merkle_tree: introduce MerkleNode trait to better-type merkle tree calculation

This commit is contained in:
Andrew Poelstra 2024-06-13 14:34:06 +00:00
parent 04353901ba
commit 8d5cb014ce
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1
3 changed files with 57 additions and 45 deletions

View File

@ -280,8 +280,8 @@ impl Block {
/// Computes the transaction merkle root.
pub fn compute_merkle_root(&self) -> Option<TxMerkleNode> {
let hashes = self.txdata.iter().map(|obj| obj.compute_txid().to_raw_hash());
merkle_tree::calculate_root(hashes).map(|h| h.into())
let hashes = self.txdata.iter().map(|obj| obj.compute_txid());
merkle_tree::calculate_root(hashes)
}
/// Computes the witness commitment for the block's transaction list.
@ -300,12 +300,12 @@ impl Block {
let hashes = self.txdata.iter().enumerate().map(|(i, t)| {
if i == 0 {
// Replace the first hash with zeroes.
Wtxid::all_zeros().to_raw_hash()
Wtxid::all_zeros()
} else {
t.compute_wtxid().to_raw_hash()
t.compute_wtxid()
}
});
merkle_tree::calculate_root(hashes).map(|h| h.into())
merkle_tree::calculate_root(hashes)
}
/// Returns the weight of the block.

View File

@ -563,9 +563,9 @@ mod tests {
.collect::<Vec<_>>();
// Calculate the merkle root and height
let hashes = tx_ids.iter().map(|t| t.to_raw_hash());
let hashes = tx_ids.iter().copied();
let merkle_root_1: TxMerkleNode =
merkle_tree::calculate_root(hashes).expect("hashes is not empty").into();
merkle_tree::calculate_root(hashes).expect("hashes is not empty");
let mut height = 1;
let mut ntx = tx_count;
while ntx > 1 {

View File

@ -6,11 +6,12 @@
//!
//! ```
//! # use bitcoin::{merkle_tree, Txid};
//! # use bitcoin::merkle_tree::TxMerkleNode;
//! # use bitcoin::hashes::Hash;
//! # let tx1 = Txid::all_zeros(); // Dummy hash values.
//! # let tx2 = Txid::all_zeros();
//! let tx_hashes = vec![tx1, tx2]; // All the hashes we wish to merkelize.
//! let root = merkle_tree::calculate_root(tx_hashes.into_iter());
//! let root: Option<TxMerkleNode> = merkle_tree::calculate_root(tx_hashes.into_iter());
//! ```
mod block;
@ -18,10 +19,8 @@ mod block;
use core::cmp::min;
use core::iter;
use hashes::{sha256d, Hash};
use io::Write;
use hashes::{sha256d, HashEngine as _};
use crate::consensus::encode::Encodable;
use crate::internal_macros::impl_hashencode;
use crate::prelude::*;
use crate::{Txid, Wtxid};
@ -39,12 +38,42 @@ hashes::hash_newtype! {
impl_hashencode!(TxMerkleNode);
impl_hashencode!(WitnessMerkleNode);
impl From<Txid> for TxMerkleNode {
fn from(txid: Txid) -> Self { Self::from_byte_array(txid.to_byte_array()) }
/// A node in a Merkle tree of transactions or witness data within a block.
pub trait MerkleNode: Copy {
/// The hash (TXID or WTXID) of a transaciton in the tree.
type Leaf;
/// Convert a hash to a leaf node of the tree.
fn from_leaf(leaf: Self::Leaf) -> Self;
/// Combine two nodes to get a single node. The final node of a tree is called the "root".
fn combine(&self, other: &Self) -> Self;
}
impl From<Wtxid> for WitnessMerkleNode {
fn from(wtxid: Wtxid) -> Self { Self::from_byte_array(wtxid.to_byte_array()) }
// These two impl blocks are identical. FIXME once we have nailed down
// our hash traits, it should be possible to put bounds on `MerkleNode`
// and `MerkleNode::Leaf` which are sufficient to turn both methods into
// provided methods in the trait definition.
impl MerkleNode for TxMerkleNode {
type Leaf = Txid;
fn from_leaf(leaf: Self::Leaf) -> Self { Self::from_byte_array(leaf.to_byte_array()) }
fn combine(&self, other: &Self) -> Self {
let mut encoder = sha256d::Hash::engine();
encoder.input(self.as_byte_array());
encoder.input(other.as_byte_array());
Self(sha256d::Hash::from_engine(encoder))
}
}
impl MerkleNode for WitnessMerkleNode {
type Leaf = Wtxid;
fn from_leaf(leaf: Self::Leaf) -> Self { Self::from_byte_array(leaf.to_byte_array()) }
fn combine(&self, other: &Self) -> Self {
let mut encoder = sha256d::Hash::engine();
encoder.input(self.as_byte_array());
encoder.input(other.as_byte_array());
Self(sha256d::Hash::from_engine(encoder))
}
}
/// Calculates the merkle root of a list of *hashes*, inline (in place) in `hashes`.
@ -58,11 +87,7 @@ impl From<Wtxid> for WitnessMerkleNode {
/// - `None` if `hashes` is empty. The merkle root of an empty tree of hashes is undefined.
/// - `Some(hash)` if `hashes` contains one element. A single hash is by definition the merkle root.
/// - `Some(merkle_root)` if length of `hashes` is greater than one.
pub fn calculate_root_inline<T>(hashes: &mut [T]) -> Option<T>
where
T: Hash + Encodable,
<T as Hash>::Engine: Write,
{
pub fn calculate_root_inline<T: MerkleNode>(hashes: &mut [T]) -> Option<T> {
match hashes.len() {
0 => None,
1 => Some(hashes[0]),
@ -79,14 +104,13 @@ where
/// - `Some(merkle_root)` if length of `hashes` is greater than one.
pub fn calculate_root<T, I>(mut hashes: I) -> Option<T>
where
T: Hash + Encodable,
<T as Hash>::Engine: Write,
I: Iterator<Item = T>,
T: MerkleNode,
I: Iterator<Item = T::Leaf>,
{
let first = hashes.next()?;
let first: T::Leaf = hashes.next()?;
let second = match hashes.next() {
Some(second) => second,
None => return Some(first),
None => return Some(T::from_leaf(first)),
};
let mut hashes = iter::once(first).chain(iter::once(second)).chain(hashes);
@ -96,24 +120,17 @@ where
let (min, max) = hashes.size_hint();
let mut alloc = Vec::with_capacity(max.unwrap_or(min) / 2 + 1);
while let Some(hash1) = hashes.next() {
while let Some(hash1) = hashes.next().map(T::from_leaf) {
// If the size is odd, use the last element twice.
let hash2 = hashes.next().unwrap_or(hash1);
let mut encoder = T::engine();
hash1.consensus_encode(&mut encoder).expect("in-memory writers don't error");
hash2.consensus_encode(&mut encoder).expect("in-memory writers don't error");
alloc.push(T::from_engine(encoder));
let hash2 = hashes.next().map(T::from_leaf).unwrap_or(hash1);
alloc.push(hash1.combine(&hash2));
}
Some(merkle_root_r(&mut alloc))
}
// `hashes` must contain at least one hash.
fn merkle_root_r<T>(hashes: &mut [T]) -> T
where
T: Hash + Encodable,
<T as Hash>::Engine: Write,
{
fn merkle_root_r<T: MerkleNode>(hashes: &mut [T]) -> T {
if hashes.len() == 1 {
return hashes[0];
}
@ -121,10 +138,7 @@ where
for idx in 0..((hashes.len() + 1) / 2) {
let idx1 = 2 * idx;
let idx2 = min(idx1 + 1, hashes.len() - 1);
let mut encoder = T::engine();
hashes[idx1].consensus_encode(&mut encoder).expect("in-memory writers don't error");
hashes[idx2].consensus_encode(&mut encoder).expect("in-memory writers don't error");
hashes[idx] = T::from_engine(encoder);
hashes[idx] = hashes[idx1].combine(&hashes[idx2]);
}
let half_len = hashes.len() / 2 + hashes.len() % 2;
@ -133,8 +147,6 @@ where
#[cfg(test)]
mod tests {
use hashes::sha256d;
use super::*;
use crate::blockdata::block::Block;
use crate::consensus::encode::deserialize;
@ -146,11 +158,11 @@ mod tests {
let block: Block = deserialize(&segwit_block[..]).expect("Failed to deserialize block");
assert!(block.check_merkle_root()); // Sanity check.
let hashes_iter = block.txdata.iter().map(|obj| obj.compute_txid().to_raw_hash());
let hashes_iter = block.txdata.iter().map(|obj| obj.compute_txid());
let mut hashes_array = [sha256d::Hash::all_zeros(); 15];
let mut hashes_array = [TxMerkleNode::all_zeros(); 15];
for (i, hash) in hashes_iter.clone().enumerate() {
hashes_array[i] = hash;
hashes_array[i] = TxMerkleNode::from_leaf(hash);
}
let from_iter = calculate_root(hashes_iter);