Merge rust-bitcoin/rust-bitcoin#3155: Extension trait for `Script`

0857697665 Replace impl blocks with extension traits (Martin Habovstiak)
b99bdcfdd6 Format `Script` blocks (Martin Habovstiak)
b027edffe7 Wrap `Script` impl blocks in temporary modules (Martin Habovstiak)
5a461545c7 Separate private `Script` methods (Martin Habovstiak)
27adc09e9f Generalize fn params in `define_extension_trait` (Martin Habovstiak)
fcc3cb03f0 Support non-doc attrs in extension trait macro (Martin Habovstiak)
ca1735f24c Separate POD methods (Tobin C. Harding)

Pull request description:

  This moves methods from `Script` to extension traits in steps that should be easy to follow.

  Moving to `primitives` requires doing the same with `ScriptBuf` so I'm holding off until this approach gets concept ACK (or alternatively someone else can do it :))

  Closes #3161

ACKs for top commit:
  tcharding:
    ACK 0857697665
  apoelstra:
    ACK 0857697665 successfully ran local tests

Tree-SHA512: 3768d879e36139cf971c1921d3236141cbe87d707fd4bab7852f6ed8857b7867fa4146dfe720bd54e3d8cc50ecdc93886a10254cf9a82246358253f0312ffb47
This commit is contained in:
merge-script 2024-08-15 17:11:03 +00:00
commit 3119ade372
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1
18 changed files with 537 additions and 475 deletions

View File

@ -1,4 +1,5 @@
use bitcoin::address::script_pubkey::ScriptBufExt as _;
use bitcoin::script::ScriptExt as _;
use bitcoin::{
consensus, ecdsa, sighash, Amount, CompressedPublicKey, Script, ScriptBuf, Transaction,
};

View File

@ -84,6 +84,7 @@ use bitcoin::consensus::encode;
use bitcoin::key::{TapTweak, XOnlyPublicKey};
use bitcoin::opcodes::all::{OP_CHECKSIG, OP_CLTV, OP_DROP};
use bitcoin::psbt::{self, Input, Output, Psbt, PsbtSighashType};
use bitcoin::script::ScriptExt as _;
use bitcoin::secp256k1::Secp256k1;
use bitcoin::sighash::{self, SighashCache, TapSighash, TapSighashType};
use bitcoin::taproot::{self, LeafVersion, TapLeafHash, TaprootBuilder, TaprootSpendInfo};

View File

@ -51,7 +51,8 @@ use crate::prelude::{String, ToOwned};
use crate::script::witness_program::WitnessProgram;
use crate::script::witness_version::WitnessVersion;
use crate::script::{
self, RedeemScriptSizeError, Script, ScriptBuf, ScriptHash, WScriptHash, WitnessScriptSizeError,
self, RedeemScriptSizeError, Script, ScriptBuf, ScriptExt as _, ScriptHash, WScriptHash,
WitnessScriptSizeError,
};
use crate::taproot::TapNodeHash;

View File

@ -13,8 +13,8 @@ use crate::opcodes::all::*;
use crate::script::witness_program::WitnessProgram;
use crate::script::witness_version::WitnessVersion;
use crate::script::{
self, Builder, PushBytes, RedeemScriptSizeError, Script, ScriptBuf, ScriptHash, WScriptHash,
WitnessScriptSizeError,
self, Builder, PushBytes, RedeemScriptSizeError, Script, ScriptBuf, ScriptExt as _, ScriptHash,
WScriptHash, WitnessScriptSizeError,
};
use crate::taproot::TapNodeHash;
@ -22,7 +22,7 @@ define_extension_trait! {
/// Extension functionality to add scriptPubkey support to the [`Builder`] type.
pub trait BuilderExt impl for Builder {
/// Adds instructions to push a public key onto the stack.
fn push_key(self: Self, key: PublicKey) -> Builder {
fn push_key(self, key: PublicKey) -> Builder {
if key.compressed {
self.push_slice(key.inner.serialize())
} else {
@ -31,7 +31,7 @@ define_extension_trait! {
}
/// Adds instructions to push an XOnly public key onto the stack.
fn push_x_only_key(self: Self, x_only_key: XOnlyPublicKey) -> Builder {
fn push_x_only_key(self, x_only_key: XOnlyPublicKey) -> Builder {
self.push_slice(x_only_key.serialize())
}
}
@ -42,14 +42,14 @@ define_extension_trait! {
pub trait ScriptExt impl for Script {
/// Computes the P2WSH output corresponding to this witnessScript (aka the "witness redeem
/// script").
fn to_p2wsh(self: &Self) -> Result<ScriptBuf, WitnessScriptSizeError> {
fn to_p2wsh(&self) -> Result<ScriptBuf, WitnessScriptSizeError> {
self.wscript_hash().map(ScriptBuf::new_p2wsh)
}
/// Computes P2TR output with a given internal key and a single script spending path equal to
/// the current script, assuming that the script is a Tapscript.
fn to_p2tr<C: Verification>(
self: &Self,
&self,
secp: &Secp256k1<C>,
internal_key: UntweakedPublicKey,
) -> ScriptBuf {
@ -59,7 +59,7 @@ define_extension_trait! {
}
/// Computes the P2SH output corresponding to this redeem script.
fn to_p2sh(self: &Self) -> Result<ScriptBuf, RedeemScriptSizeError> {
fn to_p2sh(&self) -> Result<ScriptBuf, RedeemScriptSizeError> {
self.script_hash().map(ScriptBuf::new_p2sh)
}
@ -67,7 +67,7 @@ define_extension_trait! {
/// for a P2WPKH output. The `scriptCode` is described in [BIP143].
///
/// [BIP143]: <https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki>
fn p2wpkh_script_code(self: &Self) -> Option<ScriptBuf> {
fn p2wpkh_script_code(&self) -> Option<ScriptBuf> {
if self.is_p2wpkh() {
// The `self` script is 0x00, 0x14, <pubkey_hash>
let bytes = &self.as_bytes()[2..];
@ -82,14 +82,14 @@ define_extension_trait! {
///
/// You can obtain the public key, if its valid,
/// by calling [`p2pk_public_key()`](Self::p2pk_public_key)
fn is_p2pk(self: &Self) -> bool { self.p2pk_pubkey_bytes().is_some() }
fn is_p2pk(&self) -> bool { self.p2pk_pubkey_bytes().is_some() }
/// Returns the public key if this script is P2PK with a **valid** public key.
///
/// This may return `None` even when [`is_p2pk()`](Self::is_p2pk) returns true.
/// This happens when the public key is invalid (e.g. the point not being on the curve).
/// In this situation the script is unspendable.
fn p2pk_public_key(self: &Self) -> Option<PublicKey> {
fn p2pk_public_key(&self) -> Option<PublicKey> {
PublicKey::from_slice(self.p2pk_pubkey_bytes()?).ok()
}
}
@ -98,7 +98,7 @@ define_extension_trait! {
define_extension_trait! {
pub(crate) trait ScriptExtPrivate impl for Script {
/// Returns the bytes of the (possibly invalid) public key if this script is P2PK.
fn p2pk_pubkey_bytes(self: &Self) -> Option<&[u8]> {
fn p2pk_pubkey_bytes(&self) -> Option<&[u8]> {
match self.len() {
67 if self.as_bytes()[0] == OP_PUSHBYTES_65.to_u8()
&& self.as_bytes()[66] == OP_CHECKSIG.to_u8() =>

View File

@ -49,7 +49,7 @@ use crate::consensus::encode::VarInt;
use crate::consensus::{Decodable, Encodable};
use crate::internal_macros::impl_hashencode;
use crate::prelude::{BTreeSet, Borrow, Vec};
use crate::script::Script;
use crate::script::{Script, ScriptExt as _};
use crate::transaction::OutPoint;
/// Golomb encoding parameter as in BIP-158, see also https://gist.github.com/sipa/576d5f09c3b86c3b1b75598d799fc845

View File

@ -19,8 +19,9 @@ use crate::merkle_tree::{MerkleNode as _, TxMerkleNode, WitnessMerkleNode};
use crate::network::Params;
use crate::pow::{CompactTarget, Target, Work};
use crate::prelude::Vec;
use crate::script::{self, ScriptExt as _};
use crate::transaction::{Transaction, Wtxid};
use crate::{script, VarInt};
use crate::VarInt;
hashes::hash_newtype! {
/// A bitcoin block hash.

View File

@ -110,27 +110,6 @@ impl Script {
#[inline]
pub fn as_mut_bytes(&mut self) -> &mut [u8] { &mut self.0 }
/// Creates a new script builder
pub fn builder() -> Builder { Builder::new() }
/// Returns 160-bit hash of the script for P2SH outputs.
#[inline]
pub fn script_hash(&self) -> Result<ScriptHash, RedeemScriptSizeError> {
ScriptHash::from_script(self)
}
/// Returns 256-bit hash of the script for P2WSH outputs.
#[inline]
pub fn wscript_hash(&self) -> Result<WScriptHash, WitnessScriptSizeError> {
WScriptHash::from_script(self)
}
/// Computes leaf hash of tapscript.
#[inline]
pub fn tapscript_leaf_hash(&self) -> TapLeafHash {
TapLeafHash::from_script(self, LeafVersion::TapScript)
}
/// Returns the length in bytes of the script.
#[inline]
pub fn len(&self) -> usize { self.0.len() }
@ -143,437 +122,6 @@ impl Script {
#[inline]
pub fn to_bytes(&self) -> Vec<u8> { self.0.to_owned() }
/// Returns an iterator over script bytes.
#[inline]
pub fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) }
/// Returns witness version of the script, if any, assuming the script is a `scriptPubkey`.
///
/// # Returns
///
/// The witness version if this script is found to conform to the SegWit rules:
///
/// > A scriptPubKey (or redeemScript as defined in BIP16/P2SH) that consists of a 1-byte
/// > push opcode (for 0 to 16) followed by a data push between 2 and 40 bytes gets a new
/// > special meaning. The value of the first push is called the "version byte". The following
/// > byte vector pushed is called the "witness program".
#[inline]
pub fn witness_version(&self) -> Option<WitnessVersion> {
let script_len = self.0.len();
if !(4..=42).contains(&script_len) {
return None;
}
let ver_opcode = Opcode::from(self.0[0]); // Version 0 or PUSHNUM_1-PUSHNUM_16
let push_opbyte = self.0[1]; // Second byte push opcode 2-40 bytes
if push_opbyte < OP_PUSHBYTES_2.to_u8() || push_opbyte > OP_PUSHBYTES_40.to_u8() {
return None;
}
// Check that the rest of the script has the correct size
if script_len - 2 != push_opbyte as usize {
return None;
}
WitnessVersion::try_from(ver_opcode).ok()
}
/// Checks whether a script pubkey is a P2SH output.
#[inline]
pub fn is_p2sh(&self) -> bool {
self.0.len() == 23
&& self.0[0] == OP_HASH160.to_u8()
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
&& self.0[22] == OP_EQUAL.to_u8()
}
/// Checks whether a script pubkey is a P2PKH output.
#[inline]
pub fn is_p2pkh(&self) -> bool {
self.0.len() == 25
&& self.0[0] == OP_DUP.to_u8()
&& self.0[1] == OP_HASH160.to_u8()
&& self.0[2] == OP_PUSHBYTES_20.to_u8()
&& self.0[23] == OP_EQUALVERIFY.to_u8()
&& self.0[24] == OP_CHECKSIG.to_u8()
}
/// Checks whether a script is push only.
///
/// Note: `OP_RESERVED` (`0x50`) and all the OP_PUSHNUM operations
/// are considered push operations.
#[inline]
pub fn is_push_only(&self) -> bool {
for inst in self.instructions() {
match inst {
Err(_) => return false,
Ok(Instruction::PushBytes(_)) => {}
Ok(Instruction::Op(op)) if op.to_u8() <= 0x60 => {}
// From Bitcoin Core
// if (opcode > OP_PUSHNUM_16 (0x60)) return false
Ok(Instruction::Op(_)) => return false,
}
}
true
}
/// Checks whether a script pubkey is a bare multisig output.
///
/// In a bare multisig pubkey script the keys are not hashed, the script
/// is of the form:
///
/// `2 <pubkey1> <pubkey2> <pubkey3> 3 OP_CHECKMULTISIG`
#[inline]
pub fn is_multisig(&self) -> bool {
let required_sigs;
let mut instructions = self.instructions();
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if let Some(pushnum) = op.decode_pushnum() {
required_sigs = pushnum;
} else {
return false;
}
} else {
return false;
}
let mut num_pubkeys: u8 = 0;
while let Some(Ok(instruction)) = instructions.next() {
match instruction {
Instruction::PushBytes(_) => {
num_pubkeys += 1;
}
Instruction::Op(op) => {
if let Some(pushnum) = op.decode_pushnum() {
if pushnum != num_pubkeys {
return false;
}
}
break;
}
}
}
if required_sigs > num_pubkeys {
return false;
}
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if op != OP_CHECKMULTISIG {
return false;
}
} else {
return false;
}
instructions.next().is_none()
}
/// Checks whether a script pubkey is a Segregated Witness (segwit) program.
#[inline]
pub fn is_witness_program(&self) -> bool { self.witness_version().is_some() }
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
pub fn is_p2wsh(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
pub fn is_p2wpkh(&self) -> bool {
self.0.len() == 22
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
}
/// Checks whether a script pubkey is a P2TR output.
#[inline]
pub fn is_p2tr(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V1)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Check if this is a consensus-valid OP_RETURN output.
///
/// To validate if the OP_RETURN obeys Bitcoin Core's current standardness policy, use
/// [`is_standard_op_return()`](Self::is_standard_op_return) instead.
#[inline]
pub fn is_op_return(&self) -> bool {
match self.0.first() {
Some(b) => *b == OP_RETURN.to_u8(),
None => false,
}
}
/// Check if this is an OP_RETURN that obeys Bitcoin Core standardness policy.
///
/// What this function considers to be standard may change without warning pending Bitcoin Core
/// changes.
#[inline]
pub fn is_standard_op_return(&self) -> bool { self.is_op_return() && self.0.len() <= 80 }
/// Checks whether a script is trivially known to have no satisfying input.
///
/// This method has potentially confusing semantics and an unclear purpose, so it's going to be
/// removed. Use `is_op_return` if you want `OP_RETURN` semantics.
#[deprecated(
since = "0.32.0",
note = "The method has potentially confusing semantics and is going to be removed, you might want `is_op_return`"
)]
#[inline]
pub fn is_provably_unspendable(&self) -> bool {
use crate::opcodes::Class::{IllegalOp, ReturnOp};
match self.0.first() {
Some(b) => {
let first = Opcode::from(*b);
let class = first.classify(opcodes::ClassifyContext::Legacy);
class == ReturnOp || class == IllegalOp
}
None => false,
}
}
/// Get redeemScript following BIP16 rules regarding P2SH spending.
///
/// This does not guarantee that this represents a P2SH input [`Script`].
/// It merely gets the last push of the script.
///
/// Use [`Script::is_p2sh`] on the scriptPubKey to check whether it is actually a P2SH script.
pub fn redeem_script(&self) -> Option<&Script> {
// Script must consist entirely of pushes.
if self.instructions().any(|i| i.is_err() || i.unwrap().push_bytes().is_none()) {
return None;
}
if let Some(Ok(Instruction::PushBytes(b))) = self.instructions().last() {
Some(Script::from_bytes(b.as_bytes()))
} else {
None
}
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on todays Bitcoin network.
#[deprecated(since = "0.32.0", note = "use minimal_non_dust and friends")]
pub fn dust_value(&self) -> crate::Amount { self.minimal_non_dust() }
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function uses the default value of 0.00003 BTC/kB (3 sat/vByte).
///
/// To use a custom value, use [`minimal_non_dust_custom`].
///
/// [`minimal_non_dust_custom`]: Script::minimal_non_dust_custom
pub fn minimal_non_dust(&self) -> crate::Amount {
self.minimal_non_dust_internal(DUST_RELAY_TX_FEE.into())
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function lets you set the fee rate used in dust calculation.
///
/// The current default value in Bitcoin Core (as of v26) is 3 sat/vByte.
///
/// To use the default Bitcoin Core value, use [`minimal_non_dust`].
///
/// [`minimal_non_dust`]: Script::minimal_non_dust
pub fn minimal_non_dust_custom(&self, dust_relay_fee: FeeRate) -> crate::Amount {
self.minimal_non_dust_internal(dust_relay_fee.to_sat_per_kwu() * 4)
}
fn minimal_non_dust_internal(&self, dust_relay_fee: u64) -> crate::Amount {
// This must never be lower than Bitcoin Core's GetDustThreshold() (as of v0.21) as it may
// otherwise allow users to create transactions which likely can never be broadcast/confirmed.
let sats = dust_relay_fee
.checked_mul(if self.is_op_return() {
0
} else if self.is_witness_program() {
32 + 4 + 1 + (107 / 4) + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
} else {
32 + 4 + 1 + 107 + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
})
.expect("dust_relay_fee or script length should not be absurdly large")
/ 1000; // divide by 1000 like in Core to get value as it cancels out DEFAULT_MIN_RELAY_TX_FEE
// Note: We ensure the division happens at the end, since Core performs the division at the end.
// This will make sure none of the implicit floor operations mess with the value.
crate::Amount::from_sat(sats)
}
/// Counts the sigops for this Script using accurate counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "accurate" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for N sigops where N is the number of pubkeys used in the
/// multisig. However, it will count for 20 sigops if CHECKMULTISIG is not preceded by an
/// OP_PUSHNUM from 1 - 16 (this would be an invalid script)
///
/// Bitcoin Core uses accurate counting for sigops contained within redeemScripts (P2SH)
/// and witnessScripts (P2WSH) only. It uses legacy for sigops in scriptSigs and scriptPubkeys.
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
pub fn count_sigops(&self) -> usize { self.count_sigops_internal(true) }
/// Counts the sigops for this Script using legacy counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "legacy" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for 20 sigops.
///
/// Bitcoin Core uses legacy counting for sigops contained within scriptSigs and
/// scriptPubkeys. It uses accurate for redeemScripts (P2SH) and witnessScripts (P2WSH).
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
pub fn count_sigops_legacy(&self) -> usize { self.count_sigops_internal(false) }
fn count_sigops_internal(&self, accurate: bool) -> usize {
let mut n = 0;
let mut pushnum_cache = None;
for inst in self.instructions() {
match inst {
Ok(Instruction::Op(opcode)) => {
match opcode {
// p2pk, p2pkh
OP_CHECKSIG | OP_CHECKSIGVERIFY => {
n += 1;
}
OP_CHECKMULTISIG | OP_CHECKMULTISIGVERIFY => {
match (accurate, pushnum_cache) {
(true, Some(pushnum)) => {
// Add the number of pubkeys in the multisig as sigop count
n += usize::from(pushnum);
}
_ => {
// MAX_PUBKEYS_PER_MULTISIG from Bitcoin Core
// https://github.com/bitcoin/bitcoin/blob/v25.0/src/script/script.h#L29-L30
n += 20;
}
}
}
_ => {
pushnum_cache = opcode.decode_pushnum();
}
}
}
Ok(Instruction::PushBytes(_)) => {
pushnum_cache = None;
}
// In Bitcoin Core it does `if (!GetOp(pc, opcode)) break;`
Err(_) => break,
}
}
n
}
/// Iterates over the script instructions.
///
/// Each returned item is a nested enum covering opcodes, datapushes and errors.
/// At most one error will be returned and then the iterator will end. To instead iterate over
/// the script as sequence of bytes call the [`bytes`](Self::bytes) method.
///
/// To force minimal pushes, use [`instructions_minimal`](Self::instructions_minimal).
#[inline]
pub fn instructions(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: false }
}
/// Iterates over the script instructions while enforcing minimal pushes.
///
/// This is similar to [`instructions`](Self::instructions) but an error is returned if a push
/// is not minimal.
#[inline]
pub fn instructions_minimal(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: true }
}
/// Iterates over the script instructions and their indices.
///
/// Unless the script contains an error, the returned item consists of an index pointing to the
/// position in the script where the instruction begins and the decoded instruction - either an
/// opcode or data push.
///
/// To force minimal pushes, use [`Self::instruction_indices_minimal`].
#[inline]
pub fn instruction_indices(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions())
}
/// Iterates over the script instructions and their indices while enforcing minimal pushes.
///
/// This is similar to [`instruction_indices`](Self::instruction_indices) but an error is
/// returned if a push is not minimal.
#[inline]
pub fn instruction_indices_minimal(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions_minimal())
}
/// Writes the human-readable assembly representation of the script to the formatter.
pub fn fmt_asm(&self, f: &mut dyn fmt::Write) -> fmt::Result {
bytes_to_asm_fmt(self.as_ref(), f)
}
/// Returns the human-readable assembly representation of the script.
pub fn to_asm_string(&self) -> String {
let mut buf = String::new();
self.fmt_asm(&mut buf).unwrap();
buf
}
/// Formats the script as lower-case hex.
///
/// This is a more convenient and performant way to write `format!("{:x}", script)`.
/// For better performance you should generally prefer displaying the script but if `String` is
/// required (this is common in tests) this method can be used.
pub fn to_hex_string(&self) -> String { self.as_bytes().to_lower_hex_string() }
/// Returns the first opcode of the script (if there is any).
pub fn first_opcode(&self) -> Option<Opcode> {
self.as_bytes().first().copied().map(From::from)
}
/// Iterates the script to find the last opcode.
///
/// Returns `None` is the instruction is data push or if the script is empty.
pub(in crate::blockdata::script) fn last_opcode(&self) -> Option<Opcode> {
match self.instructions().last() {
Some(Ok(Instruction::Op(op))) => Some(op),
_ => None,
}
}
/// Iterates the script to find the last pushdata.
///
/// Returns `None` if the instruction is an opcode or if the script is empty.
pub(crate) fn last_pushdata(&self) -> Option<&PushBytes> {
match self.instructions().last() {
// Handles op codes up to (but excluding) OP_PUSHNUM_NEG.
Some(Ok(Instruction::PushBytes(bytes))) => Some(bytes),
// OP_16 (0x60) and lower are considered "pushes" by Bitcoin Core (excl. OP_RESERVED).
// However we are only interested in the pushdata so we can ignore them.
_ => None,
}
}
/// Converts a [`Box<Script>`](Box) into a [`ScriptBuf`] without copying or allocating.
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_script_buf(self: Box<Self>) -> ScriptBuf {
@ -587,6 +135,467 @@ impl Script {
}
}
crate::internal_macros::define_extension_trait! {
/// Extension functionality for the [`Script`] type.
pub trait ScriptExt impl for Script {
/// Returns an iterator over script bytes.
#[inline]
fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) }
/// Creates a new script builder
fn builder() -> Builder { Builder::new() }
/// Returns 160-bit hash of the script for P2SH outputs.
#[inline]
fn script_hash(&self) -> Result<ScriptHash, RedeemScriptSizeError> {
ScriptHash::from_script(self)
}
/// Returns 256-bit hash of the script for P2WSH outputs.
#[inline]
fn wscript_hash(&self) -> Result<WScriptHash, WitnessScriptSizeError> {
WScriptHash::from_script(self)
}
/// Computes leaf hash of tapscript.
#[inline]
fn tapscript_leaf_hash(&self) -> TapLeafHash {
TapLeafHash::from_script(self, LeafVersion::TapScript)
}
/// Returns witness version of the script, if any, assuming the script is a `scriptPubkey`.
///
/// # Returns
///
/// The witness version if this script is found to conform to the SegWit rules:
///
/// > A scriptPubKey (or redeemScript as defined in BIP16/P2SH) that consists of a 1-byte
/// > push opcode (for 0 to 16) followed by a data push between 2 and 40 bytes gets a new
/// > special meaning. The value of the first push is called the "version byte". The following
/// > byte vector pushed is called the "witness program".
#[inline]
fn witness_version(&self) -> Option<WitnessVersion> {
let script_len = self.0.len();
if !(4..=42).contains(&script_len) {
return None;
}
let ver_opcode = Opcode::from(self.0[0]); // Version 0 or PUSHNUM_1-PUSHNUM_16
let push_opbyte = self.0[1]; // Second byte push opcode 2-40 bytes
if push_opbyte < OP_PUSHBYTES_2.to_u8() || push_opbyte > OP_PUSHBYTES_40.to_u8() {
return None;
}
// Check that the rest of the script has the correct size
if script_len - 2 != push_opbyte as usize {
return None;
}
WitnessVersion::try_from(ver_opcode).ok()
}
/// Checks whether a script pubkey is a P2SH output.
#[inline]
fn is_p2sh(&self) -> bool {
self.0.len() == 23
&& self.0[0] == OP_HASH160.to_u8()
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
&& self.0[22] == OP_EQUAL.to_u8()
}
/// Checks whether a script pubkey is a P2PKH output.
#[inline]
fn is_p2pkh(&self) -> bool {
self.0.len() == 25
&& self.0[0] == OP_DUP.to_u8()
&& self.0[1] == OP_HASH160.to_u8()
&& self.0[2] == OP_PUSHBYTES_20.to_u8()
&& self.0[23] == OP_EQUALVERIFY.to_u8()
&& self.0[24] == OP_CHECKSIG.to_u8()
}
/// Checks whether a script is push only.
///
/// Note: `OP_RESERVED` (`0x50`) and all the OP_PUSHNUM operations
/// are considered push operations.
#[inline]
fn is_push_only(&self) -> bool {
for inst in self.instructions() {
match inst {
Err(_) => return false,
Ok(Instruction::PushBytes(_)) => {}
Ok(Instruction::Op(op)) if op.to_u8() <= 0x60 => {}
// From Bitcoin Core
// if (opcode > OP_PUSHNUM_16 (0x60)) return false
Ok(Instruction::Op(_)) => return false,
}
}
true
}
/// Checks whether a script pubkey is a bare multisig output.
///
/// In a bare multisig pubkey script the keys are not hashed, the script
/// is of the form:
///
/// `2 <pubkey1> <pubkey2> <pubkey3> 3 OP_CHECKMULTISIG`
#[inline]
fn is_multisig(&self) -> bool {
let required_sigs;
let mut instructions = self.instructions();
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if let Some(pushnum) = op.decode_pushnum() {
required_sigs = pushnum;
} else {
return false;
}
} else {
return false;
}
let mut num_pubkeys: u8 = 0;
while let Some(Ok(instruction)) = instructions.next() {
match instruction {
Instruction::PushBytes(_) => {
num_pubkeys += 1;
}
Instruction::Op(op) => {
if let Some(pushnum) = op.decode_pushnum() {
if pushnum != num_pubkeys {
return false;
}
}
break;
}
}
}
if required_sigs > num_pubkeys {
return false;
}
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if op != OP_CHECKMULTISIG {
return false;
}
} else {
return false;
}
instructions.next().is_none()
}
/// Checks whether a script pubkey is a Segregated Witness (segwit) program.
#[inline]
fn is_witness_program(&self) -> bool { self.witness_version().is_some() }
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
fn is_p2wsh(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
fn is_p2wpkh(&self) -> bool {
self.0.len() == 22
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
}
/// Checks whether a script pubkey is a P2TR output.
#[inline]
fn is_p2tr(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V1)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Check if this is a consensus-valid OP_RETURN output.
///
/// To validate if the OP_RETURN obeys Bitcoin Core's current standardness policy, use
/// [`is_standard_op_return()`](Self::is_standard_op_return) instead.
#[inline]
fn is_op_return(&self) -> bool {
match self.0.first() {
Some(b) => *b == OP_RETURN.to_u8(),
None => false,
}
}
/// Check if this is an OP_RETURN that obeys Bitcoin Core standardness policy.
///
/// What this function considers to be standard may change without warning pending Bitcoin Core
/// changes.
#[inline]
fn is_standard_op_return(&self) -> bool { self.is_op_return() && self.0.len() <= 80 }
/// Checks whether a script is trivially known to have no satisfying input.
///
/// This method has potentially confusing semantics and an unclear purpose, so it's going to be
/// removed. Use `is_op_return` if you want `OP_RETURN` semantics.
#[deprecated(
since = "0.32.0",
note = "The method has potentially confusing semantics and is going to be removed, you might want `is_op_return`"
)]
#[inline]
fn is_provably_unspendable(&self) -> bool {
use crate::opcodes::Class::{IllegalOp, ReturnOp};
match self.0.first() {
Some(b) => {
let first = Opcode::from(*b);
let class = first.classify(opcodes::ClassifyContext::Legacy);
class == ReturnOp || class == IllegalOp
}
None => false,
}
}
/// Get redeemScript following BIP16 rules regarding P2SH spending.
///
/// This does not guarantee that this represents a P2SH input [`Script`].
/// It merely gets the last push of the script.
///
/// Use [`Script::is_p2sh`] on the scriptPubKey to check whether it is actually a P2SH script.
fn redeem_script(&self) -> Option<&Script> {
// Script must consist entirely of pushes.
if self.instructions().any(|i| i.is_err() || i.unwrap().push_bytes().is_none()) {
return None;
}
if let Some(Ok(Instruction::PushBytes(b))) = self.instructions().last() {
Some(Script::from_bytes(b.as_bytes()))
} else {
None
}
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on todays Bitcoin network.
#[deprecated(since = "0.32.0", note = "use minimal_non_dust and friends")]
fn dust_value(&self) -> crate::Amount { self.minimal_non_dust() }
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function uses the default value of 0.00003 BTC/kB (3 sat/vByte).
///
/// To use a custom value, use [`minimal_non_dust_custom`].
///
/// [`minimal_non_dust_custom`]: Script::minimal_non_dust_custom
fn minimal_non_dust(&self) -> crate::Amount {
self.minimal_non_dust_internal(DUST_RELAY_TX_FEE.into())
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function lets you set the fee rate used in dust calculation.
///
/// The current default value in Bitcoin Core (as of v26) is 3 sat/vByte.
///
/// To use the default Bitcoin Core value, use [`minimal_non_dust`].
///
/// [`minimal_non_dust`]: Script::minimal_non_dust
fn minimal_non_dust_custom(&self, dust_relay_fee: FeeRate) -> crate::Amount {
self.minimal_non_dust_internal(dust_relay_fee.to_sat_per_kwu() * 4)
}
/// Counts the sigops for this Script using accurate counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "accurate" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for N sigops where N is the number of pubkeys used in the
/// multisig. However, it will count for 20 sigops if CHECKMULTISIG is not preceded by an
/// OP_PUSHNUM from 1 - 16 (this would be an invalid script)
///
/// Bitcoin Core uses accurate counting for sigops contained within redeemScripts (P2SH)
/// and witnessScripts (P2WSH) only. It uses legacy for sigops in scriptSigs and scriptPubkeys.
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
fn count_sigops(&self) -> usize { self.count_sigops_internal(true) }
/// Counts the sigops for this Script using legacy counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "legacy" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for 20 sigops.
///
/// Bitcoin Core uses legacy counting for sigops contained within scriptSigs and
/// scriptPubkeys. It uses accurate for redeemScripts (P2SH) and witnessScripts (P2WSH).
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
fn count_sigops_legacy(&self) -> usize { self.count_sigops_internal(false) }
/// Iterates over the script instructions.
///
/// Each returned item is a nested enum covering opcodes, datapushes and errors.
/// At most one error will be returned and then the iterator will end. To instead iterate over
/// the script as sequence of bytes call the [`bytes`](Self::bytes) method.
///
/// To force minimal pushes, use [`instructions_minimal`](Self::instructions_minimal).
#[inline]
fn instructions(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: false }
}
/// Iterates over the script instructions while enforcing minimal pushes.
///
/// This is similar to [`instructions`](Self::instructions) but an error is returned if a push
/// is not minimal.
#[inline]
fn instructions_minimal(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: true }
}
/// Iterates over the script instructions and their indices.
///
/// Unless the script contains an error, the returned item consists of an index pointing to the
/// position in the script where the instruction begins and the decoded instruction - either an
/// opcode or data push.
///
/// To force minimal pushes, use [`Self::instruction_indices_minimal`].
#[inline]
fn instruction_indices(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions())
}
/// Iterates over the script instructions and their indices while enforcing minimal pushes.
///
/// This is similar to [`instruction_indices`](Self::instruction_indices) but an error is
/// returned if a push is not minimal.
#[inline]
fn instruction_indices_minimal(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions_minimal())
}
/// Writes the human-readable assembly representation of the script to the formatter.
fn fmt_asm(&self, f: &mut dyn fmt::Write) -> fmt::Result {
bytes_to_asm_fmt(self.as_ref(), f)
}
/// Returns the human-readable assembly representation of the script.
fn to_asm_string(&self) -> String {
let mut buf = String::new();
self.fmt_asm(&mut buf).unwrap();
buf
}
/// Formats the script as lower-case hex.
///
/// This is a more convenient and performant way to write `format!("{:x}", script)`.
/// For better performance you should generally prefer displaying the script but if `String` is
/// required (this is common in tests) this method can be used.
fn to_hex_string(&self) -> String { self.as_bytes().to_lower_hex_string() }
/// Returns the first opcode of the script (if there is any).
fn first_opcode(&self) -> Option<Opcode> {
self.as_bytes().first().copied().map(From::from)
}
}
}
crate::internal_macros::define_extension_trait! {
pub(crate) trait ScriptExtPriv impl for Script {
fn minimal_non_dust_internal(&self, dust_relay_fee: u64) -> crate::Amount {
// This must never be lower than Bitcoin Core's GetDustThreshold() (as of v0.21) as it may
// otherwise allow users to create transactions which likely can never be broadcast/confirmed.
let sats = dust_relay_fee
.checked_mul(if self.is_op_return() {
0
} else if self.is_witness_program() {
32 + 4 + 1 + (107 / 4) + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
} else {
32 + 4 + 1 + 107 + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
})
.expect("dust_relay_fee or script length should not be absurdly large")
/ 1000; // divide by 1000 like in Core to get value as it cancels out DEFAULT_MIN_RELAY_TX_FEE
// Note: We ensure the division happens at the end, since Core performs the division at the end.
// This will make sure none of the implicit floor operations mess with the value.
crate::Amount::from_sat(sats)
}
fn count_sigops_internal(&self, accurate: bool) -> usize {
let mut n = 0;
let mut pushnum_cache = None;
for inst in self.instructions() {
match inst {
Ok(Instruction::Op(opcode)) => {
match opcode {
// p2pk, p2pkh
OP_CHECKSIG | OP_CHECKSIGVERIFY => {
n += 1;
}
OP_CHECKMULTISIG | OP_CHECKMULTISIGVERIFY => {
match (accurate, pushnum_cache) {
(true, Some(pushnum)) => {
// Add the number of pubkeys in the multisig as sigop count
n += usize::from(pushnum);
}
_ => {
// MAX_PUBKEYS_PER_MULTISIG from Bitcoin Core
// https://github.com/bitcoin/bitcoin/blob/v25.0/src/script/script.h#L29-L30
n += 20;
}
}
}
_ => {
pushnum_cache = opcode.decode_pushnum();
}
}
}
Ok(Instruction::PushBytes(_)) => {
pushnum_cache = None;
}
// In Bitcoin Core it does `if (!GetOp(pc, opcode)) break;`
Err(_) => break,
}
}
n
}
/// Iterates the script to find the last opcode.
///
/// Returns `None` is the instruction is data push or if the script is empty.
fn last_opcode(&self) -> Option<Opcode> {
match self.instructions().last() {
Some(Ok(Instruction::Op(op))) => Some(op),
_ => None,
}
}
/// Iterates the script to find the last pushdata.
///
/// Returns `None` if the instruction is an opcode or if the script is empty.
fn last_pushdata(&self) -> Option<&PushBytes> {
match self.instructions().last() {
// Handles op codes up to (but excluding) OP_PUSHNUM_NEG.
Some(Ok(Instruction::PushBytes(bytes))) => Some(bytes),
// OP_16 (0x60) and lower are considered "pushes" by Bitcoin Core (excl. OP_RESERVED).
// However we are only interested in the pushdata so we can ignore them.
_ => None,
}
}
}
}
/// Iterator over bytes of a script
pub struct Bytes<'a>(core::iter::Copied<core::slice::Iter<'a, u8>>);

View File

@ -7,6 +7,7 @@ use crate::locktime::absolute;
use crate::opcodes::all::*;
use crate::opcodes::{self, Opcode};
use crate::prelude::Vec;
use crate::script::{ScriptExt as _, ScriptExtPriv as _};
use crate::Sequence;
/// An Object which can be used to construct a script piece by piece.

View File

@ -6,7 +6,7 @@ use core::ops::Deref;
use hex::FromHex;
use internals::ToU64 as _;
use super::{opcode_to_verify, Builder, Instruction, PushBytes, Script};
use super::{opcode_to_verify, Builder, Instruction, PushBytes, Script, ScriptExtPriv as _};
use crate::opcodes::all::*;
use crate::opcodes::{self, Opcode};
use crate::prelude::{Box, Vec};

View File

@ -15,6 +15,7 @@ use secp256k1::{Secp256k1, Verification};
use super::witness_version::WitnessVersion;
use super::{PushBytes, Script, WScriptHash, WitnessScriptSizeError};
use crate::crypto::key::{CompressedPublicKey, TapTweak, TweakedPublicKey, UntweakedPublicKey};
use crate::script::ScriptExt as _;
use crate::taproot::TapNodeHash;
/// The minimum byte size of a segregated witness program.

View File

@ -23,7 +23,7 @@ use crate::consensus::{encode, Decodable, Encodable};
use crate::internal_macros::{impl_consensus_encoding, impl_hashencode};
use crate::locktime::absolute::{self, Height, Time};
use crate::prelude::{Borrow, Vec};
use crate::script::{Script, ScriptBuf};
use crate::script::{Script, ScriptBuf, ScriptExt as _, ScriptExtPriv as _};
#[cfg(doc)]
use crate::sighash::{EcdsaSighashType, TapSighashType};
use crate::witness::Witness;

View File

@ -13,6 +13,8 @@ use crate::consensus::encode::{Error, MAX_VEC_SIZE};
use crate::consensus::{Decodable, Encodable, WriteExt};
use crate::crypto::ecdsa;
use crate::prelude::Vec;
#[cfg(doc)]
use crate::script::ScriptExt as _;
use crate::taproot::{self, TAPROOT_ANNEX_PREFIX};
use crate::{Script, VarInt};

View File

@ -131,7 +131,7 @@ define_extension_trait! {
///
/// [`bitcoinconsensus::VERIFY_ALL_PRE_TAPROOT`]: https://docs.rs/bitcoinconsensus/0.106.0+26.0/bitcoinconsensus/constant.VERIFY_ALL_PRE_TAPROOT.html
fn verify(
self: &Self,
&self,
index: usize,
amount: crate::Amount,
spending_tx: &[u8],
@ -150,7 +150,7 @@ define_extension_trait! {
///
/// [`bitcoinconsensus::VERIFY_ALL_PRE_TAPROOT`]: https://docs.rs/bitcoinconsensus/0.106.0+26.0/bitcoinconsensus/constant.VERIFY_ALL_PRE_TAPROOT.html
fn verify_with_flags(
self: &Self,
&self,
index: usize,
amount: crate::Amount,
spending_tx: &[u8],

View File

@ -214,24 +214,65 @@ macro_rules! impl_asref_push_bytes {
}
pub(crate) use impl_asref_push_bytes;
macro_rules! only_doc_attrs {
({}, {$($fun:tt)*}) => {
$($fun)*
};
({#[doc = $($doc:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc = $($doc)*] $($fun)* });
};
({#[doc($($doc:tt)*)] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc($($doc)*)] $($fun)* });
};
({#[$($other:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { $($fun)* });
};
}
pub(crate) use only_doc_attrs;
macro_rules! only_non_doc_attrs {
({}, {$($fun:tt)*}) => {
$($fun)*
};
({#[doc = $($doc:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc = $($doc)*] $($fun)* });
};
({#[doc($($doc:tt)*)] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { $($fun)* });
};
({#[$($other:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => {
$crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[$(other)*] $($fun)* });
};
}
pub(crate) use only_non_doc_attrs;
/// Defines an trait `$trait_name` and implements it for `ty`, used to define extension traits.
macro_rules! define_extension_trait {
($(#[$($trait_attrs:tt)*])* $trait_vis:vis trait $trait_name:ident impl for $ty:ident {
$(
$(#[$($fn_attrs:tt)*])*
fn $fn:ident$(<$($gen:ident: $gent:ident),*>)?($($param_name:ident: $param_type:ty),* $(,)?) $( -> $ret:ty )? $body:block
fn $fn:ident$(<$($gen:ident: $gent:ident),*>)?($($params:tt)*) $( -> $ret:ty )? $body:block
)*
}) => {
$(#[$($trait_attrs)*])* $trait_vis trait $trait_name {
$(
$(#[$($fn_attrs)*])*
fn $fn$(<$($gen: $gent),*>)?($($param_name: $param_type),*) $( -> $ret )?;
$crate::internal_macros::only_doc_attrs! {
{ $(#[$($fn_attrs)*])* },
{
fn $fn$(<$($gen: $gent),*>)?($($params)*) $( -> $ret )?;
}
}
)*
}
impl $trait_name for $ty {
$(
fn $fn$(<$($gen: $gent),*>)?($($param_name: $param_type),*) $( -> $ret )? $body
$crate::internal_macros::only_non_doc_attrs! {
{ $(#[$($fn_attrs)*])* },
{
fn $fn$(<$($gen: $gent),*>)?($($params)*) $( -> $ret )? $body
}
}
)*
}
};

View File

@ -25,6 +25,7 @@ use crate::crypto::key::{PrivateKey, PublicKey};
use crate::crypto::{ecdsa, taproot};
use crate::key::{TapTweak, XOnlyPublicKey};
use crate::prelude::{btree_map, BTreeMap, BTreeSet, Borrow, Box, Vec};
use crate::script::ScriptExt as _;
use crate::sighash::{self, EcdsaSighashType, Prevouts, SighashCache};
use crate::transaction::{self, Transaction, TxOut};
use crate::{Amount, FeeRate, TapLeafHash, TapSighashType};

View File

@ -7,6 +7,7 @@ use bitcoin::bip32::{DerivationPath, Fingerprint};
use bitcoin::consensus::encode::serialize_hex;
use bitcoin::opcodes::all::OP_CHECKSIG;
use bitcoin::psbt::{GetKey, Input, KeyRequest, PsbtSighashType, SignError};
use bitcoin::script::ScriptExt as _;
use bitcoin::taproot::{LeafVersion, TaprootBuilder, TaprootSpendInfo};
use bitcoin::transaction::Version;
use bitcoin::{

View File

@ -1,6 +1,7 @@
use bitcoin::address::Address;
use bitcoin::consensus::encode;
use bitcoin::{script, Network};
use bitcoin::script::{self, ScriptExt as _};
use bitcoin::Network;
use honggfuzz::fuzz;
fn do_test(data: &[u8]) {

View File

@ -1,5 +1,6 @@
use std::fmt;
use bitcoin::script::ScriptExt as _;
use honggfuzz::fuzz;
// faster than String, we don't need to actually produce the value, just check absence of panics