Add a method to `pow::Target` for returning difficulty as an f64.

This adds a conversion function to U256 to get an f64. We use the method shown in the following blog post. https://blog.m-ou.se/floats/
Target::MAX was converted to a f64 and set as a const that is verified in a unit test.
This commit is contained in:
junderw 2023-03-09 18:08:01 -07:00
parent 10d61f1c97
commit 2158f88f1d
No known key found for this signature in database
GPG Key ID: B256185D3A971908
1 changed files with 82 additions and 0 deletions

View File

@ -232,6 +232,14 @@ impl Target {
let d = Target::MAX.0 / self.0; let d = Target::MAX.0 / self.0;
d.saturating_to_u128() d.saturating_to_u128()
} }
/// Computes the popular "difficulty" measure for mining and returns a float value of f64.
///
/// See [`difficulty`] for details.
///
/// [`difficulty`]: Target::difficulty
#[cfg_attr(all(test, mutate), mutate)]
pub fn difficulty_float(&self) -> f64 { TARGET_MAX_F64 / self.0.to_f64() }
} }
do_impl!(Target); do_impl!(Target);
@ -642,7 +650,47 @@ impl U256 {
let s = core::str::from_utf8(&buf[i..]).expect("digits 0-9 are valid UTF8"); let s = core::str::from_utf8(&buf[i..]).expect("digits 0-9 are valid UTF8");
f.pad_integral(true, "", s) f.pad_integral(true, "", s)
} }
/// Convert self to f64.
#[inline]
fn to_f64(self) -> f64 {
// Reference: https://blog.m-ou.se/floats/
// Step 1: Get leading zeroes
let leading_zeroes = 256 - self.bits();
// Step 2: Get msb to be farthest left bit
let left_aligned = self.wrapping_shl(leading_zeroes);
// Step 3: Shift msb to fit in lower 53 bits (128-53=75) to get the mantissa
// * Shifting the border of the 2 u128s to line up with mantissa and dropped bits
let middle_aligned = left_aligned >> 75;
// * This is the 53 most significant bits as u128
let mantissa = middle_aligned.0;
// Step 4: Dropped bits (except for last 75 bits) are all in the second u128.
// Bitwise OR the rest of the bits into it, preserving the highest bit,
// so we take the lower 75 bits of middle_aligned.1 and mix it in. (See blog for explanation)
let dropped_bits = middle_aligned.1 | (left_aligned.1 & 0x7FF_FFFF_FFFF_FFFF_FFFF);
// Step 5: The msb of the dropped bits has been preserved, and all other bits
// if any were set, would be set somewhere in the other 127 bits.
// If msb of dropped bits is 0, it is mantissa + 0
// If msb of dropped bits is 1, it is mantissa + 0 only if mantissa lowest bit is 0
// and other bits of the dropped bits are all 0.
// (This is why we only care if the other non-msb dropped bits are all 0 or not,
// so we can just OR them to make sure any bits show up somewhere.)
let mantissa =
(mantissa + ((dropped_bits - (dropped_bits >> 127 & !mantissa)) >> 127)) as u64;
// Step 6: Calculate the exponent
// If self is 0, exponent should be 0 (special meaning) and mantissa will end up 0 too
// Otherwise, (255 - n) + 1022 so it simplifies to 1277 - n
// 1023 and 1022 are the cutoffs for the exponent having the msb next to the decimal point
let exponent = if self == Self::ZERO { 0 } else { 1277 - leading_zeroes as u64 };
// Step 7: sign bit is always 0, exponent is shifted into place
// Use addition instead of bitwise OR to saturate the exponent if mantissa overflows
f64::from_bits((exponent << 52) + mantissa)
} }
}
// Target::MAX as a float value. Calculated with U256::to_f64.
// This is validated in the unit tests as well.
const TARGET_MAX_F64: f64 = 2.695953529101131e67;
impl<T: Into<u128>> From<T> for U256 { impl<T: Into<u128>> From<T> for U256 {
fn from(x: T) -> Self { U256(0, x.into()) } fn from(x: T) -> Self { U256(0, x.into()) }
@ -1512,6 +1560,23 @@ mod tests {
assert_eq!(got, want) assert_eq!(got, want)
} }
#[test]
fn target_difficulty_float() {
assert_eq!(Target::MAX.difficulty_float(), 1.0_f64);
assert_eq!(
Target::from_compact(CompactTarget::from_consensus(0x1c00ffff_u32)).difficulty_float(),
256.0_f64
);
assert_eq!(
Target::from_compact(CompactTarget::from_consensus(0x1b00ffff_u32)).difficulty_float(),
65536.0_f64
);
assert_eq!(
Target::from_compact(CompactTarget::from_consensus(0x1a00f3a2_u32)).difficulty_float(),
17628585.065897066_f64
);
}
#[test] #[test]
fn roundtrip_compact_target() { fn roundtrip_compact_target() {
let consensus = 0x1d00_ffff; let consensus = 0x1d00_ffff;
@ -1614,6 +1679,23 @@ mod tests {
#[test] #[test]
#[should_panic] #[should_panic]
fn work_overflowing_subtraction_panics() { let _ = Work(U256::ZERO) - Work(U256::ONE); } fn work_overflowing_subtraction_panics() { let _ = Work(U256::ZERO) - Work(U256::ONE); }
#[test]
fn u256_to_f64() {
// Validate that the Target::MAX value matches the constant also used in difficulty calculation.
assert_eq!(Target::MAX.0.to_f64(), TARGET_MAX_F64);
assert_eq!(U256::ZERO.to_f64(), 0.0_f64);
assert_eq!(U256::ONE.to_f64(), 1.0_f64);
assert_eq!(U256::MAX.to_f64(), 1.157920892373162e77_f64);
assert_eq!((U256::MAX >> 1).to_f64(), 5.78960446186581e76_f64);
assert_eq!((U256::MAX >> 128).to_f64(), 3.402823669209385e38_f64);
assert_eq!((U256::MAX >> (256 - 54)).to_f64(), 1.8014398509481984e16_f64);
// 53 bits and below should not use exponents
assert_eq!((U256::MAX >> (256 - 53)).to_f64(), 9007199254740991.0_f64);
assert_eq!((U256::MAX >> (256 - 32)).to_f64(), 4294967295.0_f64);
assert_eq!((U256::MAX >> (256 - 16)).to_f64(), 65535.0_f64);
assert_eq!((U256::MAX >> (256 - 8)).to_f64(), 255.0_f64);
}
} }
#[cfg(kani)] #[cfg(kani)]