Moving keys under `util::ecdsa`, re-exporting them at `util::key`

This is the first step in introducing Schnorr key support as per #588
This commit is contained in:
Dr Maxim Orlovsky 2021-04-12 13:19:42 +02:00
parent dc0e2b0a52
commit b17d7fc31c
No known key found for this signature in database
GPG Key ID: FFC0250947E5C6F7
14 changed files with 538 additions and 511 deletions

View File

@ -4,7 +4,7 @@ use std::{env, process};
use std::str::FromStr; use std::str::FromStr;
use bitcoin::secp256k1::Secp256k1; use bitcoin::secp256k1::Secp256k1;
use bitcoin::util::key::PrivateKey; use bitcoin::util::ecdsa::PrivateKey;
use bitcoin::util::bip32::ExtendedPrivKey; use bitcoin::util::bip32::ExtendedPrivKey;
use bitcoin::util::bip32::ExtendedPubKey; use bitcoin::util::bip32::ExtendedPubKey;
use bitcoin::util::bip32::DerivationPath; use bitcoin::util::bip32::DerivationPath;

View File

@ -37,7 +37,7 @@ use hashes::{Hash, hex};
#[cfg(feature="bitcoinconsensus")] use std::convert; #[cfg(feature="bitcoinconsensus")] use std::convert;
#[cfg(feature="bitcoinconsensus")] use OutPoint; #[cfg(feature="bitcoinconsensus")] use OutPoint;
use util::key::PublicKey; use util::ecdsa::PublicKey;
#[derive(Clone, Default, PartialOrd, Ord, PartialEq, Eq, Hash)] #[derive(Clone, Default, PartialOrd, Ord, PartialEq, Eq, Hash)]
/// A Bitcoin script /// A Bitcoin script
@ -889,7 +889,7 @@ mod test {
use hashes::hex::{FromHex, ToHex}; use hashes::hex::{FromHex, ToHex};
use consensus::encode::{deserialize, serialize}; use consensus::encode::{deserialize, serialize};
use blockdata::opcodes; use blockdata::opcodes;
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::psbt::serialize::Serialize; use util::psbt::serialize::Serialize;
#[test] #[test]

View File

@ -85,8 +85,8 @@ pub use util::address::AddressType;
pub use util::amount::Amount; pub use util::amount::Amount;
pub use util::amount::Denomination; pub use util::amount::Denomination;
pub use util::amount::SignedAmount; pub use util::amount::SignedAmount;
pub use util::key::PrivateKey; pub use util::ecdsa::PrivateKey;
pub use util::key::PublicKey; pub use util::ecdsa::PublicKey;
pub use util::merkleblock::MerkleBlock; pub use util::merkleblock::MerkleBlock;
#[cfg(all(test, feature = "unstable"))] use tests::EmptyWrite; #[cfg(all(test, feature = "unstable"))] use tests::EmptyWrite;

View File

@ -21,13 +21,13 @@
//! //!
//! use bitcoin::network::constants::Network; //! use bitcoin::network::constants::Network;
//! use bitcoin::util::address::Address; //! use bitcoin::util::address::Address;
//! use bitcoin::util::key; //! use bitcoin::util::ecdsa;
//! use bitcoin::secp256k1::Secp256k1; //! use bitcoin::secp256k1::Secp256k1;
//! use bitcoin::secp256k1::rand::thread_rng; //! use bitcoin::secp256k1::rand::thread_rng;
//! //!
//! // Generate random key pair //! // Generate random key pair
//! let s = Secp256k1::new(); //! let s = Secp256k1::new();
//! let public_key = key::PublicKey { //! let public_key = ecdsa::PublicKey {
//! compressed: true, //! compressed: true,
//! key: s.generate_keypair(&mut thread_rng()).1, //! key: s.generate_keypair(&mut thread_rng()).1,
//! }; //! };
@ -46,7 +46,7 @@ use hash_types::{PubkeyHash, WPubkeyHash, ScriptHash, WScriptHash};
use blockdata::script; use blockdata::script;
use network::constants::Network; use network::constants::Network;
use util::base58; use util::base58;
use util::key; use util::ecdsa;
/// Address error. /// Address error.
#[derive(Debug, PartialEq)] #[derive(Debug, PartialEq)]
@ -220,7 +220,7 @@ impl Address {
/// Creates a pay to (compressed) public key hash address from a public key /// Creates a pay to (compressed) public key hash address from a public key
/// This is the preferred non-witness type address /// This is the preferred non-witness type address
#[inline] #[inline]
pub fn p2pkh(pk: &key::PublicKey, network: Network) -> Address { pub fn p2pkh(pk: &ecdsa::PublicKey, network: Network) -> Address {
let mut hash_engine = PubkeyHash::engine(); let mut hash_engine = PubkeyHash::engine();
pk.write_into(&mut hash_engine).expect("engines don't error"); pk.write_into(&mut hash_engine).expect("engines don't error");
@ -244,7 +244,7 @@ impl Address {
/// This is the native segwit address type for an output redeemable with a single signature /// This is the native segwit address type for an output redeemable with a single signature
/// ///
/// Will only return an Error when an uncompressed public key is provided. /// Will only return an Error when an uncompressed public key is provided.
pub fn p2wpkh(pk: &key::PublicKey, network: Network) -> Result<Address, Error> { pub fn p2wpkh(pk: &ecdsa::PublicKey, network: Network) -> Result<Address, Error> {
if !pk.compressed { if !pk.compressed {
return Err(Error::UncompressedPubkey); return Err(Error::UncompressedPubkey);
} }
@ -265,7 +265,7 @@ impl Address {
/// This is a segwit address type that looks familiar (as p2sh) to legacy clients /// This is a segwit address type that looks familiar (as p2sh) to legacy clients
/// ///
/// Will only return an Error when an uncompressed public key is provided. /// Will only return an Error when an uncompressed public key is provided.
pub fn p2shwpkh(pk: &key::PublicKey, network: Network) -> Result<Address, Error> { pub fn p2shwpkh(pk: &ecdsa::PublicKey, network: Network) -> Result<Address, Error> {
if !pk.compressed { if !pk.compressed {
return Err(Error::UncompressedPubkey); return Err(Error::UncompressedPubkey);
} }
@ -500,7 +500,7 @@ mod tests {
use blockdata::script::Script; use blockdata::script::Script;
use network::constants::Network::{Bitcoin, Testnet}; use network::constants::Network::{Bitcoin, Testnet};
use util::key::PublicKey; use util::ecdsa::PublicKey;
use super::*; use super::*;

View File

@ -274,7 +274,7 @@ mod tests {
use consensus::encode::deserialize; use consensus::encode::deserialize;
use network::constants::Network; use network::constants::Network;
use util::address::Address; use util::address::Address;
use util::key::PublicKey; use util::ecdsa::PublicKey;
use hashes::hex::FromHex; use hashes::hex::FromHex;
use super::*; use super::*;

View File

@ -26,8 +26,8 @@ use hashes::{sha512, Hash, HashEngine, Hmac, HmacEngine};
use secp256k1::{self, Secp256k1}; use secp256k1::{self, Secp256k1};
use network::constants::Network; use network::constants::Network;
use util::{base58, endian}; use util::{base58, endian, key};
use util::key::{self, PublicKey, PrivateKey}; use util::ecdsa::{PublicKey, PrivateKey};
/// A chain code /// A chain code
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]

511
src/util/ecdsa.rs Normal file
View File

@ -0,0 +1,511 @@
// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! ECDSA Bitcoin Keys
//!
//! ECDSA keys used in Bitcoin that can be roundtrip (de)serialized.
//!
use std::fmt::{self, Write};
use std::{io, ops};
use std::str::FromStr;
use secp256k1::{self, Secp256k1};
use network::constants::Network;
use hashes::{Hash, hash160};
use hash_types::{PubkeyHash, WPubkeyHash};
use util::base58;
use util::key::Error;
/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
/// Whether this public key should be serialized as compressed
pub compressed: bool,
/// The actual ECDSA key
pub key: secp256k1::PublicKey,
}
impl PublicKey {
/// Returns bitcoin 160-bit hash of the public key
pub fn pubkey_hash(&self) -> PubkeyHash {
if self.compressed {
PubkeyHash::hash(&self.key.serialize())
} else {
PubkeyHash::hash(&self.key.serialize_uncompressed())
}
}
/// Returns bitcoin 160-bit hash of the public key for witness program
pub fn wpubkey_hash(&self) -> Option<WPubkeyHash> {
if self.compressed {
Some(WPubkeyHash::from_inner(
hash160::Hash::hash(&self.key.serialize()).into_inner()
))
} else {
// We can't create witness pubkey hashes for an uncompressed
// public keys
None
}
}
/// Write the public key into a writer
pub fn write_into<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
if self.compressed {
writer.write_all(&self.key.serialize())
} else {
writer.write_all(&self.key.serialize_uncompressed())
}
}
/// Read the public key from a reader
///
/// This internally reads the first byte before reading the rest, so
/// use of a `BufReader` is recommended.
pub fn read_from<R: io::Read>(mut reader: R) -> Result<Self, io::Error> {
let mut bytes = [0; 65];
reader.read_exact(&mut bytes[0..1])?;
let bytes = if bytes[0] < 4 {
&mut bytes[..33]
} else {
&mut bytes[..65]
};
reader.read_exact(&mut bytes[1..])?;
Self::from_slice(bytes).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
}
/// Serialize the public key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
let mut buf = Vec::new();
self.write_into(&mut buf).expect("vecs don't error");
buf
}
/// Deserialize a public key from a slice
pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
let compressed: bool = match data.len() {
33 => true,
65 => false,
len => { return Err(base58::Error::InvalidLength(len).into()); },
};
Ok(PublicKey {
compressed: compressed,
key: secp256k1::PublicKey::from_slice(data)?,
})
}
/// Computes the public key as supposed to be used with this secret
pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
sk.public_key(secp)
}
}
impl fmt::Display for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.compressed {
for ch in &self.key.serialize()[..] {
write!(f, "{:02x}", ch)?;
}
} else {
for ch in &self.key.serialize_uncompressed()[..] {
write!(f, "{:02x}", ch)?;
}
}
Ok(())
}
}
impl FromStr for PublicKey {
type Err = Error;
fn from_str(s: &str) -> Result<PublicKey, Error> {
let key = secp256k1::PublicKey::from_str(s)?;
Ok(PublicKey {
key: key,
compressed: s.len() == 66
})
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct PrivateKey {
/// Whether this private key should be serialized as compressed
pub compressed: bool,
/// The network on which this key should be used
pub network: Network,
/// The actual ECDSA key
pub key: secp256k1::SecretKey,
}
impl PrivateKey {
/// Creates a public key from this private key
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey {
compressed: self.compressed,
key: secp256k1::PublicKey::from_secret_key(secp, &self.key)
}
}
/// Serialize the private key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
self.key[..].to_vec()
}
/// Format the private key to WIF format.
pub fn fmt_wif(&self, fmt: &mut dyn fmt::Write) -> fmt::Result {
let mut ret = [0; 34];
ret[0] = match self.network {
Network::Bitcoin => 128,
Network::Testnet | Network::Signet | Network::Regtest => 239,
};
ret[1..33].copy_from_slice(&self.key[..]);
let privkey = if self.compressed {
ret[33] = 1;
base58::check_encode_slice(&ret[..])
} else {
base58::check_encode_slice(&ret[..33])
};
fmt.write_str(&privkey)
}
/// Get WIF encoding of this private key.
pub fn to_wif(&self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
buf.shrink_to_fit();
buf
}
/// Parse WIF encoded private key.
pub fn from_wif(wif: &str) -> Result<PrivateKey, Error> {
let data = base58::from_check(wif)?;
let compressed = match data.len() {
33 => false,
34 => true,
_ => { return Err(Error::Base58(base58::Error::InvalidLength(data.len()))); }
};
let network = match data[0] {
128 => Network::Bitcoin,
239 => Network::Testnet,
x => { return Err(Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
};
Ok(PrivateKey {
compressed: compressed,
network: network,
key: secp256k1::SecretKey::from_slice(&data[1..33])?,
})
}
}
impl fmt::Display for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_wif(f)
}
}
impl fmt::Debug for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[private key data]")
}
}
impl FromStr for PrivateKey {
type Err = Error;
fn from_str(s: &str) -> Result<PrivateKey, Error> {
PrivateKey::from_wif(s)
}
}
impl ops::Index<ops::RangeFull> for PrivateKey {
type Output = [u8];
fn index(&self, _: ops::RangeFull) -> &[u8] {
&self.key[..]
}
}
#[cfg(feature = "serde")]
impl ::serde::Serialize for PrivateKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
s.collect_str(self)
}
}
#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PrivateKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PrivateKey, D::Error> {
struct WifVisitor;
impl<'de> ::serde::de::Visitor<'de> for WifVisitor {
type Value = PrivateKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("an ASCII WIF string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(s) = ::std::str::from_utf8(v) {
PrivateKey::from_str(s).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PrivateKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(WifVisitor)
}
}
#[cfg(feature = "serde")]
impl ::serde::Serialize for PublicKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
if self.compressed {
s.serialize_bytes(&self.key.serialize()[..])
} else {
s.serialize_bytes(&self.key.serialize_uncompressed()[..])
}
}
}
}
#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PublicKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
if d.is_human_readable() {
struct HexVisitor;
impl<'de> ::serde::de::Visitor<'de> for HexVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("an ASCII hex string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(hex) = ::std::str::from_utf8(v) {
PublicKey::from_str(hex).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("a bytestring")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_slice(v).map_err(E::custom)
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
#[cfg(test)]
mod tests {
use super::{PrivateKey, PublicKey};
use secp256k1::Secp256k1;
use std::io;
use std::str::FromStr;
use hashes::hex::ToHex;
use network::constants::Network::Testnet;
use network::constants::Network::Bitcoin;
use util::address::Address;
#[test]
fn test_key_derivation() {
// testnet compressed
let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network, Testnet);
assert_eq!(sk.compressed, true);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
// test string conversion
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
// mainnet uncompressed
let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network, Bitcoin);
assert_eq!(sk.compressed, false);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let mut pk = sk.public_key(&secp);
assert_eq!(pk.compressed, false);
assert_eq!(&pk.to_string(), "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133");
assert_eq!(pk, PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap());
let addr = Address::p2pkh(&pk, sk.network);
assert_eq!(&addr.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
pk.compressed = true;
assert_eq!(&pk.to_string(), "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af");
assert_eq!(pk, PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap());
}
#[test]
fn test_pubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.pubkey_hash().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.pubkey_hash().to_hex(), "ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a");
}
#[test]
fn test_wpubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.wpubkey_hash().unwrap().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.wpubkey_hash(), None);
}
#[cfg(feature = "serde")]
#[test]
fn test_key_serde() {
use serde_test::{Configure, Token, assert_tokens};
static KEY_WIF: &'static str = "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy";
static PK_STR: &'static str = "039b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef";
static PK_STR_U: &'static str = "\
04\
9b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef\
87288ed73ce47fc4f5c79d19ebfa57da7cff3aff6e819e4ee971d86b5e61875d\
";
static PK_BYTES: [u8; 33] = [
0x03,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
];
static PK_BYTES_U: [u8; 65] = [
0x04,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4,
0xf5, 0xc7, 0x9d, 0x19, 0xeb, 0xfa, 0x57, 0xda,
0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81, 0x9e, 0x4e,
0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
];
let s = Secp256k1::new();
let sk = PrivateKey::from_str(&KEY_WIF).unwrap();
let pk = PublicKey::from_private_key(&s, &sk);
let pk_u = PublicKey {
key: pk.key,
compressed: false,
};
assert_tokens(&sk, &[Token::BorrowedStr(KEY_WIF)]);
assert_tokens(&pk.compact(), &[Token::BorrowedBytes(&PK_BYTES[..])]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk_u.compact(), &[Token::BorrowedBytes(&PK_BYTES_U[..])]);
assert_tokens(&pk_u.readable(), &[Token::BorrowedStr(PK_STR_U)]);
}
fn random_key(mut seed: u8) -> PublicKey {
loop {
let mut data = [0; 65];
for byte in &mut data[..] {
*byte = seed;
// totally a rng
seed = seed.wrapping_mul(41).wrapping_add(43);
}
if data[0] % 2 == 0 {
data[0] = 4;
if let Ok(key) = PublicKey::from_slice(&data[..]) {
return key;
}
} else {
data[0] = 2 + (data[0] >> 7);
if let Ok(key) = PublicKey::from_slice(&data[..33]) {
return key;
}
}
}
}
#[test]
fn pubkey_read_write() {
const N_KEYS: usize = 20;
let keys: Vec<_> = (0..N_KEYS).map(|i| random_key(i as u8)).collect();
let mut v = vec![];
for k in &keys {
k.write_into(&mut v).expect("writing into vec");
}
let mut dec_keys = vec![];
let mut cursor = io::Cursor::new(&v);
for _ in 0..N_KEYS {
dec_keys.push(PublicKey::read_from(&mut cursor).expect("reading from vec"));
}
assert_eq!(keys, dec_keys);
// sanity checks
assert!(PublicKey::read_from(&mut cursor).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 33][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[2; 32][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 65][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[4; 64][..])).is_err());
}
}

View File

@ -16,14 +16,12 @@
//! Keys used in Bitcoin that can be roundtrip (de)serialized. //! Keys used in Bitcoin that can be roundtrip (de)serialized.
//! //!
use std::fmt::{self, Write}; pub use util::ecdsa::{PrivateKey, PublicKey};
use std::{io, ops, error};
use std::str::FromStr;
use secp256k1::{self, Secp256k1}; use std::fmt;
use network::constants::Network; use std::error;
use hashes::{Hash, hash160};
use hash_types::{PubkeyHash, WPubkeyHash}; use secp256k1;
use util::base58; use util::base58;
/// A key-related error. /// A key-related error.
@ -67,486 +65,3 @@ impl From<secp256k1::Error> for Error {
Error::Secp256k1(e) Error::Secp256k1(e)
} }
} }
/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
/// Whether this public key should be serialized as compressed
pub compressed: bool,
/// The actual ECDSA key
pub key: secp256k1::PublicKey,
}
impl PublicKey {
/// Returns bitcoin 160-bit hash of the public key
pub fn pubkey_hash(&self) -> PubkeyHash {
if self.compressed {
PubkeyHash::hash(&self.key.serialize())
} else {
PubkeyHash::hash(&self.key.serialize_uncompressed())
}
}
/// Returns bitcoin 160-bit hash of the public key for witness program
pub fn wpubkey_hash(&self) -> Option<WPubkeyHash> {
if self.compressed {
Some(WPubkeyHash::from_inner(
hash160::Hash::hash(&self.key.serialize()).into_inner()
))
} else {
// We can't create witness pubkey hashes for an uncompressed
// public keys
None
}
}
/// Write the public key into a writer
pub fn write_into<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
if self.compressed {
writer.write_all(&self.key.serialize())
} else {
writer.write_all(&self.key.serialize_uncompressed())
}
}
/// Read the public key from a reader
///
/// This internally reads the first byte before reading the rest, so
/// use of a `BufReader` is recommended.
pub fn read_from<R: io::Read>(mut reader: R) -> Result<Self, io::Error> {
let mut bytes = [0; 65];
reader.read_exact(&mut bytes[0..1])?;
let bytes = if bytes[0] < 4 {
&mut bytes[..33]
} else {
&mut bytes[..65]
};
reader.read_exact(&mut bytes[1..])?;
Self::from_slice(bytes).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
}
/// Serialize the public key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
let mut buf = Vec::new();
self.write_into(&mut buf).expect("vecs don't error");
buf
}
/// Deserialize a public key from a slice
pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
let compressed: bool = match data.len() {
33 => true,
65 => false,
len => { return Err(base58::Error::InvalidLength(len).into()); },
};
Ok(PublicKey {
compressed: compressed,
key: secp256k1::PublicKey::from_slice(data)?,
})
}
/// Computes the public key as supposed to be used with this secret
pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
sk.public_key(secp)
}
}
impl fmt::Display for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.compressed {
for ch in &self.key.serialize()[..] {
write!(f, "{:02x}", ch)?;
}
} else {
for ch in &self.key.serialize_uncompressed()[..] {
write!(f, "{:02x}", ch)?;
}
}
Ok(())
}
}
impl FromStr for PublicKey {
type Err = Error;
fn from_str(s: &str) -> Result<PublicKey, Error> {
let key = secp256k1::PublicKey::from_str(s)?;
Ok(PublicKey {
key: key,
compressed: s.len() == 66
})
}
}
#[derive(Copy, Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct PrivateKey {
/// Whether this private key should be serialized as compressed
pub compressed: bool,
/// The network on which this key should be used
pub network: Network,
/// The actual ECDSA key
pub key: secp256k1::SecretKey,
}
impl PrivateKey {
/// Creates a public key from this private key
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey {
compressed: self.compressed,
key: secp256k1::PublicKey::from_secret_key(secp, &self.key)
}
}
/// Serialize the private key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
self.key[..].to_vec()
}
/// Format the private key to WIF format.
pub fn fmt_wif(&self, fmt: &mut dyn fmt::Write) -> fmt::Result {
let mut ret = [0; 34];
ret[0] = match self.network {
Network::Bitcoin => 128,
Network::Testnet | Network::Signet | Network::Regtest => 239,
};
ret[1..33].copy_from_slice(&self.key[..]);
let privkey = if self.compressed {
ret[33] = 1;
base58::check_encode_slice(&ret[..])
} else {
base58::check_encode_slice(&ret[..33])
};
fmt.write_str(&privkey)
}
/// Get WIF encoding of this private key.
pub fn to_wif(&self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
buf.shrink_to_fit();
buf
}
/// Parse WIF encoded private key.
pub fn from_wif(wif: &str) -> Result<PrivateKey, Error> {
let data = base58::from_check(wif)?;
let compressed = match data.len() {
33 => false,
34 => true,
_ => { return Err(Error::Base58(base58::Error::InvalidLength(data.len()))); }
};
let network = match data[0] {
128 => Network::Bitcoin,
239 => Network::Testnet,
x => { return Err(Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
};
Ok(PrivateKey {
compressed: compressed,
network: network,
key: secp256k1::SecretKey::from_slice(&data[1..33])?,
})
}
}
impl fmt::Display for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_wif(f)
}
}
impl fmt::Debug for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[private key data]")
}
}
impl FromStr for PrivateKey {
type Err = Error;
fn from_str(s: &str) -> Result<PrivateKey, Error> {
PrivateKey::from_wif(s)
}
}
impl ops::Index<ops::RangeFull> for PrivateKey {
type Output = [u8];
fn index(&self, _: ops::RangeFull) -> &[u8] {
&self.key[..]
}
}
#[cfg(feature = "serde")]
impl ::serde::Serialize for PrivateKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
s.collect_str(self)
}
}
#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PrivateKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PrivateKey, D::Error> {
struct WifVisitor;
impl<'de> ::serde::de::Visitor<'de> for WifVisitor {
type Value = PrivateKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("an ASCII WIF string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(s) = ::std::str::from_utf8(v) {
PrivateKey::from_str(s).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PrivateKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(WifVisitor)
}
}
#[cfg(feature = "serde")]
impl ::serde::Serialize for PublicKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
if self.compressed {
s.serialize_bytes(&self.key.serialize()[..])
} else {
s.serialize_bytes(&self.key.serialize_uncompressed()[..])
}
}
}
}
#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PublicKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
if d.is_human_readable() {
struct HexVisitor;
impl<'de> ::serde::de::Visitor<'de> for HexVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("an ASCII hex string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(hex) = ::std::str::from_utf8(v) {
PublicKey::from_str(hex).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
formatter.write_str("a bytestring")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_slice(v).map_err(E::custom)
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
#[cfg(test)]
mod tests {
use super::{PrivateKey, PublicKey};
use secp256k1::Secp256k1;
use std::io;
use std::str::FromStr;
use hashes::hex::ToHex;
use network::constants::Network::Testnet;
use network::constants::Network::Bitcoin;
use util::address::Address;
#[test]
fn test_key_derivation() {
// testnet compressed
let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network, Testnet);
assert_eq!(sk.compressed, true);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
// test string conversion
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
// mainnet uncompressed
let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network, Bitcoin);
assert_eq!(sk.compressed, false);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let mut pk = sk.public_key(&secp);
assert_eq!(pk.compressed, false);
assert_eq!(&pk.to_string(), "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133");
assert_eq!(pk, PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap());
let addr = Address::p2pkh(&pk, sk.network);
assert_eq!(&addr.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
pk.compressed = true;
assert_eq!(&pk.to_string(), "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af");
assert_eq!(pk, PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap());
}
#[test]
fn test_pubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.pubkey_hash().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.pubkey_hash().to_hex(), "ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a");
}
#[test]
fn test_wpubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.wpubkey_hash().unwrap().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.wpubkey_hash(), None);
}
#[cfg(feature = "serde")]
#[test]
fn test_key_serde() {
use serde_test::{Configure, Token, assert_tokens};
static KEY_WIF: &'static str = "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy";
static PK_STR: &'static str = "039b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef";
static PK_STR_U: &'static str = "\
04\
9b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef\
87288ed73ce47fc4f5c79d19ebfa57da7cff3aff6e819e4ee971d86b5e61875d\
";
static PK_BYTES: [u8; 33] = [
0x03,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
];
static PK_BYTES_U: [u8; 65] = [
0x04,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4,
0xf5, 0xc7, 0x9d, 0x19, 0xeb, 0xfa, 0x57, 0xda,
0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81, 0x9e, 0x4e,
0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
];
let s = Secp256k1::new();
let sk = PrivateKey::from_str(&KEY_WIF).unwrap();
let pk = PublicKey::from_private_key(&s, &sk);
let pk_u = PublicKey {
key: pk.key,
compressed: false,
};
assert_tokens(&sk, &[Token::BorrowedStr(KEY_WIF)]);
assert_tokens(&pk.compact(), &[Token::BorrowedBytes(&PK_BYTES[..])]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk_u.compact(), &[Token::BorrowedBytes(&PK_BYTES_U[..])]);
assert_tokens(&pk_u.readable(), &[Token::BorrowedStr(PK_STR_U)]);
}
fn random_key(mut seed: u8) -> PublicKey {
loop {
let mut data = [0; 65];
for byte in &mut data[..] {
*byte = seed;
// totally a rng
seed = seed.wrapping_mul(41).wrapping_add(43);
}
if data[0] % 2 == 0 {
data[0] = 4;
if let Ok(key) = PublicKey::from_slice(&data[..]) {
return key;
}
} else {
data[0] = 2 + (data[0] >> 7);
if let Ok(key) = PublicKey::from_slice(&data[..33]) {
return key;
}
}
}
}
#[test]
fn pubkey_read_write() {
const N_KEYS: usize = 20;
let keys: Vec<_> = (0..N_KEYS).map(|i| random_key(i as u8)).collect();
let mut v = vec![];
for k in &keys {
k.write_into(&mut v).expect("writing into vec");
}
let mut dec_keys = vec![];
let mut cursor = io::Cursor::new(&v);
for _ in 0..N_KEYS {
dec_keys.push(PublicKey::read_from(&mut cursor).expect("reading from vec"));
}
assert_eq!(keys, dec_keys);
// sanity checks
assert!(PublicKey::read_from(&mut cursor).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 33][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[2; 32][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 65][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[4; 64][..])).is_err());
}
}

View File

@ -35,7 +35,7 @@ mod message_signing {
use secp256k1; use secp256k1;
use secp256k1::recovery::{RecoveryId, RecoverableSignature}; use secp256k1::recovery::{RecoveryId, RecoverableSignature};
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::address::{Address, AddressType}; use util::address::{Address, AddressType};
/// An error used for dealing with Bitcoin Signed Messages. /// An error used for dealing with Bitcoin Signed Messages.

View File

@ -16,7 +16,7 @@
//! //!
//! Functions needed by all parts of the Bitcoin library //! Functions needed by all parts of the Bitcoin library
pub mod key; pub mod ecdsa;
pub mod address; pub mod address;
pub mod amount; pub mod amount;
pub mod base58; pub mod base58;
@ -30,6 +30,7 @@ pub mod psbt;
pub mod taproot; pub mod taproot;
pub mod uint; pub mod uint;
pub mod bip158; pub mod bip158;
pub mod key;
pub(crate) mod endian; pub(crate) mod endian;

View File

@ -20,7 +20,7 @@ use blockdata::transaction::{SigHashType, Transaction, TxOut};
use consensus::encode; use consensus::encode;
use util::bip32::KeySource; use util::bip32::KeySource;
use hashes::{self, hash160, ripemd160, sha256, sha256d}; use hashes::{self, hash160, ripemd160, sha256, sha256d};
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::psbt; use util::psbt;
use util::psbt::map::Map; use util::psbt::map::Map;
use util::psbt::raw; use util::psbt::raw;

View File

@ -19,7 +19,7 @@ use std::collections::btree_map::Entry;
use blockdata::script::Script; use blockdata::script::Script;
use consensus::encode; use consensus::encode;
use util::bip32::KeySource; use util::bip32::KeySource;
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::psbt; use util::psbt;
use util::psbt::map::Map; use util::psbt::map::Map;
use util::psbt::raw; use util::psbt::raw;

View File

@ -222,7 +222,7 @@ mod tests {
use network::constants::Network::Bitcoin; use network::constants::Network::Bitcoin;
use consensus::encode::{deserialize, serialize, serialize_hex}; use consensus::encode::{deserialize, serialize, serialize_hex};
use util::bip32::{ChildNumber, ExtendedPrivKey, ExtendedPubKey, Fingerprint, KeySource}; use util::bip32::{ChildNumber, ExtendedPrivKey, ExtendedPubKey, Fingerprint, KeySource};
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::psbt::map::{Global, Output, Input}; use util::psbt::map::{Global, Output, Input};
use util::psbt::raw; use util::psbt::raw;

View File

@ -24,7 +24,7 @@ use blockdata::transaction::{SigHashType, Transaction, TxOut};
use consensus::encode::{self, serialize, Decodable}; use consensus::encode::{self, serialize, Decodable};
use util::bip32::{ChildNumber, Fingerprint, KeySource}; use util::bip32::{ChildNumber, Fingerprint, KeySource};
use hashes::{hash160, ripemd160, sha256, sha256d, Hash}; use hashes::{hash160, ripemd160, sha256, sha256d, Hash};
use util::key::PublicKey; use util::ecdsa::PublicKey;
use util::psbt; use util::psbt;
/// A trait for serializing a value as raw data for insertion into PSBT /// A trait for serializing a value as raw data for insertion into PSBT