Merge pull request #183 from dongcarl/2018-9-pubkey-wrapper

Ready for Review: Introduce util::key and deprecate util::privkey
This commit is contained in:
Andrew Poelstra 2019-02-11 21:21:32 +00:00 committed by GitHub
commit 8ae4aee0d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 113 additions and 122 deletions

View File

@ -42,6 +42,7 @@ use hex::encode as hex_encode;
use bitcoin_bech32;
use bitcoin_hashes::{sha256d, Hash as HashTrait};
use secp256k1;
use util::base58;
@ -56,6 +57,8 @@ pub enum Error {
Bech32(bitcoin_bech32::Error),
/// Error from the `byteorder` crate
ByteOrder(io::Error),
/// secp-related error
Secp256k1(secp256k1::Error),
/// Network magic was not expected
UnexpectedNetworkMagic {
/// The expected network magic
@ -98,6 +101,7 @@ impl fmt::Display for Error {
Error::Base58(ref e) => fmt::Display::fmt(e, f),
Error::Bech32(ref e) => fmt::Display::fmt(e, f),
Error::ByteOrder(ref e) => fmt::Display::fmt(e, f),
Error::Secp256k1(ref e) => fmt::Display::fmt(e, f),
Error::UnexpectedNetworkMagic { expected: ref e, actual: ref a } => write!(f, "{}: expected {}, actual {}", error::Error::description(self), e, a),
Error::OversizedVectorAllocation { requested: ref r, max: ref m } => write!(f, "{}: requested {}, maximum {}", error::Error::description(self), r, m),
Error::InvalidChecksum { expected: ref e, actual: ref a } => write!(f, "{}: expected {}, actual {}", error::Error::description(self), hex_encode(e), hex_encode(a)),
@ -118,6 +122,7 @@ impl error::Error for Error {
Error::Base58(ref e) => Some(e),
Error::Bech32(ref e) => Some(e),
Error::ByteOrder(ref e) => Some(e),
Error::Secp256k1(ref e) => Some(e),
Error::UnexpectedNetworkMagic { .. }
| Error::OversizedVectorAllocation { .. }
| Error::InvalidChecksum { .. }
@ -136,6 +141,7 @@ impl error::Error for Error {
Error::Base58(ref e) => e.description(),
Error::Bech32(ref e) => e.description(),
Error::ByteOrder(ref e) => e.description(),
Error::Secp256k1(ref e) => e.description(),
Error::UnexpectedNetworkMagic { .. } => "unexpected network magic",
Error::OversizedVectorAllocation { .. } => "allocation of oversized vector requested",
Error::InvalidChecksum { .. } => "invalid checksum",
@ -163,6 +169,12 @@ impl From<bitcoin_bech32::Error> for Error {
}
}
#[doc(hidden)]
impl From<secp256k1::Error> for Error {
fn from(e: secp256k1::Error) -> Error {
Error::Secp256k1(e)
}
}
#[doc(hidden)]
impl From<io::Error> for Error {

View File

@ -76,6 +76,7 @@ pub use network::constants::Network;
pub use util::Error;
pub use util::address::Address;
pub use util::hash::BitcoinHash;
pub use util::privkey::Privkey;
pub use util::key::PrivateKey;
pub use util::key::PublicKey;
pub use util::decimal::Decimal;
pub use util::decimal::UDecimal;

View File

@ -24,13 +24,17 @@
//!
//! use bitcoin::network::constants::Network;
//! use bitcoin::util::address::Address;
//! use bitcoin::util::key;
//! use secp256k1::Secp256k1;
//! use rand::thread_rng;
//!
//! fn main() {
//! // Generate random key pair
//! let s = Secp256k1::new();
//! let (_, public_key) = s.generate_keypair(&mut thread_rng());
//! let public_key = key::PublicKey {
//! compressed: true,
//! key: s.generate_keypair(&mut thread_rng()).1,
//! };
//!
//! // Generate pay-to-pubkey-hash address
//! let address = Address::p2pkh(&public_key, Network::Bitcoin);
@ -42,7 +46,6 @@ use std::str::FromStr;
use bitcoin_bech32::{self, WitnessProgram, u5};
use bitcoin_hashes::{hash160, Hash};
use secp256k1::key::PublicKey;
#[cfg(feature = "serde")]
use serde;
@ -52,6 +55,7 @@ use blockdata::script;
use network::constants::Network;
use consensus::encode;
use util::base58;
use util::key;
/// The method used to produce an address
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
@ -70,28 +74,20 @@ pub struct Address {
/// The type of the address
pub payload: Payload,
/// The network on which this address is usable
pub network: Network
pub network: Network,
}
impl Address {
/// Creates a pay to (compressed) public key hash address from a public key
/// This is the preferred non-witness type address
#[inline]
pub fn p2pkh(pk: &PublicKey, network: Network) -> Address {
Address {
network: network,
payload: Payload::PubkeyHash(hash160::Hash::hash(&pk.serialize()[..]))
}
}
pub fn p2pkh(pk: &key::PublicKey, network: Network) -> Address {
let mut hash_engine = hash160::Hash::engine();
pk.write_into(&mut hash_engine);
/// Creates a pay to uncompressed public key hash address from a public key
/// This address type is discouraged as it uses more space but otherwise equivalent to p2pkh
/// therefore only adds ambiguity
#[inline]
pub fn p2upkh(pk: &PublicKey, network: Network) -> Address {
Address {
network: network,
payload: Payload::PubkeyHash(hash160::Hash::hash(&pk.serialize_uncompressed()[..]))
payload: Payload::PubkeyHash(hash160::Hash::from_engine(hash_engine))
}
}
@ -107,23 +103,30 @@ impl Address {
/// Create a witness pay to public key address from a public key
/// This is the native segwit address type for an output redeemable with a single signature
pub fn p2wpkh (pk: &PublicKey, network: Network) -> Address {
pub fn p2wpkh (pk: &key::PublicKey, network: Network) -> Address {
let mut hash_engine = hash160::Hash::engine();
pk.write_into(&mut hash_engine);
Address {
network: network,
payload: Payload::WitnessProgram(
// unwrap is safe as witness program is known to be correct as above
WitnessProgram::new(u5::try_from_u8(0).expect("0<32"),
hash160::Hash::hash(&pk.serialize()[..])[..].to_vec(),
hash160::Hash::from_engine(hash_engine)[..].to_vec(),
Address::bech_network(network)).unwrap())
}
}
/// Create a pay to script address that embeds a witness pay to public key
/// This is a segwit address type that looks familiar (as p2sh) to legacy clients
pub fn p2shwpkh (pk: &PublicKey, network: Network) -> Address {
pub fn p2shwpkh (pk: &key::PublicKey, network: Network) -> Address {
let mut hash_engine = hash160::Hash::engine();
pk.write_into(&mut hash_engine);
let builder = script::Builder::new()
.push_int(0)
.push_slice(&hash160::Hash::hash(&pk.serialize()[..])[..]);
.push_slice(&hash160::Hash::from_engine(hash_engine)[..]);
Address {
network: network,
payload: Payload::ScriptHash(
@ -146,7 +149,7 @@ impl Address {
sha256::Hash::hash(&script[..])[..].to_vec(),
Address::bech_network(network)
).unwrap()
)
),
}
}
@ -252,7 +255,7 @@ impl FromStr for Address {
}
return Ok(Address {
network: network,
payload: Payload::WitnessProgram(witprog)
payload: Payload::WitnessProgram(witprog),
});
}
@ -359,11 +362,12 @@ mod tests {
use std::string::ToString;
use bitcoin_hashes::{hash160, Hash};
use secp256k1::key::PublicKey;
use hex::decode as hex_decode;
use blockdata::script::Script;
use network::constants::Network::{Bitcoin, Testnet, Regtest};
use util::key::PublicKey;
use super::*;
macro_rules! hex (($hex:expr) => (hex_decode($hex).unwrap()));
@ -388,7 +392,7 @@ mod tests {
#[test]
fn test_p2pkh_from_key() {
let key = hex_key!("048d5141948c1702e8c95f438815794b87f706a8d4cd2bffad1dc1570971032c9b6042a0431ded2478b5c9cf2d81c124a5e57347a3c63ef0e7716cf54d613ba183");
let addr = Address::p2upkh(&key, Bitcoin);
let addr = Address::p2pkh(&key, Bitcoin);
assert_eq!(&addr.to_string(), "1QJVDzdqb1VpbDK7uDeyVXy9mR27CJiyhY");
let key = hex_key!(&"03df154ebfcf29d29cc10d5c2565018bce2d9edbab267c31d2caf44a63056cf99f");

View File

@ -107,8 +107,8 @@ mod tests {
use network::constants::Network;
use util::misc::hex_bytes;
use util::address::Address;
use util::key::PublicKey;
use hex;
use secp256k1::PublicKey;
use super::*;

View File

@ -11,86 +11,77 @@
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Private key
//! Bitcoin Keys
//!
//! A private key represents the secret data associated with its proposed use
//! Keys used in Bitcoin that can be roundtrip (de)serialized.
//!
use std::fmt::{self, Write};
use std::io;
use std::str::FromStr;
use secp256k1::{self, Secp256k1};
use secp256k1::key::{PublicKey, SecretKey};
use util::address::Address;
use consensus::encode;
use network::constants::Network;
use util::base58;
/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
/// Whether this public key should be serialized as compressed
pub compressed: bool,
/// The actual ECDSA key
pub key: secp256k1::PublicKey,
}
impl PublicKey {
/// Write the public key into a writer
pub fn write_into<W: io::Write>(&self, writer: &mut W) {
let write_res: io::Result<()> = if self.compressed {
writer.write_all(&self.key.serialize())
} else {
writer.write_all(&self.key.serialize_uncompressed())
};
debug_assert!(write_res.is_ok());
}
/// Deserialize a public key from a slice
pub fn from_slice(data: &[u8]) -> Result<PublicKey, encode::Error> {
let compressed: bool = match data.len() {
33 => true,
65 => false,
len => { return Err(base58::Error::InvalidLength(len).into()); },
};
Ok(PublicKey {
compressed: compressed,
key: secp256k1::PublicKey::from_slice(data)?,
})
}
/// Computes the public key as supposed to be used with this secret
pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
sk.public_key(secp)
}
}
#[derive(Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct Privkey {
/// Whether this private key represents a compressed address
pub struct PrivateKey {
/// Whether this private key should be serialized as compressed
pub compressed: bool,
/// The network on which this key should be used
pub network: Network,
/// The actual ECDSA key
pub key: SecretKey
pub key: secp256k1::SecretKey,
}
impl Privkey {
/// Creates a `Privkey` from a raw secp256k1 secret key
#[inline]
pub fn from_secret_key(key: SecretKey, compressed: bool, network: Network) -> Privkey {
Privkey {
compressed: compressed,
network: network,
key: key,
}
}
/// Computes the public key as supposed to be used with this secret
impl PrivateKey {
/// Creates a public key from this private key
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey::from_secret_key(secp, &self.key)
}
/// Converts a private key to a segwit address
#[inline]
pub fn to_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
Address::p2wpkh(&self.public_key(secp), self.network)
}
/// Converts a private key to a legacy (non-segwit) address
#[inline]
pub fn to_legacy_address<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> Address {
if self.compressed {
Address::p2pkh(&self.public_key(secp), self.network)
PublicKey {
compressed: self.compressed,
key: secp256k1::PublicKey::from_secret_key(secp, &self.key)
}
else {
Address::p2upkh(&self.public_key(secp), self.network)
}
}
/// Accessor for the underlying secp key
#[inline]
pub fn secret_key(&self) -> &SecretKey {
&self.key
}
/// Accessor for the underlying secp key that consumes the privkey
#[inline]
pub fn into_secret_key(self) -> SecretKey {
self.key
}
/// Accessor for the network type
#[inline]
pub fn network(&self) -> Network {
self.network
}
/// Accessor for the compressed flag
#[inline]
pub fn is_compressed(&self) -> bool {
self.compressed
}
/// Format the private key to WIF format.
@ -111,7 +102,6 @@ impl Privkey {
}
/// Get WIF encoding of this private key.
#[inline]
pub fn to_wif(&self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
@ -120,7 +110,7 @@ impl Privkey {
}
/// Parse WIF encoded private key.
pub fn from_wif(wif: &str) -> Result<Privkey, encode::Error> {
pub fn from_wif(wif: &str) -> Result<PrivateKey, encode::Error> {
let data = base58::from_check(wif)?;
let compressed = match data.len() {
@ -135,70 +125,68 @@ impl Privkey {
x => { return Err(encode::Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
};
let key = SecretKey::from_slice(&data[1..33])
.map_err(|_| base58::Error::Other("Secret key out of range".to_owned()))?;
Ok(Privkey {
Ok(PrivateKey {
compressed: compressed,
network: network,
key: key
key: secp256k1::SecretKey::from_slice(&data[1..33])?,
})
}
}
impl fmt::Display for Privkey {
impl fmt::Display for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_wif(f)
}
}
impl fmt::Debug for Privkey {
impl fmt::Debug for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[private key data]")
}
}
impl FromStr for Privkey {
impl FromStr for PrivateKey {
type Err = encode::Error;
fn from_str(s: &str) -> Result<Privkey, encode::Error> {
Privkey::from_wif(s)
fn from_str(s: &str) -> Result<PrivateKey, encode::Error> {
PrivateKey::from_wif(s)
}
}
#[cfg(test)]
mod tests {
use super::Privkey;
use super::PrivateKey;
use secp256k1::Secp256k1;
use std::str::FromStr;
use network::constants::Network::Testnet;
use network::constants::Network::Bitcoin;
use util::address::Address;
#[test]
fn test_key_derivation() {
// testnet compressed
let sk = Privkey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network(), Testnet);
assert_eq!(sk.is_compressed(), true);
let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network, Testnet);
assert_eq!(sk.compressed, true);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = sk.to_legacy_address(&secp);
let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
// test string conversion
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
Privkey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
// mainnet uncompressed
let sk = Privkey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network(), Bitcoin);
assert_eq!(sk.is_compressed(), false);
let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network, Bitcoin);
assert_eq!(sk.compressed, false);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let pk = sk.to_legacy_address(&secp);
let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
}
}

View File

@ -16,7 +16,7 @@
//!
//! Functions needed by all parts of the Bitcoin library
pub mod privkey;
pub mod key;
pub mod address;
pub mod base58;
pub mod bip32;
@ -29,8 +29,6 @@ pub mod uint;
use std::{error, fmt};
use secp256k1;
use network;
use consensus::encode;
@ -59,8 +57,6 @@ pub trait BitArray {
/// if appropriate.
#[derive(Debug)]
pub enum Error {
/// secp-related error
Secp256k1(secp256k1::Error),
/// Encoding error
Encode(encode::Error),
/// Network error
@ -74,7 +70,6 @@ pub enum Error {
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Secp256k1(ref e) => fmt::Display::fmt(e, f),
Error::Encode(ref e) => fmt::Display::fmt(e, f),
Error::Network(ref e) => fmt::Display::fmt(e, f),
Error::SpvBadProofOfWork | Error::SpvBadTarget => f.write_str(error::Error::description(self)),
@ -85,7 +80,6 @@ impl fmt::Display for Error {
impl error::Error for Error {
fn cause(&self) -> Option<&error::Error> {
match *self {
Error::Secp256k1(ref e) => Some(e),
Error::Encode(ref e) => Some(e),
Error::Network(ref e) => Some(e),
Error::SpvBadProofOfWork | Error::SpvBadTarget => None
@ -94,7 +88,6 @@ impl error::Error for Error {
fn description(&self) -> &str {
match *self {
Error::Secp256k1(ref e) => e.description(),
Error::Encode(ref e) => e.description(),
Error::Network(ref e) => e.description(),
Error::SpvBadProofOfWork => "target correct but not attained",
@ -103,13 +96,6 @@ impl error::Error for Error {
}
}
#[doc(hidden)]
impl From<secp256k1::Error> for Error {
fn from(e: secp256k1::Error) -> Error {
Error::Secp256k1(e)
}
}
#[doc(hidden)]
impl From<encode::Error> for Error {
fn from(e: encode::Error) -> Error {