Merge rust-bitcoin/rust-bitcoin#628: Adds Taproot BIP341 signature message and create a unified sighash cache for legacy, segwit and taproot inputs

c704ee7ffe [docs-only] Use backtick in addition to square parentheses for types references, clarify legacy, non_exhaustive comment, remove std:: (Riccardo Casatta)
f223be618f Rename access_witness to witness_mut and return Option (Riccardo Casatta)
c9bc0b928a [fmt-only] autoformatting with `rustfmt src/util/sighash.rs` (Riccardo Casatta)
07774917c2 Use get_or_insert_with in segwit_cache (Martin Habovstiak)
497dbfb7c3 Use get_or_insert_with in common_cache() (Martin Habovstiak)
ca80a5a030 Use get_or_insert_with in taproot_cache (Martin Habovstiak)
6e06a32ccc Wrap ErrorKind in Io enum variant, fix doc comment for the IO variant (Riccardo Casatta)
1a2b54ff23 introduce constant KEY_VERSION_0 (Riccardo Casatta)
417cfe31e3 Derive common traits for structs and enum, make internal struct not pub (Riccardo Casatta)
55ce3dd6ae Fix validation error if SINGLE with missing corresponding output, remove check_index and check with get().ok_or(), more details in errors (Riccardo Casatta)
2b3b22f559 impl Encodable for Annex to avoid allocation (Riccardo Casatta)
1a7afed068 Add Reserved variant to SigHashType for future use (ie SIGHASH_ANYPREVOUT) (Riccardo Casatta)
53d0e176d3 Deprecate bip143::SigHashCache in favor of sighash::SigHashCache (Riccardo Casatta)
15e3caf62d [test] Test also sighash legacy API with legacy tests (Riccardo Casatta)
24acfe3672 Implement Bip341 signature hash, create unified SigHashCache for taproot, segwit and legacy inputs (Riccardo Casatta)
683b9c14ff add [En|De]codable trait for sha256::Hash (Riccardo Casatta)

Pull request description:

  Adds https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki message signature algorithm

  The base is taken from `bip143::SigHashCache`, some code results duplicated but I think it's more clear to keep things separated

  Would mark some bullet point on https://github.com/rust-bitcoin/rust-bitcoin/issues/503

  Test vectors are taken by running d1e4c56309/test/functional/feature_taproot.py with a modified `TaprootSignatureHash` function to print intermediate values that I cannot found in the bip341 [test vector json](https://raw.githubusercontent.com/bitcoin-core/qa-assets/main/unit_test_data/script_assets_test.json)

  UPDATE: Latest version includes the suggestion from @sanket1729 to create a unified tool for signature message hash for legacy, segwit, and taproot inputs. In particular, makes sense for mixed segwit v0 and taproot v1 inputs because cached values could be shared

ACKs for top commit:
  sanket1729:
    ACK c704ee7ffe. Reviewed the diff from a37de1ade475e0c31c932121abaa7aec701b9987 which I previously ACKed
  dr-orlovsky:
    utACK c704ee7ffe by diffing it to 6e06a32ccc having my ACK before.
  apoelstra:
    ACK c704ee7ffe

Tree-SHA512: 35530995fe9d078acd0178cfca654ca980109f4502c91d578c1a0d5c6cafacab7db1ffd6216288eac99f6a763776cbc0298cfbdff00b5a83e98ec4b15aa764e8
This commit is contained in:
Andrew Poelstra 2021-09-15 17:46:52 +00:00
commit b6b60fc4aa
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1
5 changed files with 952 additions and 103 deletions

View File

@ -808,6 +808,7 @@ mod tests {
use hash_types::*;
use SigHashType;
use util::sighash::SigHashCache;
#[test]
fn test_outpoint() {
@ -1059,7 +1060,15 @@ mod tests {
raw_expected.reverse();
let expected_result = SigHash::from_slice(&raw_expected[..]).unwrap();
let actual_result = tx.signature_hash(input_index, &script, hash_type as u32);
let actual_result = if raw_expected[0] % 2 == 0 {
// tx.signature_hash and cache.legacy_signature_hash are the same, this if helps to test
// both the codepaths without repeating the test code
tx.signature_hash(input_index, &script, hash_type as u32)
} else {
let cache = SigHashCache::new(&tx);
cache.legacy_signature_hash(input_index, &script, hash_type as u32).unwrap()
};
assert_eq!(actual_result, expected_result);
}

View File

@ -34,7 +34,7 @@ use prelude::*;
use core::{fmt, mem, u32, convert::From};
#[cfg(feature = "std")] use std::error;
use hashes::{sha256d, Hash};
use hashes::{sha256d, Hash, sha256};
use hash_types::{BlockHash, FilterHash, TxMerkleNode, FilterHeader};
use io::{self, Cursor, Read};
@ -601,7 +601,7 @@ impl_vec!(u64);
#[cfg(feature = "std")] impl_vec!((u32, Address));
#[cfg(feature = "std")] impl_vec!(AddrV2Message);
fn consensus_encode_with_size<S: io::Write>(data: &[u8], mut s: S) -> Result<usize, io::Error> {
pub(crate) fn consensus_encode_with_size<S: io::Write>(data: &[u8], mut s: S) -> Result<usize, io::Error> {
let vi_len = VarInt(data.len() as u64).consensus_encode(&mut s)?;
s.emit_slice(&data)?;
Ok(vi_len + data.len())
@ -757,6 +757,18 @@ impl Decodable for sha256d::Hash {
}
}
impl Encodable for sha256::Hash {
fn consensus_encode<S: io::Write>(&self, s: S) -> Result<usize, io::Error> {
self.into_inner().consensus_encode(s)
}
}
impl Decodable for sha256::Hash {
fn consensus_decode<D: io::Read>(d: D) -> Result<Self, Error> {
Ok(Self::from_inner(<<Self as Hash>::Inner>::consensus_decode(d)?))
}
}
// Tests
#[cfg(test)]
mod tests {

View File

@ -19,7 +19,7 @@
//! signatures, which are placed in the scriptSig.
//!
use hashes::{Hash, sha256d};
use hashes::Hash;
use hash_types::SigHash;
use blockdata::script::Script;
use blockdata::transaction::{Transaction, TxIn, SigHashType};
@ -29,11 +29,12 @@ use prelude::*;
use io;
use core::ops::{Deref, DerefMut};
use util::sighash;
/// Parts of a sighash which are common across inputs or signatures, and which are
/// sufficient (in conjunction with a private key) to sign the transaction
#[derive(Clone, PartialEq, Eq, Debug)]
#[deprecated(since="0.24.0", note="please use `SigHashCache` instead")]
#[deprecated(since="0.24.0", note="please use [sighash::SigHashCache] instead")]
pub struct SighashComponents {
tx_version: i32,
tx_locktime: u32,
@ -107,121 +108,34 @@ impl SighashComponents {
}
/// A replacement for SigHashComponents which supports all sighash modes
#[deprecated(since="0.27.0", note="please use [sighash::SigHashCache] instead")]
pub struct SigHashCache<R: Deref<Target=Transaction>> {
/// Access to transaction required for various introspection
tx: R,
/// Hash of all the previous outputs, computed as required
hash_prevouts: Option<sha256d::Hash>,
/// Hash of all the input sequence nos, computed as required
hash_sequence: Option<sha256d::Hash>,
/// Hash of all the outputs in this transaction, computed as required
hash_outputs: Option<sha256d::Hash>,
cache: sighash::SigHashCache<R>,
}
#[allow(deprecated)]
impl<R: Deref<Target=Transaction>> SigHashCache<R> {
/// Compute the sighash components from an unsigned transaction and auxiliary
/// in a lazy manner when required.
/// For the generated sighashes to be valid, no fields in the transaction may change except for
/// script_sig and witnesses.
pub fn new(tx: R) -> Self {
SigHashCache {
tx: tx,
hash_prevouts: None,
hash_sequence: None,
hash_outputs: None,
}
}
/// Calculate hash for prevouts
pub fn hash_prevouts(&mut self) -> sha256d::Hash {
let hash_prevout = &mut self.hash_prevouts;
let input = &self.tx.input;
*hash_prevout.get_or_insert_with(|| {
let mut enc = sha256d::Hash::engine();
for txin in input {
txin.previous_output.consensus_encode(&mut enc).unwrap();
}
sha256d::Hash::from_engine(enc)
})
}
/// Calculate hash for input sequence values
pub fn hash_sequence(&mut self) -> sha256d::Hash {
let hash_sequence = &mut self.hash_sequence;
let input = &self.tx.input;
*hash_sequence.get_or_insert_with(|| {
let mut enc = sha256d::Hash::engine();
for txin in input {
txin.sequence.consensus_encode(&mut enc).unwrap();
}
sha256d::Hash::from_engine(enc)
})
}
/// Calculate hash for outputs
pub fn hash_outputs(&mut self) -> sha256d::Hash {
let hash_output = &mut self.hash_outputs;
let output = &self.tx.output;
*hash_output.get_or_insert_with(|| {
let mut enc = sha256d::Hash::engine();
for txout in output {
txout.consensus_encode(&mut enc).unwrap();
}
sha256d::Hash::from_engine(enc)
})
Self { cache: sighash::SigHashCache::new(tx) }
}
/// Encode the BIP143 signing data for any flag type into a given object implementing a
/// std::io::Write trait.
pub fn encode_signing_data_to<Write: io::Write>(
&mut self,
mut writer: Write,
writer: Write,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: SigHashType,
) -> Result<(), encode::Error> {
let zero_hash = sha256d::Hash::default();
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
self.tx.version.consensus_encode(&mut writer)?;
if !anyone_can_pay {
self.hash_prevouts().consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
if !anyone_can_pay && sighash != SigHashType::Single && sighash != SigHashType::None {
self.hash_sequence().consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
{
let txin = &self.tx.input[input_index];
txin
.previous_output
.consensus_encode(&mut writer)?;
script_code.consensus_encode(&mut writer)?;
value.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
}
if sighash != SigHashType::Single && sighash != SigHashType::None {
self.hash_outputs().consensus_encode(&mut writer)?;
} else if sighash == SigHashType::Single && input_index < self.tx.output.len() {
let mut single_enc = SigHash::engine();
self.tx.output[input_index].consensus_encode(&mut single_enc)?;
SigHash::from_engine(single_enc).consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
self.tx.lock_time.consensus_encode(&mut writer)?;
sighash_type.as_u32().consensus_encode(&mut writer)?;
self.cache
.segwit_encode_signing_data_to(writer, input_index, script_code, value, sighash_type.into())
.expect("input_index greater than tx input len");
Ok(())
}
@ -241,11 +155,15 @@ impl<R: Deref<Target=Transaction>> SigHashCache<R> {
}
}
#[allow(deprecated)]
impl<R: DerefMut<Target=Transaction>> SigHashCache<R> {
/// When the SigHashCache is initialized with a mutable reference to a transaction instead of a
/// regular reference, this method is available to allow modification to the witnesses.
///
/// This allows in-line signing such as
///
/// panics if `input_index` is out of bounds with respect of the number of inputs
///
/// ```
/// use bitcoin::blockdata::transaction::{Transaction, SigHashType};
/// use bitcoin::util::bip143::SigHashCache;
@ -263,13 +181,14 @@ impl<R: DerefMut<Target=Transaction>> SigHashCache<R> {
/// }
/// ```
pub fn access_witness(&mut self, input_index: usize) -> &mut Vec<Vec<u8>> {
&mut self.tx.input[input_index].witness
self.cache.witness_mut(input_index).unwrap()
}
}
#[cfg(test)]
#[allow(deprecated)]
mod tests {
use std::str::FromStr;
use hash_types::SigHash;
use blockdata::script::Script;
use blockdata::transaction::Transaction;
@ -282,8 +201,7 @@ mod tests {
use super::*;
fn p2pkh_hex(pk: &str) -> Script {
let pk = Vec::from_hex(pk).unwrap();
let pk = PublicKey::from_slice(pk.as_slice()).unwrap();
let pk: PublicKey = PublicKey::from_str(pk).unwrap();
let witness_script = Address::p2pkh(&pk, Network::Bitcoin).script_pubkey();
witness_script
}

View File

@ -32,6 +32,7 @@ pub mod psbt;
pub mod taproot;
pub mod uint;
pub mod bip158;
pub mod sighash;
pub(crate) mod endian;

909
src/util/sighash.rs Normal file
View File

@ -0,0 +1,909 @@
// Rust Bitcoin Library
// Written in 2021 by
// The rust-bitcoin developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Generalized, efficient, signature hash implementation
//!
//! Implementation of the algorithm to compute the message to be signed according to [Bip341](https://github.com/bitcoin/bips/blob/150ab6f5c3aca9da05fccc5b435e9667853407f4/bip-0341.mediawiki),
//! [Bip143](https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki)
//! and legacy (before Bip143)
//!
pub use blockdata::transaction::SigHashType as LegacySigHashType;
use consensus::{encode, Encodable};
use core::fmt;
use core::ops::{Deref, DerefMut};
use hashes::{sha256, sha256d, Hash};
use io;
use util::taproot::{TapLeafHash, TapSighashHash};
use SigHash;
use {Script, Transaction, TxOut};
use prelude::*;
/// Efficiently calculates signature hash message for legacy, segwit and taproot inputs.
#[derive(Debug)]
pub struct SigHashCache<T: Deref<Target = Transaction>> {
/// Access to transaction required for various introspection, moreover type
/// `T: Deref<Target=Transaction>` allows to accept borrow and mutable borrow, the
/// latter in particular is necessary for [`SigHashCache::witness_mut`]
tx: T,
/// Common cache for taproot and segwit inputs. It's an option because it's not needed for legacy inputs
common_cache: Option<CommonCache>,
/// Cache for segwit v0 inputs, it's the result of another round of sha256 on `common_cache`
segwit_cache: Option<SegwitCache>,
/// Cache for taproot v1 inputs
taproot_cache: Option<TaprootCache>,
}
/// Values cached common between segwit and taproot inputs
#[derive(Debug)]
struct CommonCache {
prevouts: sha256::Hash,
sequences: sha256::Hash,
/// in theory, `outputs` could be `Option` since `NONE` and `SINGLE` doesn't need it, but since
/// `ALL` is the mostly used variant by large, we don't bother
outputs: sha256::Hash,
}
/// Values cached for segwit inputs, it's equal to [`CommonCache`] plus another round of `sha256`
#[derive(Debug)]
struct SegwitCache {
prevouts: sha256d::Hash,
sequences: sha256d::Hash,
outputs: sha256d::Hash,
}
/// Values cached for taproot inputs
#[derive(Debug)]
struct TaprootCache {
amounts: sha256::Hash,
script_pubkeys: sha256::Hash,
}
/// Contains outputs of previous transactions.
/// In the case [`SigHashType`] variant is `ANYONECANPAY`, [`Prevouts::One`] may be provided
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Prevouts<'u> {
/// `One` variant allows to provide the single Prevout needed. It's useful for example
/// when modifier `ANYONECANPAY` is provided, only prevout of the current input is needed.
/// The first `usize` argument is the input index this [`TxOut`] is referring to.
One(usize, &'u TxOut),
/// When `ANYONECANPAY` is not provided, or the caller is handy giving all prevouts so the same
/// variable can be used for multiple inputs.
All(&'u [TxOut]),
}
const LEAF_VERSION_TAPSCRIPT: u8 = 0xc0;
const KEY_VERSION_0: u8 = 0u8;
/// Information related to the script path spending
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub struct ScriptPath<'s> {
script: &'s Script,
code_separator_pos: u32,
leaf_version: u8,
}
/// Hashtype of an input's signature, encoded in the last byte of the signature
/// Fixed values so they can be casted as integer types for encoding
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum SigHashType {
/// 0x0: Used when not explicitly specified, defaulting to [`SigHashType::All`]
Default = 0x00,
/// 0x1: Sign all outputs
All = 0x01,
/// 0x2: Sign no outputs --- anyone can choose the destination
None = 0x02,
/// 0x3: Sign the output whose index matches this input's index. If none exists,
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
/// to follow it.)
Single = 0x03,
/// 0x81: Sign all outputs but only this input
AllPlusAnyoneCanPay = 0x81,
/// 0x82: Sign no outputs and only this input
NonePlusAnyoneCanPay = 0x82,
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means)
SinglePlusAnyoneCanPay = 0x83,
/// Reserved for future use, `#[non_exhaustive]` is not available with current MSRV
Reserved = 0xFF,
}
/// Possible errors in computing the signature message
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Error {
/// Could happen only by using `*_encode_signing_*` methods with custom writers, engines writers
/// like the ones used in methods `*_signature_hash` don't error
Io(io::ErrorKind),
/// Requested index is greater or equal than the number of inputs in the transaction
IndexOutOfInputsBounds {
/// Requested index
index: usize,
/// Number of transaction inputs
inputs_size: usize,
},
/// Using SIGHASH_SINGLE without a "corresponding output" (an output with the same index as the
/// input being verified) is a validation failure
SingleWithoutCorrespondingOutput {
/// Requested index
index: usize,
/// Number of transaction outputs
outputs_size: usize,
},
/// There are mismatches in the number of prevouts provided compared with the number of
/// inputs in the transaction
PrevoutsSize,
/// Requested a prevout index which is greater than the number of prevouts provided or a
/// [`Prevouts::One`] with different index
PrevoutIndex,
/// A single prevout has been provided but all prevouts are needed without `ANYONECANPAY`
PrevoutKind,
/// Annex must be at least one byte long and the first bytes must be `0x50`
WrongAnnex,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Error::Io(ref e) => write!(f, "Writer errored: {:?}", e),
Error::IndexOutOfInputsBounds { index, inputs_size } => write!(f, "Requested index ({}) is greater or equal than the number of transaction inputs ({})", index, inputs_size),
Error::SingleWithoutCorrespondingOutput { index, outputs_size } => write!(f, "SIGHASH_SINGLE for input ({}) haven't a corresponding output (#outputs:{})", index, outputs_size),
Error::PrevoutsSize => write!(f, "Number of supplied prevouts differs from the number of inputs in transaction"),
Error::PrevoutIndex => write!(f, "The index requested is greater than available prevouts or different from the provided [Provided::Anyone] index"),
Error::PrevoutKind => write!(f, "A single prevout has been provided but all prevouts are needed without `ANYONECANPAY`"),
Error::WrongAnnex => write!(f, "Annex must be at least one byte long and the first bytes must be `0x50`"),
}
}
}
#[cfg(feature = "std")]
impl ::std::error::Error for Error {}
impl<'u> Prevouts<'u> {
fn check_all(&self, tx: &Transaction) -> Result<(), Error> {
if let Prevouts::All(prevouts) = self {
if prevouts.len() != tx.input.len() {
return Err(Error::PrevoutsSize);
}
}
Ok(())
}
fn get_all(&self) -> Result<&[TxOut], Error> {
match self {
Prevouts::All(prevouts) => Ok(prevouts),
_ => Err(Error::PrevoutKind),
}
}
fn get(&self, input_index: usize) -> Result<&TxOut, Error> {
match self {
Prevouts::One(index, prevout) => {
if input_index == *index {
Ok(prevout)
} else {
Err(Error::PrevoutIndex)
}
}
Prevouts::All(prevouts) => prevouts.get(input_index).ok_or(Error::PrevoutIndex),
}
}
}
impl<'s> ScriptPath<'s> {
/// Create a new ScriptPath structure
pub fn new(script: &'s Script, code_separator_pos: u32, leaf_version: u8) -> Self {
ScriptPath {
script,
code_separator_pos,
leaf_version,
}
}
/// Create a new ScriptPath structure using default values for `code_separator_pos` and `leaf_version`
pub fn with_defaults(script: &'s Script) -> Self {
Self::new(script, 0xFFFFFFFFu32, LEAF_VERSION_TAPSCRIPT)
}
}
impl From<LegacySigHashType> for SigHashType {
fn from(s: LegacySigHashType) -> Self {
match s {
LegacySigHashType::All => SigHashType::All,
LegacySigHashType::None => SigHashType::None,
LegacySigHashType::Single => SigHashType::Single,
LegacySigHashType::AllPlusAnyoneCanPay => SigHashType::AllPlusAnyoneCanPay,
LegacySigHashType::NonePlusAnyoneCanPay => SigHashType::NonePlusAnyoneCanPay,
LegacySigHashType::SinglePlusAnyoneCanPay => SigHashType::SinglePlusAnyoneCanPay,
}
}
}
impl SigHashType {
/// Break the sighash flag into the "real" sighash flag and the ANYONECANPAY boolean
pub(crate) fn split_anyonecanpay_flag(self) -> (SigHashType, bool) {
match self {
SigHashType::Default => (SigHashType::Default, false),
SigHashType::All => (SigHashType::All, false),
SigHashType::None => (SigHashType::None, false),
SigHashType::Single => (SigHashType::Single, false),
SigHashType::AllPlusAnyoneCanPay => (SigHashType::All, true),
SigHashType::NonePlusAnyoneCanPay => (SigHashType::None, true),
SigHashType::SinglePlusAnyoneCanPay => (SigHashType::Single, true),
SigHashType::Reserved => (SigHashType::Reserved, false),
}
}
}
impl<R: Deref<Target = Transaction>> SigHashCache<R> {
/// Compute the sighash components from an unsigned transaction and auxiliary
/// in a lazy manner when required.
/// For the generated sighashes to be valid, no fields in the transaction may change except for
/// script_sig and witnesses.
pub fn new(tx: R) -> Self {
SigHashCache {
tx,
common_cache: None,
taproot_cache: None,
segwit_cache: None,
}
}
/// Encode the BIP341 signing data for any flag type into a given object implementing a
/// io::Write trait.
pub fn taproot_encode_signing_data_to<Write: io::Write>(
&mut self,
mut writer: Write,
input_index: usize,
prevouts: &Prevouts,
annex: Option<Annex>,
script_path: Option<ScriptPath>,
sighash_type: SigHashType,
) -> Result<(), Error> {
prevouts.check_all(&self.tx)?;
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
// epoch
0u8.consensus_encode(&mut writer)?;
// * Control:
// hash_type (1).
(sighash_type as u8).consensus_encode(&mut writer)?;
// * Transaction Data:
// nVersion (4): the nVersion of the transaction.
self.tx.version.consensus_encode(&mut writer)?;
// nLockTime (4): the nLockTime of the transaction.
self.tx.lock_time.consensus_encode(&mut writer)?;
// If the hash_type & 0x80 does not equal SIGHASH_ANYONECANPAY:
// sha_prevouts (32): the SHA256 of the serialization of all input outpoints.
// sha_amounts (32): the SHA256 of the serialization of all spent output amounts.
// sha_scriptpubkeys (32): the SHA256 of the serialization of all spent output scriptPubKeys.
// sha_sequences (32): the SHA256 of the serialization of all input nSequence.
if !anyone_can_pay {
self.common_cache().prevouts.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?)
.amounts
.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?)
.script_pubkeys
.consensus_encode(&mut writer)?;
self.common_cache()
.sequences
.consensus_encode(&mut writer)?;
}
// If hash_type & 3 does not equal SIGHASH_NONE or SIGHASH_SINGLE:
// sha_outputs (32): the SHA256 of the serialization of all outputs in CTxOut format.
if sighash != SigHashType::None && sighash != SigHashType::Single {
self.common_cache().outputs.consensus_encode(&mut writer)?;
}
// * Data about this input:
// spend_type (1): equal to (ext_flag * 2) + annex_present, where annex_present is 0
// if no annex is present, or 1 otherwise
let mut spend_type = 0u8;
if annex.is_some() {
spend_type |= 1u8;
}
if script_path.is_some() {
spend_type |= 2u8;
}
spend_type.consensus_encode(&mut writer)?;
// If hash_type & 0x80 equals SIGHASH_ANYONECANPAY:
// outpoint (36): the COutPoint of this input (32-byte hash + 4-byte little-endian).
// amount (8): value of the previous output spent by this input.
// scriptPubKey (35): scriptPubKey of the previous output spent by this input, serialized as script inside CTxOut. Its size is always 35 bytes.
// nSequence (4): nSequence of this input.
if anyone_can_pay {
let txin =
&self
.tx
.input
.get(input_index)
.ok_or_else(|| Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
let previous_output = prevouts.get(input_index)?;
txin.previous_output.consensus_encode(&mut writer)?;
previous_output.value.consensus_encode(&mut writer)?;
previous_output
.script_pubkey
.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
} else {
(input_index as u32).consensus_encode(&mut writer)?;
}
// If an annex is present (the lowest bit of spend_type is set):
// sha_annex (32): the SHA256 of (compact_size(size of annex) || annex), where annex
// includes the mandatory 0x50 prefix.
if let Some(annex) = annex {
let mut enc = sha256::Hash::engine();
annex.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// * Data about this output:
// If hash_type & 3 equals SIGHASH_SINGLE:
// sha_single_output (32): the SHA256 of the corresponding output in CTxOut format.
if sighash == SigHashType::Single {
let mut enc = sha256::Hash::engine();
self.tx
.output
.get(input_index)
.ok_or_else(|| Error::SingleWithoutCorrespondingOutput {
index: input_index,
outputs_size: self.tx.output.len(),
})?
.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// if (scriptpath):
// ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
// ss += bytes([0])
// ss += struct.pack("<i", codeseparator_pos)
if let Some(ScriptPath {
script,
leaf_version,
code_separator_pos,
}) = script_path
{
let mut enc = TapLeafHash::engine();
leaf_version.consensus_encode(&mut enc)?;
script.consensus_encode(&mut enc)?;
let hash = TapLeafHash::from_engine(enc);
hash.into_inner().consensus_encode(&mut writer)?;
KEY_VERSION_0.consensus_encode(&mut writer)?;
code_separator_pos.consensus_encode(&mut writer)?;
}
Ok(())
}
/// Compute the BIP341 sighash for any flag type.
pub fn taproot_signature_hash(
&mut self,
input_index: usize,
prevouts: &Prevouts,
annex: Option<Annex>,
script_path: Option<ScriptPath>,
sighash_type: SigHashType,
) -> Result<TapSighashHash, Error> {
let mut enc = TapSighashHash::engine();
self.taproot_encode_signing_data_to(
&mut enc,
input_index,
prevouts,
annex,
script_path,
sighash_type,
)?;
Ok(TapSighashHash::from_engine(enc))
}
/// Encode the BIP143 signing data for any flag type into a given object implementing a
/// [`std::io::Write`] trait.
pub fn segwit_encode_signing_data_to<Write: io::Write>(
&mut self,
mut writer: Write,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: LegacySigHashType,
) -> Result<(), Error> {
let zero_hash = sha256d::Hash::default();
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
self.tx.version.consensus_encode(&mut writer)?;
if !anyone_can_pay {
self.segwit_cache().prevouts.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
if !anyone_can_pay
&& sighash != LegacySigHashType::Single
&& sighash != LegacySigHashType::None
{
self.segwit_cache()
.sequences
.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
{
let txin =
&self
.tx
.input
.get(input_index)
.ok_or_else(|| Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
txin.previous_output.consensus_encode(&mut writer)?;
script_code.consensus_encode(&mut writer)?;
value.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
}
if sighash != LegacySigHashType::Single && sighash != LegacySigHashType::None {
self.segwit_cache().outputs.consensus_encode(&mut writer)?;
} else if sighash == LegacySigHashType::Single && input_index < self.tx.output.len() {
let mut single_enc = SigHash::engine();
self.tx.output[input_index].consensus_encode(&mut single_enc)?;
SigHash::from_engine(single_enc).consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
self.tx.lock_time.consensus_encode(&mut writer)?;
sighash_type.as_u32().consensus_encode(&mut writer)?;
Ok(())
}
/// Compute the BIP143 sighash for any flag type.
pub fn segwit_signature_hash(
&mut self,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: LegacySigHashType,
) -> Result<SigHash, Error> {
let mut enc = SigHash::engine();
self.segwit_encode_signing_data_to(
&mut enc,
input_index,
script_code,
value,
sighash_type,
)?;
Ok(SigHash::from_engine(enc))
}
/// Encode the legacy signing data for any flag type into a given object implementing a
/// [`std::io::Write`] trait. Internally calls [`Transaction::encode_signing_data_to`]
pub fn legacy_encode_signing_data_to<Write: io::Write, U: Into<u32>>(
&self,
mut writer: Write,
input_index: usize,
script_pubkey: &Script,
sighash_type: U,
) -> Result<(), Error> {
if input_index >= self.tx.input.len() {
return Err(Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
});
}
self.tx
.encode_signing_data_to(&mut writer, input_index, script_pubkey, sighash_type.into())
.expect("writers don't error");
Ok(())
}
/// Computes the legacy sighash for any SigHashType
pub fn legacy_signature_hash(
&self,
input_index: usize,
script_pubkey: &Script,
sighash_type: u32,
) -> Result<SigHash, Error> {
let mut enc = SigHash::engine();
self.legacy_encode_signing_data_to(&mut enc, input_index, script_pubkey, sighash_type)?;
Ok(SigHash::from_engine(enc))
}
#[inline]
fn common_cache(&mut self) -> &CommonCache {
Self::common_cache_minimal_borrow(&mut self.common_cache, &self.tx)
}
fn common_cache_minimal_borrow<'a>(
common_cache: &'a mut Option<CommonCache>,
tx: &R,
) -> &'a CommonCache {
common_cache.get_or_insert_with(|| {
let mut enc_prevouts = sha256::Hash::engine();
let mut enc_sequences = sha256::Hash::engine();
for txin in tx.input.iter() {
txin.previous_output
.consensus_encode(&mut enc_prevouts)
.unwrap();
txin.sequence.consensus_encode(&mut enc_sequences).unwrap();
}
CommonCache {
prevouts: sha256::Hash::from_engine(enc_prevouts),
sequences: sha256::Hash::from_engine(enc_sequences),
outputs: {
let mut enc = sha256::Hash::engine();
for txout in tx.output.iter() {
txout.consensus_encode(&mut enc).unwrap();
}
sha256::Hash::from_engine(enc)
},
}
})
}
fn segwit_cache(&mut self) -> &SegwitCache {
let common_cache = &mut self.common_cache;
let tx = &self.tx;
self.segwit_cache.get_or_insert_with(|| {
let common_cache = Self::common_cache_minimal_borrow(common_cache, tx);
SegwitCache {
prevouts: sha256d::Hash::from_inner(
sha256::Hash::hash(&common_cache.prevouts).into_inner(),
),
sequences: sha256d::Hash::from_inner(
sha256::Hash::hash(&common_cache.sequences).into_inner(),
),
outputs: sha256d::Hash::from_inner(
sha256::Hash::hash(&common_cache.outputs).into_inner(),
),
}
})
}
fn taproot_cache(&mut self, prevouts: &[TxOut]) -> &TaprootCache {
self.taproot_cache.get_or_insert_with(|| {
let mut enc_amounts = sha256::Hash::engine();
let mut enc_script_pubkeys = sha256::Hash::engine();
for prevout in prevouts {
prevout.value.consensus_encode(&mut enc_amounts).unwrap();
prevout
.script_pubkey
.consensus_encode(&mut enc_script_pubkeys)
.unwrap();
}
TaprootCache {
amounts: sha256::Hash::from_engine(enc_amounts),
script_pubkeys: sha256::Hash::from_engine(enc_script_pubkeys),
}
})
}
}
impl<R: DerefMut<Target = Transaction>> SigHashCache<R> {
/// When the SigHashCache is initialized with a mutable reference to a transaction instead of a
/// regular reference, this method is available to allow modification to the witnesses.
///
/// This allows in-line signing such as
/// ```
/// use bitcoin::blockdata::transaction::{Transaction, SigHashType};
/// use bitcoin::util::sighash::SigHashCache;
/// use bitcoin::Script;
///
/// let mut tx_to_sign = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: Vec::new() };
/// let input_count = tx_to_sign.input.len();
///
/// let mut sig_hasher = SigHashCache::new(&mut tx_to_sign);
/// for inp in 0..input_count {
/// let prevout_script = Script::new();
/// let _sighash = sig_hasher.segwit_signature_hash(inp, &prevout_script, 42, SigHashType::All);
/// // ... sign the sighash
/// sig_hasher.witness_mut(inp).unwrap().push(Vec::new());
/// }
/// ```
pub fn witness_mut(&mut self, input_index: usize) -> Option<&mut Vec<Vec<u8>>> {
self.tx.input.get_mut(input_index).map(|i| &mut i.witness)
}
}
impl From<io::Error> for Error {
fn from(e: io::Error) -> Self {
Error::Io(e.kind())
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
/// The `Annex` struct is a slice wrapper enforcing first byte to be `0x50`
pub struct Annex<'a>(&'a [u8]);
impl<'a> Annex<'a> {
/// Creates a new `Annex` struct checking the first byte is `0x50`
pub fn new(annex_bytes: &'a [u8]) -> Result<Self, Error> {
if annex_bytes.first() == Some(&0x50) {
Ok(Annex(annex_bytes))
} else {
Err(Error::WrongAnnex)
}
}
/// Returns the Annex bytes data (including first byte `0x50`)
pub fn as_bytes(&self) -> &[u8] {
&*self.0
}
}
impl<'a> Encodable for Annex<'a> {
fn consensus_encode<W: io::Write>(&self, writer: W) -> Result<usize, io::Error> {
encode::consensus_encode_with_size(&self.0, writer)
}
}
#[cfg(test)]
mod tests {
use consensus::deserialize;
use hashes::hex::FromHex;
use hashes::{Hash, HashEngine};
use util::sighash::{Annex, Error, Prevouts, ScriptPath, SigHashCache, SigHashType};
use util::taproot::TapSighashHash;
use {Script, Transaction, TxIn, TxOut};
#[test]
fn test_tap_sighash_hash() {
let bytes = Vec::from_hex("00011b96877db45ffa23b307e9f0ac87b80ef9a80b4c5f0db3fbe734422453e83cc5576f3d542c5d4898fb2b696c15d43332534a7c1d1255fda38993545882df92c3e353ff6d36fbfadc4d168452afd8467f02fe53d71714fcea5dfe2ea759bd00185c4cb02bc76d42620393ca358a1a713f4997f9fc222911890afb3fe56c6a19b202df7bffdcfad08003821294279043746631b00e2dc5e52a111e213bbfe6ef09a19428d418dab0d50000000000").unwrap();
let expected =
Vec::from_hex("04e808aad07a40b3767a1442fead79af6ef7e7c9316d82dec409bb31e77699b0")
.unwrap();
let mut enc = TapSighashHash::engine();
enc.input(&bytes);
let hash = TapSighashHash::from_engine(enc);
assert_eq!(expected, hash.into_inner());
}
#[test]
fn test_sighashes_keyspending() {
// following test case has been taken from bitcoin core test framework
test_taproot_sighash(
"020000000164eb050a5e3da0c2a65e4786f26d753b7bc69691fabccafb11f7acef36641f1846010000003101b2b404392a22000000000017a9147f2bde86fe78bf68a0544a4f290e12f0b7e0a08c87580200000000000017a91425d11723074ecfb96a0a83c3956bfaf362ae0c908758020000000000001600147e20f938993641de67bb0cdd71682aa34c4d29ad5802000000000000160014c64984dc8761acfa99418bd6bedc79b9287d652d72000000",
"01365724000000000023542156b39dab4f8f3508e0432cfb41fab110170acaa2d4c42539cb90a4dc7c093bc500",
0,
"33ca0ebfb4a945eeee9569fc0f5040221275f88690b7f8592ada88ce3bdf6703",
SigHashType::Default, None,None,
);
test_taproot_sighash(
"0200000002fff49be59befe7566050737910f6ccdc5e749c7f8860ddc140386463d88c5ad0f3000000002cf68eb4a3d67f9d4c079249f7e4f27b8854815cb1ed13842d4fbf395f9e217fd605ee24090100000065235d9203f458520000000000160014b6d48333bb13b4c644e57c43a9a26df3a44b785e58020000000000001976a914eea9461a9e1e3f765d3af3e726162e0229fe3eb688ac58020000000000001976a9143a8869c9f2b5ea1d4ff3aeeb6a8fb2fffb1ad5fe88ac0ad7125c",
"02591f220000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece48fb310000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece",
1,
"626ab955d58c9a8a600a0c580549d06dc7da4e802eb2a531f62a588e430967a8",
SigHashType::All, None,None,
);
test_taproot_sighash(
"0200000001350005f65aa830ced2079df348e2d8c2bdb4f10e2dde6a161d8a07b40d1ad87dae000000001611d0d603d9dc0e000000000017a914459b6d7d6bbb4d8837b4bf7e9a4556f952da2f5c8758020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88ac58020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88aca71c1f4f",
"01c4811000000000002251201bf9297d0a2968ae6693aadd0fa514717afefd218087a239afb7418e2d22e65c",
0,
"dfa9437f9c9a1d1f9af271f79f2f5482f287cdb0d2e03fa92c8a9b216cc6061c",
SigHashType::AllPlusAnyoneCanPay, None,None,
);
test_taproot_sighash(
"020000000185bed1a6da2bffbd60ec681a1bfb71c5111d6395b99b3f8b2bf90167111bcb18f5010000007c83ace802ded24a00000000001600142c4698f9f7a773866879755aa78c516fb332af8e5802000000000000160014d38639dfbac4259323b98a472405db0c461b31fa61073747",
"0144c84d0000000000225120e3f2107989c88e67296ab2faca930efa2e3a5bd3ff0904835a11c9e807458621",
0,
"3129de36a5d05fff97ffca31eb75fcccbbbc27b3147a7a36a9e4b45d8b625067",
SigHashType::None, None,None,
);
test_taproot_sighash(
"eb93dbb901028c8515589dac980b6e7f8e4088b77ed866ca0d6d210a7218b6fd0f6b22dd6d7300000000eb4740a9047efc0e0000000000160014913da2128d8fcf292b3691db0e187414aa1783825802000000000000160014913da2128d8fcf292b3691db0e187414aa178382580200000000000017a9143dd27f01c6f7ef9bb9159937b17f17065ed01a0c875802000000000000160014d7630e19df70ada9905ede1722b800c0005f246641000000",
"013fed110000000000225120eb536ae8c33580290630fc495046e998086a64f8f33b93b07967d9029b265c55",
0,
"2441e8b0e063a2083ee790f14f2045022f07258ddde5ee01de543c9e789d80ae",
SigHashType::NonePlusAnyoneCanPay, None,None,
);
test_taproot_sighash(
"02000000017836b409a5fed32211407e44b971591f2032053f14701fb5b3a30c0ff382f2cc9c0100000061ac55f60288fb5600000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ac58020000000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ace4000000",
"01efa558000000000022512007071ea3dc7e331b0687d0193d1e6d6ed10e645ef36f10ef8831d5e522ac9e80",
0,
"30239345177cadd0e3ea413d49803580abb6cb27971b481b7788a78d35117a88",
SigHashType::Single, None,None,
);
test_taproot_sighash(
"0100000001aa6deae89d5e0aaca58714fc76ef6f3c8284224888089232d4e663843ed3ab3eae010000008b6657a60450cb4c0000000000160014a3d42b5413ef0c0701c4702f3cd7d4df222c147058020000000000001976a91430b4ed8723a4ee8992aa2c8814cfe5c3ad0ab9d988ac5802000000000000160014365b1166a6ed0a5e8e9dff17a6d00bbb43454bc758020000000000001976a914bc98c51a84fe7fad5dc380eb8b39586eff47241688ac4f313247",
"0107af4e00000000002251202c36d243dfc06cb56a248e62df27ecba7417307511a81ae61aa41c597a929c69",
0,
"bf9c83f26c6dd16449e4921f813f551c4218e86f2ec906ca8611175b41b566df",
SigHashType::SinglePlusAnyoneCanPay, None,None,
);
}
#[test]
fn test_sighashes_with_annex() {
test_taproot_sighash(
"0200000001df8123752e8f37d132c4e9f1ff7e4f9b986ade9211267e9ebd5fd22a5e718dec6d01000000ce4023b903cb7b23000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787580200000000000017a914afd0d512a2c5c2b40e25669e9cc460303c325b8b87580200000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787f6020000",
"01ea49260000000000225120ab5e9800806bf18cb246edcf5fe63441208fe955a4b5a35bbff65f5db622a010",
0,
"3b003000add359a364a156e73e02846782a59d0d95ca8c4638aaad99f2ef915c",
SigHashType::SinglePlusAnyoneCanPay,
Some("507b979802e62d397acb29f56743a791894b99372872fc5af06a4f6e8d242d0615cda53062bb20e6ec79756fe39183f0c128adfe85559a8fa042b042c018aa8010143799e44f0893c40e1e"),
None,
);
}
#[test]
fn test_sighashes_with_script_path() {
test_taproot_sighash(
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
0,
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
SigHashType::All,
None,
Some("20cc4e1107aea1d170c5ff5b6817e1303010049724fb3caa7941792ea9d29b3e2bacab"),
);
}
#[test]
fn test_sighashes_with_annex_and_script() {
test_taproot_sighash(
"020000000132fb72cb8fba496755f027a9743e2d698c831fdb8304e4d1a346ac92cbf51acba50100000026bdc7df044aad34000000000017a9144fa2554ed6174586854fa3bc01de58dcf33567d0875802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab95802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab958020000000000001600141b31217d48ccc8760dcc0710fade5866d628e733a02d5122",
"011458360000000000225120a7baec3fb9f84614e3899fcc010c638f80f13539344120e1f4d8b68a9a011a13",
0,
"a0042aa434f9a75904b64043f2a283f8b4c143c7f4f7f49a6cbe5b9f745f4c15",
SigHashType::All,
Some("50a6272b470e1460e3332ade7bb14b81671c564fb6245761bd5bd531394b28860e0b3808ab229fb51791fb6ae6fa82d915b2efb8f6df83ae1f5ab3db13e30928875e2a22b749d89358de481f19286cd4caa792ce27f9559082d227a731c5486882cc707f83da361c51b7aadd9a0cf68fe7480c410fa137b454482d9a1ebf0f96d760b4d61426fc109c6e8e99a508372c45caa7b000a41f8251305da3f206c1849985ba03f3d9592832b4053afbd23ab25d0465df0bc25a36c223aacf8e04ec736a418c72dc319e4da3e972e349713ca600965e7c665f2090d5a70e241ac164115a1f5639f28b1773327715ca307ace64a2de7f0e3df70a2ffee3857689f909c0dad46d8a20fa373a4cc6eed6d4c9806bf146f0d76baae1"),
Some("7520ab9160dd8299dc1367659be3e8f66781fe440d52940c7f8d314a89b9f2698d406ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6eadac"),
);
}
#[test]
fn test_sighash_errors() {
let dumb_tx = Transaction {
version: 0,
lock_time: 0,
input: vec![TxIn::default()],
output: vec![],
};
let mut c = SigHashCache::new(&dumb_tx);
assert_eq!(
c.taproot_signature_hash(0, &Prevouts::All(&vec![]), None, None, SigHashType::All),
Err(Error::PrevoutsSize)
);
let two = vec![TxOut::default(), TxOut::default()];
let too_many_prevouts = Prevouts::All(&two);
assert_eq!(
c.taproot_signature_hash(0, &too_many_prevouts, None, None, SigHashType::All),
Err(Error::PrevoutsSize)
);
let tx_out = TxOut::default();
let prevout = Prevouts::One(1, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::All),
Err(Error::PrevoutKind)
);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::AllPlusAnyoneCanPay),
Err(Error::PrevoutIndex)
);
assert_eq!(
c.taproot_signature_hash(10, &prevout, None, None, SigHashType::AllPlusAnyoneCanPay),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
let prevout = Prevouts::One(0, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::SinglePlusAnyoneCanPay),
Err(Error::SingleWithoutCorrespondingOutput {
index: 0,
outputs_size: 0
})
);
assert_eq!(
c.legacy_signature_hash(10, &Script::default(), 0u32),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
}
#[test]
fn test_annex_errors() {
assert_eq!(Annex::new(&vec![]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&vec![0x51]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&vec![0x51, 0x50]), Err(Error::WrongAnnex));
}
fn test_taproot_sighash(
tx_hex: &str,
prevout_hex: &str,
input_index: usize,
expected_hash: &str,
sighash_type: SigHashType,
annex_hex: Option<&str>,
script_hex: Option<&str>,
) {
let tx_bytes = Vec::from_hex(tx_hex).unwrap();
let tx: Transaction = deserialize(&tx_bytes).unwrap();
let prevout_bytes = Vec::from_hex(prevout_hex).unwrap();
let prevouts: Vec<TxOut> = deserialize(&prevout_bytes).unwrap();
let annex_inner;
let annex = match annex_hex {
Some(annex_hex) => {
annex_inner = Vec::from_hex(annex_hex).unwrap();
Some(Annex::new(&annex_inner).unwrap())
}
None => None,
};
let script_inner;
let script_path = match script_hex {
Some(script_hex) => {
script_inner = Script::from_hex(script_hex).unwrap();
Some(ScriptPath::with_defaults(&script_inner))
}
None => None,
};
let prevouts = if sighash_type.split_anyonecanpay_flag().1 && tx_bytes[0] % 2 == 0 {
// for anyonecanpay the `Prevouts::All` variant is good anyway, but sometimes we want to
// test other codepaths
Prevouts::One(input_index, &prevouts[input_index])
} else {
Prevouts::All(&prevouts)
};
let mut sig_hash_cache = SigHashCache::new(&tx);
let hash = sig_hash_cache
.taproot_signature_hash(input_index, &prevouts, annex, script_path, sighash_type)
.unwrap();
let expected = Vec::from_hex(expected_hash).unwrap();
assert_eq!(expected, hash.into_inner());
}
}