from_compact(CompactTarget::from_consensus(n_bits));
assert_eq!(got, want);
}
}
#[test]
fn max_target_from_compact() {
// The highest possible target is defined as 0x1d00ffff
let bits = 0x1d00ffff_u32;
let want = Target::MAX;
let got = Target::from_compact(CompactTarget::from_consensus(bits));
assert_eq!(got, want)
}
#[test]
fn roundtrip_compact_target() {
let consensus = 0x1d00_ffff;
let compact = CompactTarget::from_consensus(consensus);
let t = Target::from_compact(CompactTarget::from_consensus(consensus));
assert_eq!(t, Target::from(compact)); // From/Into sanity check.
let back = t.to_compact_lossy();
assert_eq!(back, compact); // From/Into sanity check.
assert_eq!(back.to_consensus(), consensus);
}
#[test]
fn roundtrip_target_work() {
let target = Target::from(0xdeadbeef_u32);
let work = target.to_work();
let back = work.to_target();
assert_eq!(back, target)
}
#[test]
fn u256_zero_min_max_inverse() {
assert_eq!(U256::MAX.inverse(), U256::ONE);
assert_eq!(U256::ONE.inverse(), U256::MAX);
assert_eq!(U256::ZERO.inverse(), U256::MAX);
}
#[test]
fn u256_max_min_inverse_roundtrip() {
let max = U256::MAX;
for min in [U256::ZERO, U256::ONE].iter() {
// lower target means more work required.
assert_eq!(Target(max).to_work(), Work(U256::ONE));
assert_eq!(Target(*min).to_work(), Work(max));
assert_eq!(Work(max).to_target(), Target(U256::ONE));
assert_eq!(Work(*min).to_target(), Target(max));
}
}
#[test]
fn u256_wrapping_add_wraps_at_boundry() {
assert_eq!(U256::MAX.wrapping_add(U256::ONE), U256::ZERO);
assert_eq!(U256::MAX.wrapping_add(U256::from(2_u8)), U256::ONE);
}
#[test]
fn u256_wrapping_sub_wraps_at_boundry() {
assert_eq!(U256::ZERO.wrapping_sub(U256::ONE), U256::MAX);
assert_eq!(U256::ONE.wrapping_sub(U256::from(2_u8)), U256::MAX);
}
#[test]
fn mul_u64_overflows() {
let (_, overflow) = U256::MAX.mul_u64(2);
assert!(overflow, "max * 2 should overflow");
}
#[test]
#[should_panic]
fn u256_overflowing_addition_panics() { let _ = U256::MAX + U256::ONE; }
#[test]
#[should_panic]
fn u256_overflowing_subtraction_panics() { let _ = U256::ZERO - U256::ONE; }
// We only test with test case value on the right hand side of the multiplication but that
// should be enough coverage since we call the same underlying method to do multiplication the
// sides inverted.
macro_rules! test_u256_multiplication_panics {
($($test_name:ident, $x:expr);* $(;)?) => {
$(
#[test]
#[should_panic]
fn $test_name() {
let _ = U256::MAX * $x;
}
)*
}
}
test_u256_multiplication_panics! {
u256_multiplication_by_max, U256::MAX;
u256_multiplication_by_u8, 2_u8;
u256_multiplication_by_u16, 2_u16;
u256_multiplication_by_u32, 2_u32;
u256_multiplication_by_u64, 2_u64;
}
#[test]
#[should_panic]
fn work_overflowing_addition_panics() { let _ = Work(U256::MAX) + Work(U256::ONE); }
#[test]
#[should_panic]
fn work_overflowing_subtraction_panics() { let _ = Work(U256::ZERO) - Work(U256::ONE); }
// Just test Work since Target is implemented using the same macro.
macro_rules! test_u256_multiplication_panics {
($($test_name:ident, $x:expr);* $(;)?) => {
$(
#[test]
#[should_panic]
fn $test_name() {
let _ = Work(U256::MAX) * $x;
}
)*
}
}
test_u256_multiplication_panics! {
work_multiplication_by_u8, 2_u8;
work_multiplication_by_u16, 2_u16;
work_multiplication_by_u32, 2_u32;
work_multiplication_by_u64, 2_u64;
}
}