Merge rust-bitcoin/rust-bitcoin#3510: Move `Transaction` to `primitives`

f8f846bb9e Move Transaction type to primitives (Tobin C. Harding)
7b5af2ad5b Use `Transaction::compute_txid` in rustdoc (Tobin C. Harding)
98383a0fbe Introduce Transaction extension traits (Tobin C. Harding)
3f6bc74ae4 Introduce an iterator type for script_pubkey_lens (Tobin C. Harding)
7196992d58 Split Transaction impl block (Tobin C. Harding)
693000d09c Use super::* in bench module (Tobin C. Harding)
29d23b4b3a Move import statement (Tobin C. Harding)
e84346644e Run the formatter (Tobin C. Harding)

Pull request description:

  First introduce the `Transaction` extension traits manually (without using the `define_extension_trait` macro) then move the `Transaction` to `primitives`.

  Note please patch 5, ugly due to language requirements.

ACKs for top commit:
  apoelstra:
    ACK f8f846bb9ea3cfde460ec058eb04e5aba010cdbb; successfully ran local tests

Tree-SHA512: f830ad4f763bf78c5fedf750dbcb4354b6c8f38cbe2c0b6ba9e9d6b836356c5e041fe3db04e0b354c939f4205dd1ae29ba15b8e53da6b495450852f955d2f40d
This commit is contained in:
merge-script 2024-10-30 21:46:46 +00:00
commit c2adc52ee1
No known key found for this signature in database
GPG Key ID: C588D63CE41B97C1
13 changed files with 467 additions and 344 deletions

View File

@ -34,6 +34,7 @@ use std::fmt;
use bitcoin::address::script_pubkey::ScriptBufExt as _;
use bitcoin::bip32::{ChildNumber, DerivationPath, Fingerprint, IntoDerivationPath, Xpriv, Xpub};
use bitcoin::consensus::encode;
use bitcoin::consensus_validation::TransactionExt as _;
use bitcoin::locktime::absolute;
use bitcoin::psbt::{self, Input, Psbt, PsbtSighashType};
use bitcoin::script::ScriptBufExt as _;

View File

@ -80,6 +80,7 @@ use std::collections::BTreeMap;
use bitcoin::address::script_pubkey::{BuilderExt as _, ScriptBufExt as _};
use bitcoin::bip32::{ChildNumber, DerivationPath, Fingerprint, Xpriv, Xpub};
use bitcoin::consensus::encode;
use bitcoin::consensus_validation::TransactionExt as _;
use bitcoin::key::{TapTweak, XOnlyPublicKey};
use bitcoin::opcodes::all::{OP_CHECKSIG, OP_CLTV, OP_DROP};
use bitcoin::psbt::{self, Input, Output, Psbt, PsbtSighashType};

View File

@ -803,8 +803,8 @@ impl Address<NetworkUnchecked> {
/// Parse a bech32 Address string
pub fn from_bech32_str(s: &str) -> Result<Address<NetworkUnchecked>, Bech32Error> {
let (hrp, witness_version, data) = bech32::segwit::decode(s)
.map_err(|e| Bech32Error::ParseBech32(ParseBech32Error(e)))?;
let (hrp, witness_version, data) =
bech32::segwit::decode(s).map_err(|e| Bech32Error::ParseBech32(ParseBech32Error(e)))?;
let version = WitnessVersion::try_from(witness_version.to_u8())?;
let program = WitnessProgram::new(version, &data)
.expect("bech32 guarantees valid program length for witness");

View File

@ -23,7 +23,7 @@ use crate::network::Params;
use crate::pow::{Target, Work};
use crate::prelude::Vec;
use crate::script::{self, ScriptExt as _};
use crate::transaction::{Transaction, Wtxid};
use crate::transaction::{Transaction, TransactionExt as _, Wtxid};
#[rustfmt::skip] // Keep public re-exports separate.
#[doc(inline)]

View File

@ -34,7 +34,7 @@ pub mod fee_rate {
use hex::test_hex_unwrap as hex;
use crate::consensus::Decodable;
use crate::transaction::Transaction;
use crate::transaction::{Transaction, TransactionExt as _};
const SOME_TX: &str = "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000";
@ -87,7 +87,10 @@ pub mod locktime {
//! whether bit 22 of the `u32` consensus value is set.
/// Re-export everything from the `primitives::locktime::relative` module.
pub use primitives::locktime::relative::{Height, LockTime, Time, TimeOverflowError, DisabledLockTimeError, IncompatibleHeightError, IncompatibleTimeError};
pub use primitives::locktime::relative::{
DisabledLockTimeError, Height, IncompatibleHeightError, IncompatibleTimeError,
LockTime, Time, TimeOverflowError,
};
}
}

View File

@ -10,10 +10,8 @@
//!
//! This module provides the structures and functions needed to support transactions.
use core::{cmp, fmt};
use core::fmt;
#[cfg(feature = "arbitrary")]
use arbitrary::{Arbitrary, Unstructured};
use hashes::sha256d;
use internals::{compact_size, write_err, ToU64};
use io::{BufRead, Write};
@ -32,7 +30,7 @@ use crate::{Amount, FeeRate, SignedAmount};
#[rustfmt::skip] // Keep public re-exports separate.
#[doc(inline)]
pub use primitives::transaction::{OutPoint, ParseOutPointError, Txid, Wtxid, Version, TxIn, TxOut};
pub use primitives::transaction::{OutPoint, ParseOutPointError, Transaction, Txid, Wtxid, Version, TxIn, TxOut};
impl_hashencode!(Txid);
impl_hashencode!(Wtxid);
@ -61,6 +59,7 @@ pub trait TxIdentifier: sealed::Sealed + AsRef<[u8]> {}
impl TxIdentifier for Txid {}
impl TxIdentifier for Wtxid {}
// Duplicated in `primitives`.
/// The marker MUST be a 1-byte zero value: 0x00. (BIP-141)
const SEGWIT_MARKER: u8 = 0x00;
/// The flag MUST be a 1-byte non-zero value. Currently, 0x01 MUST be used. (BIP-141)
@ -211,162 +210,28 @@ fn size_from_script_pubkey(script_pubkey: &Script) -> usize {
Amount::SIZE + compact_size::encoded_size(len) + len
}
/// Bitcoin transaction.
///
/// An authenticated movement of coins.
///
/// See [Bitcoin Wiki: Transaction][wiki-transaction] for more information.
///
/// [wiki-transaction]: https://en.bitcoin.it/wiki/Transaction
///
/// ### Bitcoin Core References
///
/// * [CTtransaction definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L279)
///
/// ### Serialization notes
///
/// If any inputs have nonempty witnesses, the entire transaction is serialized
/// in the post-BIP141 Segwit format which includes a list of witnesses. If all
/// inputs have empty witnesses, the transaction is serialized in the pre-BIP141
/// format.
///
/// There is one major exception to this: to avoid deserialization ambiguity,
/// if the transaction has no inputs, it is serialized in the BIP141 style. Be
/// aware that this differs from the transaction format in PSBT, which _never_
/// uses BIP141. (Ordinarily there is no conflict, since in PSBT transactions
/// are always unsigned and therefore their inputs have empty witnesses.)
///
/// The specific ambiguity is that Segwit uses the flag bytes `0001` where an old
/// serializer would read the number of transaction inputs. The old serializer
/// would interpret this as "no inputs, one output", which means the transaction
/// is invalid, and simply reject it. Segwit further specifies that this encoding
/// should *only* be used when some input has a nonempty witness; that is,
/// witness-less transactions should be encoded in the traditional format.
///
/// However, in protocols where transactions may legitimately have 0 inputs, e.g.
/// when parties are cooperatively funding a transaction, the "00 means Segwit"
/// heuristic does not work. Since Segwit requires such a transaction be encoded
/// in the original transaction format (since it has no inputs and therefore
/// no input witnesses), a traditionally encoded transaction may have the `0001`
/// Segwit flag in it, which confuses most Segwit parsers including the one in
/// Bitcoin Core.
///
/// We therefore deviate from the spec by always using the Segwit witness encoding
/// for 0-input transactions, which results in unambiguously parseable transactions.
///
/// ### A note on ordering
///
/// This type implements `Ord`, even though it contains a locktime, which is not
/// itself `Ord`. This was done to simplify applications that may need to hold
/// transactions inside a sorted container. We have ordered the locktimes based
/// on their representation as a `u32`, which is not a semantically meaningful
/// order, and therefore the ordering on `Transaction` itself is not semantically
/// meaningful either.
///
/// The ordering is, however, consistent with the ordering present in this library
/// before this change, so users should not notice any breakage (here) when
/// transitioning from 0.29 to 0.30.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Transaction {
/// The protocol version, is currently expected to be 1, 2 (BIP 68) or 3 (BIP 431).
pub version: Version,
/// Block height or timestamp. Transaction cannot be included in a block until this height/time.
///
/// ### Relevant BIPs
///
/// * [BIP-65 OP_CHECKLOCKTIMEVERIFY](https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki)
/// * [BIP-113 Median time-past as endpoint for lock-time calculations](https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki)
pub lock_time: absolute::LockTime,
/// List of transaction inputs.
pub input: Vec<TxIn>,
/// List of transaction outputs.
pub output: Vec<TxOut>,
}
impl cmp::PartialOrd for Transaction {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { Some(self.cmp(other)) }
}
impl cmp::Ord for Transaction {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.version
.cmp(&other.version)
.then(self.lock_time.to_consensus_u32().cmp(&other.lock_time.to_consensus_u32()))
.then(self.input.cmp(&other.input))
.then(self.output.cmp(&other.output))
}
}
impl Transaction {
// https://github.com/bitcoin/bitcoin/blob/44b05bf3fef2468783dcebf651654fdd30717e7e/src/policy/policy.h#L27
/// Maximum transaction weight for Bitcoin Core 25.0.
pub const MAX_STANDARD_WEIGHT: Weight = Weight::from_wu(400_000);
/// Extension functionality for the [`Transaction`] type.
pub trait TransactionExt: sealed::Sealed {
/// Computes a "normalized TXID" which does not include any signatures.
///
/// This method is deprecated. `ntxid` has been renamed to `compute_ntxid` to note that it's
/// computationally expensive. Use `compute_ntxid` instead.
#[deprecated(since = "0.31.0", note = "use `compute_ntxid()` instead")]
pub fn ntxid(&self) -> sha256d::Hash { self.compute_ntxid() }
/// Computes a "normalized TXID" which does not include any signatures.
///
/// This gives a way to identify a transaction that is "the same" as
/// another in the sense of having same inputs and outputs.
#[doc(alias = "ntxid")]
pub fn compute_ntxid(&self) -> sha256d::Hash {
let cloned_tx = Transaction {
version: self.version,
lock_time: self.lock_time,
input: self
.input
.iter()
.map(|txin| TxIn {
script_sig: ScriptBuf::new(),
witness: Witness::default(),
..*txin
})
.collect(),
output: self.output.clone(),
};
cloned_tx.compute_txid().into()
}
fn ntxid(&self) -> sha256d::Hash;
/// Computes the [`Txid`].
///
/// This method is deprecated. `txid` has been renamed to `compute_txid` to note that it's
/// computationally expensive. Use `compute_txid` instead.
#[deprecated(since = "0.31.0", note = "use `compute_txid()` instead")]
pub fn txid(&self) -> Txid { self.compute_txid() }
/// Computes the [`Txid`].
///
/// Hashes the transaction **excluding** the segwit data (i.e. the marker, flag bytes, and the
/// witness fields themselves). For non-segwit transactions which do not have any segwit data,
/// this will be equal to [`Transaction::compute_wtxid()`].
#[doc(alias = "txid")]
pub fn compute_txid(&self) -> Txid {
let hash = hash_transaction(self, false);
Txid::from_byte_array(hash.to_byte_array())
}
fn txid(&self) -> Txid;
/// Computes the segwit version of the transaction id.
///
/// This method is deprecated. `wtxid` has been renamed to `compute_wtxid` to note that it's
/// computationally expensive. Use `compute_wtxid` instead.
#[deprecated(since = "0.31.0", note = "use `compute_wtxid()` instead")]
pub fn wtxid(&self) -> Wtxid { self.compute_wtxid() }
/// Computes the segwit version of the transaction id.
///
/// Hashes the transaction **including** all segwit data (i.e. the marker, flag bytes, and the
/// witness fields themselves). For non-segwit transactions which do not have any segwit data,
/// this will be equal to [`Transaction::txid()`].
#[doc(alias = "wtxid")]
pub fn compute_wtxid(&self) -> Wtxid {
let hash = hash_transaction(self, self.uses_segwit_serialization());
Wtxid::from_byte_array(hash.to_byte_array())
}
fn wtxid(&self) -> Wtxid;
/// Returns the weight of this transaction, as defined by BIP-141.
///
@ -386,17 +251,111 @@ impl Transaction {
/// If you need to use 0-input transactions, we strongly recommend you do so using the PSBT
/// API. The unsigned transaction encoded within PSBT is always a non-segwit transaction
/// and can therefore avoid this ambiguity.
fn weight(&self) -> Weight;
/// Returns the base transaction size.
///
/// > Base transaction size is the size of the transaction serialised with the witness data stripped.
fn base_size(&self) -> usize;
/// Returns the total transaction size.
///
/// > Total transaction size is the transaction size in bytes serialized as described in BIP144,
/// > including base data and witness data.
fn total_size(&self) -> usize;
/// Returns the "virtual size" (vsize) of this transaction.
///
/// Will be `ceil(weight / 4.0)`. Note this implements the virtual size as per [`BIP141`], which
/// is different to what is implemented in Bitcoin Core. The computation should be the same for
/// any remotely sane transaction, and a standardness-rule-correct version is available in the
/// [`policy`] module.
///
/// > Virtual transaction size is defined as Transaction weight / 4 (rounded up to the next integer).
///
/// [`BIP141`]: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
/// [`policy`]: ../../policy/index.html
fn vsize(&self) -> usize;
/// Checks if this is a coinbase transaction.
///
/// The first transaction in the block distributes the mining reward and is called the coinbase
/// transaction. It is impossible to check if the transaction is first in the block, so this
/// function checks the structure of the transaction instead - the previous output must be
/// all-zeros (creates satoshis "out of thin air").
#[doc(alias = "is_coin_base")] // method previously had this name
fn is_coinbase(&self) -> bool;
/// Returns `true` if the transaction itself opted in to be BIP-125-replaceable (RBF).
///
/// # Warning
///
/// **Incorrectly relying on RBF may lead to monetary loss!**
///
/// This **does not** cover the case where a transaction becomes replaceable due to ancestors
/// being RBF. Please note that transactions **may be replaced** even if they **do not** include
/// the RBF signal: <https://bitcoinops.org/en/newsletters/2022/10/19/#transaction-replacement-option>.
fn is_explicitly_rbf(&self) -> bool;
/// Returns true if this [`Transaction`]'s absolute timelock is satisfied at `height`/`time`.
///
/// # Returns
///
/// By definition if the lock time is not enabled the transaction's absolute timelock is
/// considered to be satisfied i.e., there are no timelock constraints restricting this
/// transaction from being mined immediately.
fn is_absolute_timelock_satisfied(&self, height: Height, time: Time) -> bool;
/// Returns `true` if this transactions nLockTime is enabled ([BIP-65]).
///
/// [BIP-65]: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
fn is_lock_time_enabled(&self) -> bool;
/// Returns an iterator over lengths of `script_pubkey`s in the outputs.
///
/// This is useful in combination with [`predict_weight`] if you have the transaction already
/// constructed with a dummy value in the fee output which you'll adjust after calculating the
/// weight.
fn script_pubkey_lens(&self) -> TxOutToScriptPubkeyLengthIter;
/// Counts the total number of sigops.
///
/// This value is for pre-Taproot transactions only.
///
/// > In Taproot, a different mechanism is used. Instead of having a global per-block limit,
/// > there is a per-transaction-input limit, proportional to the size of that input.
/// > ref: <https://bitcoin.stackexchange.com/questions/117356/what-is-sigop-signature-operation#117359>
///
/// The `spent` parameter is a closure/function that looks up the output being spent by each input
/// It takes in an [`OutPoint`] and returns a [`TxOut`]. If you can't provide this, a placeholder of
/// `|_| None` can be used. Without access to the previous [`TxOut`], any sigops in a redeemScript (P2SH)
/// as well as any segwit sigops will not be counted for that input.
fn total_sigop_cost<S>(&self, spent: S) -> usize
where
S: FnMut(&OutPoint) -> Option<TxOut>;
/// Returns a reference to the input at `input_index` if it exists.
fn tx_in(&self, input_index: usize) -> Result<&TxIn, InputsIndexError>;
/// Returns a reference to the output at `output_index` if it exists.
fn tx_out(&self, output_index: usize) -> Result<&TxOut, OutputsIndexError>;
}
impl TransactionExt for Transaction {
fn ntxid(&self) -> sha256d::Hash { self.compute_ntxid() }
fn txid(&self) -> Txid { self.compute_txid() }
fn wtxid(&self) -> Wtxid { self.compute_wtxid() }
#[inline]
pub fn weight(&self) -> Weight {
fn weight(&self) -> Weight {
// This is the exact definition of a weight unit, as defined by BIP-141 (quote above).
let wu = self.base_size() * 3 + self.total_size();
Weight::from_wu_usize(wu)
}
/// Returns the base transaction size.
///
/// > Base transaction size is the size of the transaction serialised with the witness data stripped.
pub fn base_size(&self) -> usize {
fn base_size(&self) -> usize {
let mut size: usize = 4; // Serialized length of a u32 for the version number.
size += compact_size::encoded_size(self.input.len());
@ -408,12 +367,8 @@ impl Transaction {
size + absolute::LockTime::SIZE
}
/// Returns the total transaction size.
///
/// > Total transaction size is the transaction size in bytes serialized as described in BIP144,
/// > including base data and witness data.
#[inline]
pub fn total_size(&self) -> usize {
fn total_size(&self) -> usize {
let mut size: usize = 4; // Serialized length of a u32 for the version number.
let uses_segwit = self.uses_segwit_serialization();
@ -434,88 +389,33 @@ impl Transaction {
size + absolute::LockTime::SIZE
}
/// Returns the "virtual size" (vsize) of this transaction.
///
/// Will be `ceil(weight / 4.0)`. Note this implements the virtual size as per [`BIP141`], which
/// is different to what is implemented in Bitcoin Core. The computation should be the same for
/// any remotely sane transaction, and a standardness-rule-correct version is available in the
/// [`policy`] module.
///
/// > Virtual transaction size is defined as Transaction weight / 4 (rounded up to the next integer).
///
/// [`BIP141`]: https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
/// [`policy`]: ../../policy/index.html
#[inline]
pub fn vsize(&self) -> usize {
fn vsize(&self) -> usize {
// No overflow because it's computed from data in memory
self.weight().to_vbytes_ceil() as usize
}
/// Checks if this is a coinbase transaction.
///
/// The first transaction in the block distributes the mining reward and is called the coinbase
/// transaction. It is impossible to check if the transaction is first in the block, so this
/// function checks the structure of the transaction instead - the previous output must be
/// all-zeros (creates satoshis "out of thin air").
#[doc(alias = "is_coin_base")] // method previously had this name
pub fn is_coinbase(&self) -> bool {
fn is_coinbase(&self) -> bool {
self.input.len() == 1 && self.input[0].previous_output == OutPoint::COINBASE_PREVOUT
}
/// Returns `true` if the transaction itself opted in to be BIP-125-replaceable (RBF).
///
/// # Warning
///
/// **Incorrectly relying on RBF may lead to monetary loss!**
///
/// This **does not** cover the case where a transaction becomes replaceable due to ancestors
/// being RBF. Please note that transactions **may be replaced** even if they **do not** include
/// the RBF signal: <https://bitcoinops.org/en/newsletters/2022/10/19/#transaction-replacement-option>.
pub fn is_explicitly_rbf(&self) -> bool {
self.input.iter().any(|input| input.sequence.is_rbf())
}
fn is_explicitly_rbf(&self) -> bool { self.input.iter().any(|input| input.sequence.is_rbf()) }
/// Returns true if this [`Transaction`]'s absolute timelock is satisfied at `height`/`time`.
///
/// # Returns
///
/// By definition if the lock time is not enabled the transaction's absolute timelock is
/// considered to be satisfied i.e., there are no timelock constraints restricting this
/// transaction from being mined immediately.
pub fn is_absolute_timelock_satisfied(&self, height: Height, time: Time) -> bool {
fn is_absolute_timelock_satisfied(&self, height: Height, time: Time) -> bool {
if !self.is_lock_time_enabled() {
return true;
}
self.lock_time.is_satisfied_by(height, time)
}
/// Returns `true` if this transactions nLockTime is enabled ([BIP-65]).
///
/// [BIP-65]: https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
pub fn is_lock_time_enabled(&self) -> bool { self.input.iter().any(|i| i.enables_lock_time()) }
fn is_lock_time_enabled(&self) -> bool { self.input.iter().any(|i| i.enables_lock_time()) }
/// Returns an iterator over lengths of `script_pubkey`s in the outputs.
///
/// This is useful in combination with [`predict_weight`] if you have the transaction already
/// constructed with a dummy value in the fee output which you'll adjust after calculating the
/// weight.
pub fn script_pubkey_lens(&self) -> impl Iterator<Item = usize> + '_ {
self.output.iter().map(|txout| txout.script_pubkey.len())
fn script_pubkey_lens(&self) -> TxOutToScriptPubkeyLengthIter {
TxOutToScriptPubkeyLengthIter { inner: self.output.iter() }
}
/// Counts the total number of sigops.
///
/// This value is for pre-Taproot transactions only.
///
/// > In Taproot, a different mechanism is used. Instead of having a global per-block limit,
/// > there is a per-transaction-input limit, proportional to the size of that input.
/// > ref: <https://bitcoin.stackexchange.com/questions/117356/what-is-sigop-signature-operation#117359>
///
/// The `spent` parameter is a closure/function that looks up the output being spent by each input
/// It takes in an [`OutPoint`] and returns a [`TxOut`]. If you can't provide this, a placeholder of
/// `|_| None` can be used. Without access to the previous [`TxOut`], any sigops in a redeemScript (P2SH)
/// as well as any segwit sigops will not be counted for that input.
pub fn total_sigop_cost<S>(&self, mut spent: S) -> usize
fn total_sigop_cost<S>(&self, mut spent: S) -> usize
where
S: FnMut(&OutPoint) -> Option<TxOut>,
{
@ -526,11 +426,57 @@ impl Transaction {
cost.saturating_add(self.count_witness_sigops(&mut spent))
}
#[inline]
fn tx_in(&self, input_index: usize) -> Result<&TxIn, InputsIndexError> {
self.input
.get(input_index)
.ok_or(IndexOutOfBoundsError { index: input_index, length: self.input.len() }.into())
}
#[inline]
fn tx_out(&self, output_index: usize) -> Result<&TxOut, OutputsIndexError> {
self.output
.get(output_index)
.ok_or(IndexOutOfBoundsError { index: output_index, length: self.output.len() }.into())
}
}
/// Iterates over transaction outputs and for each output yields the length of the scriptPubkey.
// This exists to hardcode the type of the closure crated by `map`.
pub struct TxOutToScriptPubkeyLengthIter<'a> {
inner: core::slice::Iter<'a, TxOut>,
}
impl Iterator for TxOutToScriptPubkeyLengthIter<'_> {
type Item = usize;
fn next(&mut self) -> Option<usize> { self.inner.next().map(|txout| txout.script_pubkey.len()) }
}
trait TransactionExtPriv {
/// Gets the sigop count.
///
/// Counts sigops for this transaction's input scriptSigs and output scriptPubkeys i.e., doesn't
/// count sigops in the redeemScript for p2sh or the sigops in the witness (use
/// `count_p2sh_sigops` and `count_witness_sigops` respectively).
fn count_p2pk_p2pkh_sigops(&self) -> usize;
/// Does not include wrapped segwit (see `count_witness_sigops`).
fn count_p2sh_sigops<S>(&self, spent: &mut S) -> usize
where
S: FnMut(&OutPoint) -> Option<TxOut>;
/// Includes wrapped segwit (returns 0 for Taproot spends).
fn count_witness_sigops<S>(&self, spent: &mut S) -> usize
where
S: FnMut(&OutPoint) -> Option<TxOut>;
/// Returns whether or not to serialize transaction as specified in BIP-144.
fn uses_segwit_serialization(&self) -> bool;
}
impl TransactionExtPriv for Transaction {
/// Gets the sigop count.
fn count_p2pk_p2pkh_sigops(&self) -> usize {
let mut count: usize = 0;
for input in &self.input {
@ -620,6 +566,7 @@ impl Transaction {
}
/// Returns whether or not to serialize transaction as specified in BIP-144.
// This is duplicated in `primitives`, if you change it please do so in both places.
fn uses_segwit_serialization(&self) -> bool {
if self.input.iter().any(|input| !input.witness.is_empty()) {
return true;
@ -628,80 +575,6 @@ impl Transaction {
// `Transaction` docs for full explanation).
self.input.is_empty()
}
/// Returns a reference to the input at `input_index` if it exists.
#[inline]
pub fn tx_in(&self, input_index: usize) -> Result<&TxIn, InputsIndexError> {
self.input
.get(input_index)
.ok_or(IndexOutOfBoundsError { index: input_index, length: self.input.len() }.into())
}
/// Returns a reference to the output at `output_index` if it exists.
#[inline]
pub fn tx_out(&self, output_index: usize) -> Result<&TxOut, OutputsIndexError> {
self.output
.get(output_index)
.ok_or(IndexOutOfBoundsError { index: output_index, length: self.output.len() }.into())
}
}
// This is equivalent to consensus encoding but hashes the fields manually.
fn hash_transaction(tx: &Transaction, uses_segwit_serialization: bool) -> sha256d::Hash {
use hashes::HashEngine as _;
let mut enc = sha256d::Hash::engine();
enc.input(&tx.version.0.to_le_bytes()); // Same as `encode::emit_i32`.
if uses_segwit_serialization {
// BIP-141 (segwit) transaction serialization also includes marker and flag.
enc.input(&[SEGWIT_MARKER]);
enc.input(&[SEGWIT_FLAG]);
}
// Encode inputs (excluding witness data) with leading compact size encoded int.
let input_len = tx.input.len();
enc.input(compact_size::encode(input_len).as_slice());
for input in &tx.input {
// Encode each input same as we do in `Encodable for TxIn`.
enc.input(input.previous_output.txid.as_byte_array());
enc.input(&input.previous_output.vout.to_le_bytes());
let script_sig_bytes = input.script_sig.as_bytes();
enc.input(compact_size::encode(script_sig_bytes.len()).as_slice());
enc.input(script_sig_bytes);
enc.input(&input.sequence.0.to_le_bytes())
}
// Encode outputs with leading compact size encoded int.
let output_len = tx.output.len();
enc.input(compact_size::encode(output_len).as_slice());
for output in &tx.output {
// Encode each output same as we do in `Encodable for TxOut`.
enc.input(&output.value.to_sat().to_le_bytes());
let script_pubkey_bytes = output.script_pubkey.as_bytes();
enc.input(compact_size::encode(script_pubkey_bytes.len()).as_slice());
enc.input(script_pubkey_bytes);
}
if uses_segwit_serialization {
// BIP-141 (segwit) transaction serialization also includes the witness data.
for input in &tx.input {
// Same as `Encodable for Witness`.
enc.input(compact_size::encode(input.witness.len()).as_slice());
for element in input.witness.iter() {
enc.input(compact_size::encode(element.len()).as_slice());
enc.input(element);
}
}
}
// Same as `Encodable for absolute::LockTime`.
enc.input(&tx.lock_time.to_consensus_u32().to_le_bytes());
sha256d::Hash::from_engine(enc)
}
/// Error attempting to do an out of bounds access on the transaction inputs vector.
@ -907,22 +780,6 @@ impl Decodable for Transaction {
}
}
impl From<Transaction> for Txid {
fn from(tx: Transaction) -> Txid { tx.compute_txid() }
}
impl From<&Transaction> for Txid {
fn from(tx: &Transaction) -> Txid { tx.compute_txid() }
}
impl From<Transaction> for Wtxid {
fn from(tx: Transaction) -> Wtxid { tx.compute_wtxid() }
}
impl From<&Transaction> for Wtxid {
fn from(tx: &Transaction) -> Wtxid { tx.compute_wtxid() }
}
/// Computes the value of an output accounting for the cost of spending it.
///
/// The effective value is the value of an output value minus the amount to spend it. That is, the
@ -1290,22 +1147,9 @@ impl InputWeightPrediction {
}
}
#[cfg(feature = "arbitrary")]
impl<'a> Arbitrary<'a> for Transaction {
fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result<Self> {
use primitives::absolute::LockTime;
Ok(Transaction {
version: Version::arbitrary(u)?,
lock_time: LockTime::arbitrary(u)?,
input: Vec::<TxIn>::arbitrary(u)?,
output: Vec::<TxOut>::arbitrary(u)?,
})
}
}
mod sealed {
pub trait Sealed {}
impl Sealed for super::Transaction {}
impl Sealed for super::Txid {}
impl Sealed for super::Wtxid {}
impl Sealed for super::OutPoint {}
@ -1716,7 +1560,7 @@ mod tests {
fn transaction_verify() {
use std::collections::HashMap;
use crate::consensus_validation::TxVerifyError;
use crate::consensus_validation::{TransactionExt as _, TxVerifyError};
use crate::witness::Witness;
// a random recent segwit transaction from blockchain using both old and segwit inputs
@ -2146,7 +1990,7 @@ mod benches {
use io::sink;
use test::{black_box, Bencher};
use super::Transaction;
use super::*;
use crate::consensus::{deserialize, Encodable};
const SOME_TX: &str = "0100000001a15d57094aa7a21a28cb20b59aab8fc7d1149a3bdbcddba9c622e4f5f6a99ece010000006c493046022100f93bb0e7d8db7bd46e40132d1f8242026e045f03a0efe71bbb8e3f475e970d790221009337cd7f1f929f00cc6ff01f03729b069a7c21b59b1736ddfee5db5946c5da8c0121033b9b137ee87d5a812d6f506efdd37f0affa7ffc310711c06c7f3e097c9447c52ffffffff0100e1f505000000001976a9140389035a9225b3839e2bbf32d826a1e222031fd888ac00000000";

View File

@ -161,12 +161,8 @@ define_extension_trait! {
}
}
mod sealed {
pub trait Sealed {}
impl Sealed for super::Script {}
}
impl Transaction {
/// Extension functionality for the [`Transaction`] type.
pub trait TransactionExt: sealed::Sealed {
/// Verifies that this transaction is able to spend its inputs.
///
/// Shorthand for [`Self::verify_with_flags`] with flag [`bitcoinconsensus::VERIFY_ALL_PRE_TAPROOT`].
@ -174,17 +170,28 @@ impl Transaction {
/// The `spent` closure should not return the same [`TxOut`] twice!
///
/// [`bitcoinconsensus::VERIFY_ALL_PRE_TAPROOT`]: https://docs.rs/bitcoinconsensus/0.106.0+26.0/bitcoinconsensus/constant.VERIFY_ALL_PRE_TAPROOT.html
pub fn verify<S>(&self, spent: S) -> Result<(), TxVerifyError>
fn verify<S>(&self, spent: S) -> Result<(), TxVerifyError>
where
S: FnMut(&OutPoint) -> Option<TxOut>;
/// Verifies that this transaction is able to spend its inputs.
///
/// The `spent` closure should not return the same [`TxOut`] twice!
fn verify_with_flags<S, F>(&self, spent: S, flags: F) -> Result<(), TxVerifyError>
where
S: FnMut(&OutPoint) -> Option<TxOut>,
F: Into<u32>;
}
impl TransactionExt for Transaction {
fn verify<S>(&self, spent: S) -> Result<(), TxVerifyError>
where
S: FnMut(&OutPoint) -> Option<TxOut>,
{
verify_transaction(self, spent)
}
/// Verifies that this transaction is able to spend its inputs.
///
/// The `spent` closure should not return the same [`TxOut`] twice!
pub fn verify_with_flags<S, F>(&self, spent: S, flags: F) -> Result<(), TxVerifyError>
fn verify_with_flags<S, F>(&self, spent: S, flags: F) -> Result<(), TxVerifyError>
where
S: FnMut(&OutPoint) -> Option<TxOut>,
F: Into<u32>,
@ -193,6 +200,12 @@ impl Transaction {
}
}
mod sealed {
pub trait Sealed {}
impl Sealed for super::Script {}
impl Sealed for super::Transaction {}
}
/// Wrapped error from `bitcoinconsensus`.
// We do this for two reasons:
// 1. We don't want the error to be part of the public API because we do not want to expose the

View File

@ -23,6 +23,7 @@ use crate::address::script_pubkey::ScriptExt as _;
use crate::consensus::{encode, Encodable};
use crate::prelude::{Borrow, BorrowMut, String, ToOwned, Vec};
use crate::taproot::{LeafVersion, TapLeafHash, TapLeafTag, TAPROOT_ANNEX_PREFIX};
use crate::transaction::TransactionExt as _;
use crate::witness::Witness;
use crate::{transaction, Amount, Script, ScriptBuf, Sequence, Transaction, TxIn, TxOut};
@ -1509,7 +1510,6 @@ mod tests {
use crate::consensus::deserialize;
use crate::locktime::absolute;
use crate::script::ScriptBufExt as _;
use crate::taproot::TapTweakHashExt as _;
extern crate serde_json;
@ -1827,6 +1827,8 @@ mod tests {
fn bip_341_sighash_tests() {
use hex::DisplayHex;
use crate::taproot::TapTweakHashExt as _;
fn sighash_deser_numeric<'de, D>(deserializer: D) -> Result<TapSighashType, D::Error>
where
D: serde::Deserializer<'de>,

View File

@ -27,7 +27,7 @@ use crate::key::{TapTweak, XOnlyPublicKey};
use crate::prelude::{btree_map, BTreeMap, BTreeSet, Borrow, Box, Vec};
use crate::script::ScriptExt as _;
use crate::sighash::{self, EcdsaSighashType, Prevouts, SighashCache};
use crate::transaction::{self, Transaction, TxOut};
use crate::transaction::{self, Transaction, TransactionExt as _, TxOut};
use crate::{Amount, FeeRate, TapLeafHash, TapSighashType};
#[rustfmt::skip] // Keep public re-exports separate.

View File

@ -1,3 +1,4 @@
use bitcoin::transaction::TransactionExt as _;
use honggfuzz::fuzz;
fn do_test(data: &[u8]) {

View File

@ -1,4 +1,3 @@
// SPDX-License-Identifier: CC0-1.0
//! SipHash 2-4 implementation.

View File

@ -51,7 +51,7 @@ pub use units::amount::{Amount, SignedAmount};
pub use units::{
block::{BlockHeight, BlockInterval},
fee_rate::FeeRate,
weight::Weight
weight::Weight,
};
#[doc(inline)]

View File

@ -10,16 +10,22 @@
//!
//! This module provides the structures and functions needed to support transactions.
#[cfg(feature = "alloc")]
use core::cmp;
use core::fmt;
#[cfg(feature = "arbitrary")]
use arbitrary::{Arbitrary, Unstructured};
use hashes::sha256d;
#[cfg(feature = "alloc")]
use internals::write_err;
use internals::{compact_size, write_err};
#[cfg(feature = "alloc")]
use units::{parse, Amount};
use units::{parse, Amount, Weight};
#[cfg(feature = "alloc")]
use crate::locktime::absolute;
#[cfg(feature = "alloc")]
use crate::prelude::Vec;
#[cfg(feature = "alloc")]
use crate::script::ScriptBuf;
#[cfg(feature = "alloc")]
@ -27,6 +33,246 @@ use crate::sequence::Sequence;
#[cfg(feature = "alloc")]
use crate::witness::Witness;
/// Bitcoin transaction.
///
/// An authenticated movement of coins.
///
/// See [Bitcoin Wiki: Transaction][wiki-transaction] for more information.
///
/// [wiki-transaction]: https://en.bitcoin.it/wiki/Transaction
///
/// ### Bitcoin Core References
///
/// * [CTtransaction definition](https://github.com/bitcoin/bitcoin/blob/345457b542b6a980ccfbc868af0970a6f91d1b82/src/primitives/transaction.h#L279)
///
/// ### Serialization notes
///
/// If any inputs have nonempty witnesses, the entire transaction is serialized
/// in the post-BIP141 Segwit format which includes a list of witnesses. If all
/// inputs have empty witnesses, the transaction is serialized in the pre-BIP141
/// format.
///
/// There is one major exception to this: to avoid deserialization ambiguity,
/// if the transaction has no inputs, it is serialized in the BIP141 style. Be
/// aware that this differs from the transaction format in PSBT, which _never_
/// uses BIP141. (Ordinarily there is no conflict, since in PSBT transactions
/// are always unsigned and therefore their inputs have empty witnesses.)
///
/// The specific ambiguity is that Segwit uses the flag bytes `0001` where an old
/// serializer would read the number of transaction inputs. The old serializer
/// would interpret this as "no inputs, one output", which means the transaction
/// is invalid, and simply reject it. Segwit further specifies that this encoding
/// should *only* be used when some input has a nonempty witness; that is,
/// witness-less transactions should be encoded in the traditional format.
///
/// However, in protocols where transactions may legitimately have 0 inputs, e.g.
/// when parties are cooperatively funding a transaction, the "00 means Segwit"
/// heuristic does not work. Since Segwit requires such a transaction be encoded
/// in the original transaction format (since it has no inputs and therefore
/// no input witnesses), a traditionally encoded transaction may have the `0001`
/// Segwit flag in it, which confuses most Segwit parsers including the one in
/// Bitcoin Core.
///
/// We therefore deviate from the spec by always using the Segwit witness encoding
/// for 0-input transactions, which results in unambiguously parseable transactions.
///
/// ### A note on ordering
///
/// This type implements `Ord`, even though it contains a locktime, which is not
/// itself `Ord`. This was done to simplify applications that may need to hold
/// transactions inside a sorted container. We have ordered the locktimes based
/// on their representation as a `u32`, which is not a semantically meaningful
/// order, and therefore the ordering on `Transaction` itself is not semantically
/// meaningful either.
///
/// The ordering is, however, consistent with the ordering present in this library
/// before this change, so users should not notice any breakage (here) when
/// transitioning from 0.29 to 0.30.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg(feature = "alloc")]
pub struct Transaction {
/// The protocol version, is currently expected to be 1, 2 (BIP 68) or 3 (BIP 431).
pub version: Version,
/// Block height or timestamp. Transaction cannot be included in a block until this height/time.
///
/// ### Relevant BIPs
///
/// * [BIP-65 OP_CHECKLOCKTIMEVERIFY](https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki)
/// * [BIP-113 Median time-past as endpoint for lock-time calculations](https://github.com/bitcoin/bips/blob/master/bip-0113.mediawiki)
pub lock_time: absolute::LockTime,
/// List of transaction inputs.
pub input: Vec<TxIn>,
/// List of transaction outputs.
pub output: Vec<TxOut>,
}
#[cfg(feature = "alloc")]
impl Transaction {
// https://github.com/bitcoin/bitcoin/blob/44b05bf3fef2468783dcebf651654fdd30717e7e/src/policy/policy.h#L27
/// Maximum transaction weight for Bitcoin Core 25.0.
pub const MAX_STANDARD_WEIGHT: Weight = Weight::from_wu(400_000);
/// Computes a "normalized TXID" which does not include any signatures.
///
/// This gives a way to identify a transaction that is "the same" as
/// another in the sense of having same inputs and outputs.
#[doc(alias = "ntxid")]
pub fn compute_ntxid(&self) -> sha256d::Hash {
let cloned_tx = Transaction {
version: self.version,
lock_time: self.lock_time,
input: self
.input
.iter()
.map(|txin| TxIn {
script_sig: ScriptBuf::new(),
witness: Witness::default(),
..*txin
})
.collect(),
output: self.output.clone(),
};
cloned_tx.compute_txid().into()
}
/// Computes the [`Txid`].
///
/// Hashes the transaction **excluding** the segwit data (i.e. the marker, flag bytes, and the
/// witness fields themselves). For non-segwit transactions which do not have any segwit data,
/// this will be equal to [`Transaction::compute_wtxid()`].
#[doc(alias = "txid")]
pub fn compute_txid(&self) -> Txid {
let hash = hash_transaction(self, false);
Txid::from_byte_array(hash.to_byte_array())
}
/// Computes the segwit version of the transaction id.
///
/// Hashes the transaction **including** all segwit data (i.e. the marker, flag bytes, and the
/// witness fields themselves). For non-segwit transactions which do not have any segwit data,
/// this will be equal to [`Transaction::compute_txid()`].
#[doc(alias = "wtxid")]
pub fn compute_wtxid(&self) -> Wtxid {
let hash = hash_transaction(self, self.uses_segwit_serialization());
Wtxid::from_byte_array(hash.to_byte_array())
}
/// Returns whether or not to serialize transaction as specified in BIP-144.
// This is duplicated in `bitcoin`, if you change it please do so in both places.
fn uses_segwit_serialization(&self) -> bool {
if self.input.iter().any(|input| !input.witness.is_empty()) {
return true;
}
// To avoid serialization ambiguity, no inputs means we use BIP141 serialization (see
// `Transaction` docs for full explanation).
self.input.is_empty()
}
}
#[cfg(feature = "alloc")]
impl cmp::PartialOrd for Transaction {
fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { Some(self.cmp(other)) }
}
#[cfg(feature = "alloc")]
impl cmp::Ord for Transaction {
fn cmp(&self, other: &Self) -> cmp::Ordering {
self.version
.cmp(&other.version)
.then(self.lock_time.to_consensus_u32().cmp(&other.lock_time.to_consensus_u32()))
.then(self.input.cmp(&other.input))
.then(self.output.cmp(&other.output))
}
}
#[cfg(feature = "alloc")]
impl From<Transaction> for Txid {
fn from(tx: Transaction) -> Txid { tx.compute_txid() }
}
#[cfg(feature = "alloc")]
impl From<&Transaction> for Txid {
fn from(tx: &Transaction) -> Txid { tx.compute_txid() }
}
#[cfg(feature = "alloc")]
impl From<Transaction> for Wtxid {
fn from(tx: Transaction) -> Wtxid { tx.compute_wtxid() }
}
#[cfg(feature = "alloc")]
impl From<&Transaction> for Wtxid {
fn from(tx: &Transaction) -> Wtxid { tx.compute_wtxid() }
}
// Duplicated in `bitcoin`.
/// The marker MUST be a 1-byte zero value: 0x00. (BIP-141)
#[cfg(feature = "alloc")]
const SEGWIT_MARKER: u8 = 0x00;
/// The flag MUST be a 1-byte non-zero value. Currently, 0x01 MUST be used. (BIP-141)
#[cfg(feature = "alloc")]
const SEGWIT_FLAG: u8 = 0x01;
// This is equivalent to consensus encoding but hashes the fields manually.
#[cfg(feature = "alloc")]
fn hash_transaction(tx: &Transaction, uses_segwit_serialization: bool) -> sha256d::Hash {
use hashes::HashEngine as _;
let mut enc = sha256d::Hash::engine();
enc.input(&tx.version.0.to_le_bytes()); // Same as `encode::emit_i32`.
if uses_segwit_serialization {
// BIP-141 (segwit) transaction serialization also includes marker and flag.
enc.input(&[SEGWIT_MARKER]);
enc.input(&[SEGWIT_FLAG]);
}
// Encode inputs (excluding witness data) with leading compact size encoded int.
let input_len = tx.input.len();
enc.input(compact_size::encode(input_len).as_slice());
for input in &tx.input {
// Encode each input same as we do in `Encodable for TxIn`.
enc.input(input.previous_output.txid.as_byte_array());
enc.input(&input.previous_output.vout.to_le_bytes());
let script_sig_bytes = input.script_sig.as_bytes();
enc.input(compact_size::encode(script_sig_bytes.len()).as_slice());
enc.input(script_sig_bytes);
enc.input(&input.sequence.0.to_le_bytes())
}
// Encode outputs with leading compact size encoded int.
let output_len = tx.output.len();
enc.input(compact_size::encode(output_len).as_slice());
for output in &tx.output {
// Encode each output same as we do in `Encodable for TxOut`.
enc.input(&output.value.to_sat().to_le_bytes());
let script_pubkey_bytes = output.script_pubkey.as_bytes();
enc.input(compact_size::encode(script_pubkey_bytes.len()).as_slice());
enc.input(script_pubkey_bytes);
}
if uses_segwit_serialization {
// BIP-141 (segwit) transaction serialization also includes the witness data.
for input in &tx.input {
// Same as `Encodable for Witness`.
enc.input(compact_size::encode(input.witness.len()).as_slice());
for element in input.witness.iter() {
enc.input(compact_size::encode(element.len()).as_slice());
enc.input(element);
}
}
}
// Same as `Encodable for absolute::LockTime`.
enc.input(&tx.lock_time.to_consensus_u32().to_le_bytes());
sha256d::Hash::from_engine(enc)
}
/// Bitcoin transaction input.
///
/// It contains the location of the previous transaction's output,
@ -276,6 +522,19 @@ impl fmt::Display for Version {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
}
#[cfg(feature = "arbitrary")]
#[cfg(feature = "alloc")]
impl<'a> Arbitrary<'a> for Transaction {
fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result<Self> {
Ok(Transaction {
version: Version::arbitrary(u)?,
lock_time: absolute::LockTime::arbitrary(u)?,
input: Vec::<TxIn>::arbitrary(u)?,
output: Vec::<TxOut>::arbitrary(u)?,
})
}
}
#[cfg(feature = "arbitrary")]
#[cfg(feature = "alloc")]
impl<'a> Arbitrary<'a> for TxIn {