rust-bitcoin-unsafe-fast/hashes/src/hex.rs

484 lines
14 KiB
Rust
Raw Normal View History

// Bitcoin Hashes Library
// Written in 2018 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Hex encoding and decoding.
//!
#[cfg(any(feature = "std", feature = "alloc"))]
use crate::alloc::{string::String, vec::Vec};
#[cfg(feature = "alloc")]
use crate::alloc::format;
#[cfg(any(test, feature = "std"))]
use std::io;
#[cfg(all(not(test), not(feature = "std"), feature = "core2"))]
use core2::io;
use core::{fmt, str};
use crate::Hash;
/// Hex decoding error.
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Error {
/// Non-hexadecimal character.
InvalidChar(u8),
/// Purported hex string had odd length.
OddLengthString(usize),
/// Tried to parse fixed-length hash from a string with the wrong type (expected, got).
InvalidLength(usize, usize),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::InvalidChar(ch) => write!(f, "invalid hex character {}", ch),
Error::OddLengthString(ell) => write!(f, "odd hex string length {}", ell),
Error::InvalidLength(ell, ell2) => write!(f, "bad hex string length {} (expected {})", ell2, ell),
}
}
}
/// Trait for objects that can be serialized as hex strings.
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
pub trait ToHex {
/// Converts to a hexadecimal representation of the object.
fn to_hex(&self) -> String;
}
/// Trait for objects that can be deserialized from hex strings.
pub trait FromHex: Sized {
/// Produces an object from a byte iterator.
fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
where
I: Iterator<Item = Result<u8, Error>> + ExactSizeIterator + DoubleEndedIterator;
/// Produces an object from a hex string.
fn from_hex(s: &str) -> Result<Self, Error> {
Self::from_byte_iter(HexIterator::new(s)?)
}
}
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
impl<T: fmt::LowerHex> ToHex for T {
/// Outputs the hash in hexadecimal form.
fn to_hex(&self) -> String {
format!("{:x}", self)
}
}
impl<T: Hash> FromHex for T {
fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
where
I: Iterator<Item = Result<u8, Error>> + ExactSizeIterator + DoubleEndedIterator,
{
let inner = if Self::DISPLAY_BACKWARD {
T::Inner::from_byte_iter(iter.rev())?
} else {
T::Inner::from_byte_iter(iter)?
};
Ok(Hash::from_inner(inner))
}
}
/// Iterator over a hex-encoded string slice which decodes hex and yields bytes.
pub struct HexIterator<'a> {
/// The `Bytes` iterator whose next two bytes will be decoded to yield
/// the next byte.
iter: str::Bytes<'a>,
}
impl<'a> HexIterator<'a> {
/// Constructs a new `HexIterator` from a string slice.
///
/// # Errors
///
/// If the input string is of odd length.
pub fn new(s: &'a str) -> Result<HexIterator<'a>, Error> {
if s.len() % 2 != 0 {
Err(Error::OddLengthString(s.len()))
} else {
Ok(HexIterator { iter: s.bytes() })
}
}
}
fn chars_to_hex(hi: u8, lo: u8) -> Result<u8, Error> {
let hih = (hi as char)
.to_digit(16)
.ok_or(Error::InvalidChar(hi))?;
let loh = (lo as char)
.to_digit(16)
.ok_or(Error::InvalidChar(lo))?;
let ret = (hih << 4) + loh;
Ok(ret as u8)
}
impl<'a> Iterator for HexIterator<'a> {
type Item = Result<u8, Error>;
fn next(&mut self) -> Option<Result<u8, Error>> {
let hi = self.iter.next()?;
let lo = self.iter.next().unwrap();
Some(chars_to_hex(hi, lo))
}
fn size_hint(&self) -> (usize, Option<usize>) {
let (min, max) = self.iter.size_hint();
(min / 2, max.map(|x| x / 2))
}
}
#[cfg(any(feature = "std", feature = "core2"))]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "core2"))))]
impl<'a> io::Read for HexIterator<'a> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let mut bytes_read = 0usize;
for dst in buf {
match self.next() {
Some(Ok(src)) => {
*dst = src;
bytes_read += 1;
},
_ => break,
}
}
Ok(bytes_read)
}
}
impl<'a> DoubleEndedIterator for HexIterator<'a> {
fn next_back(&mut self) -> Option<Result<u8, Error>> {
let lo = self.iter.next_back()?;
let hi = self.iter.next_back().unwrap();
Some(chars_to_hex(hi, lo))
}
}
impl<'a> ExactSizeIterator for HexIterator<'a> {}
/// Outputs hex into an object implementing `fmt::Write`.
///
/// This is usually more efficient than going through a `String` using [`ToHex`].
pub fn format_hex(data: &[u8], f: &mut fmt::Formatter) -> fmt::Result {
let prec = f.precision().unwrap_or(2 * data.len());
let width = f.width().unwrap_or(2 * data.len());
for _ in (2 * data.len())..width {
f.write_str("0")?;
}
for ch in data.iter().take(prec / 2) {
write!(f, "{:02x}", *ch)?;
}
if prec < 2 * data.len() && prec % 2 == 1 {
write!(f, "{:x}", data[prec / 2] / 16)?;
}
Ok(())
}
/// Outputs hex in reverse order.
///
/// Used for `sha256d::Hash` whose standard hex encoding has the bytes reversed.
pub fn format_hex_reverse(data: &[u8], f: &mut fmt::Formatter) -> fmt::Result {
let prec = f.precision().unwrap_or(2 * data.len());
let width = f.width().unwrap_or(2 * data.len());
for _ in (2 * data.len())..width {
f.write_str("0")?;
}
for ch in data.iter().rev().take(prec / 2) {
write!(f, "{:02x}", *ch)?;
}
if prec < 2 * data.len() && prec % 2 == 1 {
write!(f, "{:x}", data[data.len() - 1 - prec / 2] / 16)?;
}
Ok(())
}
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
impl ToHex for [u8] {
fn to_hex(&self) -> String {
use core::fmt::Write;
let mut ret = String::with_capacity(2 * self.len());
for ch in self {
write!(ret, "{:02x}", ch).expect("writing to string");
}
ret
}
}
/// A struct implementing [`io::Write`] that converts what's written to it into
/// a hex String.
///
/// If you already have the data to be converted in a `Vec<u8>` use [`ToHex`]
/// but if you have an encodable object, by using this you avoid the
/// serialization to `Vec<u8>` by going directly to `String`.
///
/// Note that to achieve better perfomance than [`ToHex`] the struct must be
/// created with the right `capacity` of the final hex string so that the inner
/// `String` doesn't re-allocate.
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
pub struct HexWriter(String);
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
impl HexWriter {
/// Creates a new [`HexWriter`] with the `capacity` of the inner `String`
/// that will contain final hex value.
pub fn new(capacity: usize) -> Self {
HexWriter(String::with_capacity(capacity))
}
/// Returns the resulting hex string.
pub fn result(self) -> String {
self.0
}
}
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(test, feature = "std", feature = "alloc"))))]
impl io::Write for HexWriter {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
use core::fmt::Write;
for ch in buf {
write!(self.0, "{:02x}", ch).expect("writing to string");
}
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
Ok(())
}
}
#[cfg(any(test, feature = "std", feature = "alloc"))]
#[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
impl FromHex for Vec<u8> {
fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
where
I: Iterator<Item = Result<u8, Error>> + ExactSizeIterator + DoubleEndedIterator,
{
iter.collect()
}
}
macro_rules! impl_fromhex_array {
($len:expr) => {
impl FromHex for [u8; $len] {
fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
where
I: Iterator<Item = Result<u8, Error>> + ExactSizeIterator + DoubleEndedIterator,
{
if iter.len() == $len {
let mut ret = [0; $len];
for (n, byte) in iter.enumerate() {
ret[n] = byte?;
}
Ok(ret)
} else {
Err(Error::InvalidLength(2 * $len, 2 * iter.len()))
}
}
}
}
}
impl_fromhex_array!(2);
impl_fromhex_array!(4);
impl_fromhex_array!(6);
impl_fromhex_array!(8);
impl_fromhex_array!(10);
impl_fromhex_array!(12);
impl_fromhex_array!(14);
impl_fromhex_array!(16);
impl_fromhex_array!(20);
impl_fromhex_array!(24);
impl_fromhex_array!(28);
impl_fromhex_array!(32);
impl_fromhex_array!(33);
impl_fromhex_array!(64);
impl_fromhex_array!(65);
impl_fromhex_array!(128);
impl_fromhex_array!(256);
impl_fromhex_array!(384);
impl_fromhex_array!(512);
#[cfg(test)]
mod tests {
use super::*;
use core::fmt;
use std::io::Write;
#[test]
#[cfg(any(feature = "std", feature = "alloc"))]
fn hex_roundtrip() {
let expected = "0123456789abcdef";
let expected_up = "0123456789ABCDEF";
let parse: Vec<u8> = FromHex::from_hex(expected).expect("parse lowercase string");
assert_eq!(parse, vec![0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
let ser = parse.to_hex();
assert_eq!(ser, expected);
let parse: Vec<u8> = FromHex::from_hex(expected_up).expect("parse uppercase string");
assert_eq!(parse, vec![0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
let ser = parse.to_hex();
assert_eq!(ser, expected);
let parse: [u8; 8] = FromHex::from_hex(expected_up).expect("parse uppercase string");
assert_eq!(parse, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
let ser = parse.to_hex();
assert_eq!(ser, expected);
}
#[test]
fn hex_truncate() {
struct HexBytes(Vec<u8>);
impl fmt::LowerHex for HexBytes {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
format_hex(&self.0, f)
}
}
let bytes = HexBytes(vec![1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
assert_eq!(
format!("{:x}", bytes),
"0102030405060708090a"
);
for i in 0..20 {
assert_eq!(
format!("{:.prec$x}", bytes, prec = i),
&"0102030405060708090a"[0..i]
);
}
assert_eq!(
format!("{:25x}", bytes),
"000000102030405060708090a"
);
assert_eq!(
format!("{:26x}", bytes),
"0000000102030405060708090a"
);
}
#[test]
fn hex_truncate_rev() {
struct HexBytes(Vec<u8>);
impl fmt::LowerHex for HexBytes {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
format_hex_reverse(&self.0, f)
}
}
let bytes = HexBytes(vec![1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10]);
assert_eq!(
format!("{:x}", bytes),
"0a090807060504030201"
);
for i in 0..20 {
assert_eq!(
format!("{:.prec$x}", bytes, prec = i),
&"0a090807060504030201"[0..i]
);
}
assert_eq!(
format!("{:25x}", bytes),
"000000a090807060504030201"
);
assert_eq!(
format!("{:26x}", bytes),
"0000000a090807060504030201"
);
}
#[test]
#[cfg(any(feature = "std", feature = "alloc"))]
fn hex_error() {
let oddlen = "0123456789abcdef0";
let badchar1 = "Z123456789abcdef";
let badchar2 = "012Y456789abcdeb";
let badchar3 = "«23456789abcdef";
assert_eq!(
Vec::<u8>::from_hex(oddlen),
Err(Error::OddLengthString(17))
);
assert_eq!(
<[u8; 4]>::from_hex(oddlen),
Err(Error::OddLengthString(17))
);
assert_eq!(
<[u8; 8]>::from_hex(oddlen),
Err(Error::OddLengthString(17))
);
assert_eq!(
Vec::<u8>::from_hex(badchar1),
Err(Error::InvalidChar(b'Z'))
);
assert_eq!(
Vec::<u8>::from_hex(badchar2),
Err(Error::InvalidChar(b'Y'))
);
assert_eq!(
Vec::<u8>::from_hex(badchar3),
Err(Error::InvalidChar(194))
);
}
#[test]
fn hex_writer() {
let vec: Vec<_> = (0u8..32).collect();
let mut writer = HexWriter::new(64);
writer.write_all(&vec[..]).unwrap();
assert_eq!(vec.to_hex(), writer.result());
}
}
#[cfg(bench)]
mod benches {
use test::{Bencher, black_box};
use super::{ToHex, HexWriter};
use std::io::Write;
use crate::{sha256, Hash};
#[bench]
fn bench_to_hex(bh: &mut Bencher) {
let hash = sha256::Hash::hash(&[0; 1]);
bh.iter(|| {
black_box(hash.to_hex());
})
}
#[bench]
fn bench_to_hex_writer(bh: &mut Bencher) {
let hash = sha256::Hash::hash(&[0; 1]);
bh.iter(|| {
let mut writer = HexWriter::new(64);
writer.write_all(hash.as_inner()).unwrap();
black_box(writer.result());
})
}
}