Introduce and use new compact_size module

We would like to move the witness module to `primitives` but there is
a bunch of usage of `VarInt`.

Introduce a module that does the encoding and decoding instead, this
code is internal so put it in `internals`.

Note we add an unused public `MAX_ENCODABLE_SIZE` variable that is
commented with an issue link. Done like this because its quite
important that we see to it and it makes it clear that we are not and
we know about it.

 https://github.com/rust-bitcoin/rust-bitcoin/issues/3264
This commit is contained in:
Tobin C. Harding 2024-08-30 03:00:57 +10:00
parent e2ff08635e
commit d65de7c7de
No known key found for this signature in database
GPG Key ID: 40BF9E4C269D6607
3 changed files with 278 additions and 25 deletions

View File

@ -7,6 +7,7 @@
use core::fmt; use core::fmt;
use core::ops::Index; use core::ops::Index;
use internals::compact_size;
use io::{BufRead, Write}; use io::{BufRead, Write};
use crate::consensus::encode::{Error, MAX_VEC_SIZE}; use crate::consensus::encode::{Error, MAX_VEC_SIZE};
@ -40,8 +41,8 @@ pub struct Witness {
/// The number of elements in the witness. /// The number of elements in the witness.
/// ///
/// Stored separately (instead of as a VarInt in the initial part of content) so that methods /// Stored separately (instead of as a compact size encoding in the initial part of content) so
/// like [`Witness::push`] don't have to shift the entire array. /// that methods like [`Witness::push`] don't have to shift the entire array.
witness_elements: usize, witness_elements: usize,
/// This is the valid index pointing to the beginning of the index area. /// This is the valid index pointing to the beginning of the index area.
@ -271,18 +272,19 @@ impl Witness {
let index_size = witness_elements * 4; let index_size = witness_elements * 4;
let content_size = slice let content_size = slice
.iter() .iter()
.map(|elem| elem.as_ref().len() + VarInt::from(elem.as_ref().len()).size()) .map(|elem| {
elem.as_ref().len() + compact_size::encoded_size(elem.as_ref().len())
})
.sum(); .sum();
let mut content = vec![0u8; content_size + index_size]; let mut content = vec![0u8; content_size + index_size];
let mut cursor = 0usize; let mut cursor = 0usize;
for (i, elem) in slice.iter().enumerate() { for (i, elem) in slice.iter().enumerate() {
encode_cursor(&mut content, content_size, i, cursor); encode_cursor(&mut content, content_size, i, cursor);
let elem_len_varint = VarInt::from(elem.as_ref().len()); let encoded = compact_size::encode(elem.as_ref().len());
elem_len_varint let encoded_size = encoded.as_slice().len();
.consensus_encode(&mut &mut content[cursor..cursor + elem_len_varint.size()]) content[cursor..cursor + encoded_size].copy_from_slice(encoded.as_slice());
.expect("writers on vec don't errors, space granted by content_size"); cursor += encoded_size;
cursor += elem_len_varint.size();
content[cursor..cursor + elem.as_ref().len()].copy_from_slice(elem.as_ref()); content[cursor..cursor + elem.as_ref().len()].copy_from_slice(elem.as_ref());
cursor += elem.as_ref().len(); cursor += elem.as_ref().len();
} }
@ -312,11 +314,12 @@ impl Witness {
pub fn size(&self) -> usize { pub fn size(&self) -> usize {
let mut size: usize = 0; let mut size: usize = 0;
size += VarInt::from(self.witness_elements).size(); size += compact_size::encoded_size(self.witness_elements);
size += self size += self
.iter() .iter()
.map(|witness_element| { .map(|witness_element| {
VarInt::from(witness_element.len()).size() + witness_element.len() let len = witness_element.len();
compact_size::encoded_size(len) + len
}) })
.sum::<usize>(); .sum::<usize>();
@ -339,9 +342,10 @@ impl Witness {
fn push_slice(&mut self, new_element: &[u8]) { fn push_slice(&mut self, new_element: &[u8]) {
self.witness_elements += 1; self.witness_elements += 1;
let previous_content_end = self.indices_start; let previous_content_end = self.indices_start;
let element_len_varint = VarInt::from(new_element.len()); let encoded = compact_size::encode(new_element.len());
let encoded_size = encoded.as_slice().len();
let current_content_len = self.content.len(); let current_content_len = self.content.len();
let new_item_total_len = element_len_varint.size() + new_element.len(); let new_item_total_len = encoded_size + new_element.len();
self.content.resize(current_content_len + new_item_total_len + 4, 0); self.content.resize(current_content_len + new_item_total_len + 4, 0);
self.content[previous_content_end..].rotate_right(new_item_total_len); self.content[previous_content_end..].rotate_right(new_item_total_len);
@ -353,11 +357,10 @@ impl Witness {
previous_content_end, previous_content_end,
); );
let end_varint = previous_content_end + element_len_varint.size(); let end_compact_size = previous_content_end + encoded_size;
element_len_varint self.content[previous_content_end..end_compact_size].copy_from_slice(encoded.as_slice());
.consensus_encode(&mut &mut self.content[previous_content_end..end_varint]) self.content[end_compact_size..end_compact_size + new_element.len()]
.expect("writers on vec don't error, space granted through previous resize"); .copy_from_slice(new_element);
self.content[end_varint..end_varint + new_element.len()].copy_from_slice(new_element);
} }
/// Pushes, as a new element on the witness, an ECDSA signature. /// Pushes, as a new element on the witness, an ECDSA signature.
@ -367,10 +370,15 @@ impl Witness {
self.push_slice(&signature.serialize()) self.push_slice(&signature.serialize())
} }
/// Note `index` is the index into the `content` vector and should be the result of calling
/// `decode_cursor`, which returns a valid index.
fn element_at(&self, index: usize) -> Option<&[u8]> { fn element_at(&self, index: usize) -> Option<&[u8]> {
let varint = VarInt::consensus_decode(&mut &self.content[index..]).ok()?; let mut slice = &self.content[index..]; // Start of element.
let start = index + varint.size(); let element_len = compact_size::decode_unchecked(&mut slice);
Some(&self.content[start..start + varint.0 as usize]) // Compact size should always fit into a u32 because of `MAX_SIZE` in Core.
// ref: https://github.com/rust-bitcoin/rust-bitcoin/issues/3264
let end = element_len as usize;
Some(&slice[..end])
} }
/// Returns the last element in the witness, if any. /// Returns the last element in the witness, if any.
@ -481,12 +489,13 @@ impl<'a> Iterator for Iter<'a> {
fn next(&mut self) -> Option<Self::Item> { fn next(&mut self) -> Option<Self::Item> {
let index = decode_cursor(self.inner, self.indices_start, self.current_index)?; let index = decode_cursor(self.inner, self.indices_start, self.current_index)?;
let varint = VarInt::consensus_decode(&mut &self.inner[index..]).ok()?; let mut slice = &self.inner[index..]; // Start of element.
let start = index + varint.size(); let element_len = compact_size::decode_unchecked(&mut slice);
let end = start + varint.0 as usize; // Compact size should always fit into a u32 because of `MAX_SIZE` in Core.
let slice = &self.inner[start..end]; // ref: https://github.com/rust-bitcoin/rust-bitcoin/issues/3264
let end = element_len as usize;
self.current_index += 1; self.current_index += 1;
Some(slice) Some(&slice[..end])
} }
fn size_hint(&self) -> (usize, Option<usize>) { fn size_hint(&self) -> (usize, Option<usize>) {

View File

@ -0,0 +1,243 @@
// SPDX-License-Identifier: CC0-1.0
//! Variable length integer encoding A.K.A [`CompactSize`].
//!
//! An integer can be encoded depending on the represented value to save space. Variable length
//! integers always precede an array/vector of a type of data that may vary in length.
//!
//! [`CompactSize`]: <https://en.bitcoin.it/wiki/Protocol_documentation#Variable_length_integer>
use crate::array_vec::ArrayVec;
use crate::ToU64;
/// The maximum size of a serialized object in bytes or number of elements
/// (for eg vectors) when the size is encoded as `CompactSize`.
///
/// This is `MAX_SIZE` in Bitcoin Core.
// Issue: https://github.com/rust-bitcoin/rust-bitcoin/issues/3264
pub const MAX_ENCODABLE_VALUE: u64 = 0x0200_0000;
/// The maximum length of an encoding.
const MAX_ENCODING_SIZE: usize = 9;
/// Returns the number of bytes used to encode this `CompactSize` value.
///
/// # Returns
///
/// - 1 for 0..=0xFC
/// - 3 for 0xFD..=(2^16-1)
/// - 5 for 0x10000..=(2^32-1)
/// - 9 otherwise.
#[inline]
pub fn encoded_size(value: impl ToU64) -> usize {
match value.to_u64() {
0..=0xFC => 1,
0xFD..=0xFFFF => 3,
0x10000..=0xFFFFFFFF => 5,
_ => 9,
}
}
/// Encodes `CompactSize` without allocating.
#[inline]
pub fn encode(value: impl ToU64) -> ArrayVec<u8, MAX_ENCODING_SIZE> {
let value = value.to_u64();
let mut res = ArrayVec::<u8, MAX_ENCODING_SIZE>::new();
match value {
0..=0xFC => {
res.push(value as u8); // Cast ok because of match.
}
0xFD..=0xFFFF => {
let v = value as u16; // Cast ok because of match.
res.push(0xFD);
res.extend_from_slice(&v.to_le_bytes());
}
0x10000..=0xFFFFFFFF => {
let v = value as u32; // Cast ok because of match.
res.push(0xFE);
res.extend_from_slice(&v.to_le_bytes());
}
_ => {
let v = value;
res.push(0xFF);
res.extend_from_slice(&v.to_le_bytes());
}
}
res
}
/// Gets the compact size encoded value from `slice` and moves slice past the encoding.
///
/// Caller to guarantee that the encoding is well formed. Well formed is defined as:
///
/// * Being at least long enough.
/// * Containing a minimal encoding.
///
/// # Panics
///
/// * Panics in release mode if the `slice` does not contain a valid minimal compact size encoding.
/// * Panics in debug mode if the encoding is not minimal (referred to as "non-canonical" in Core).
pub fn decode_unchecked(slice: &mut &[u8]) -> u64 {
if slice.is_empty() {
panic!("tried to decode an empty slice");
}
match slice[0] {
0xFF => {
const SIZE: usize = 9;
if slice.len() < SIZE {
panic!("slice too short, expected at least 9 bytes");
};
let mut bytes = [0_u8; SIZE - 1];
bytes.copy_from_slice(&slice[1..SIZE]);
let v = u64::from_le_bytes(bytes);
debug_assert!(v > u32::MAX.into(), "non-minimal encoding of a u64");
*slice = &slice[SIZE..];
v
}
0xFE => {
const SIZE: usize = 5;
if slice.len() < SIZE {
panic!("slice too short, expected at least 5 bytes");
};
let mut bytes = [0_u8; SIZE - 1];
bytes.copy_from_slice(&slice[1..SIZE]);
let v = u32::from_le_bytes(bytes);
debug_assert!(v > u16::MAX.into(), "non-minimal encoding of a u32");
*slice = &slice[SIZE..];
u64::from(v)
}
0xFD => {
const SIZE: usize = 3;
if slice.len() < SIZE {
panic!("slice too short, expected at least 3 bytes");
};
let mut bytes = [0_u8; SIZE - 1];
bytes.copy_from_slice(&slice[1..SIZE]);
let v = u16::from_le_bytes(bytes);
debug_assert!(v >= 0xFD, "non-minimal encoding of a u16");
*slice = &slice[SIZE..];
u64::from(v)
}
n => {
*slice = &slice[1..];
u64::from(n)
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn encoded_value_1_byte() {
// Check lower bound, upper bound (and implicitly endian-ness).
for v in [0x00, 0x01, 0x02, 0xFA, 0xFB, 0xFC] {
let v = v as u32;
assert_eq!(encoded_size(v), 1);
// Should be encoded as the value as a u8.
let want = [v as u8];
let got = encode(v);
assert_eq!(got.as_slice().len(), 1); // sanity check
assert_eq!(got.as_slice(), want);
}
}
#[test]
fn decode_value_1_byte() {
// Check lower bound, upper bound.
for v in [0x00, 0x01, 0x02, 0xFA, 0xFB, 0xFC] {
let raw = [v];
let mut slice = raw.as_slice();
let got = decode_unchecked(&mut slice);
assert_eq!(got, u64::from(v));
assert!(slice.is_empty());
}
}
macro_rules! check_encode {
($($test_name:ident, $size:expr, $value:expr, $want:expr);* $(;)?) => {
$(
#[test]
fn $test_name() {
let value = $value as u64; // Because default integer type is i32.
let got = encode(value);
assert_eq!(got.as_slice().len(), $size); // sanity check
assert_eq!(got.as_slice(), &$want);
}
)*
}
}
check_encode! {
// 3 byte encoding.
encoded_value_3_byte_lower_bound, 3, 0xFD, [0xFD, 0xFD, 0x00]; // 0x00FD
encoded_value_3_byte_endianness, 3, 0xABCD, [0xFD, 0xCD, 0xAB];
encoded_value_3_byte_upper_bound, 3, 0xFFFF, [0xFD, 0xFF, 0xFF];
// 5 byte encoding.
encoded_value_5_byte_lower_bound, 5, 0x0001_0000, [0xFE, 0x00, 0x00, 0x01, 0x00];
encoded_value_5_byte_endianness, 5, 0x0123_4567, [0xFE, 0x67, 0x45, 0x23, 0x01];
encoded_value_5_byte_upper_bound, 5, 0xFFFF_FFFF, [0xFE, 0xFF, 0xFF, 0xFF, 0xFF];
// 9 byte encoding.
encoded_value_9_byte_lower_bound, 9, 0x0000_0001_0000_0000, [0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00];
encoded_value_9_byte_endianness, 9, 0x0123_4567_89AB_CDEF, [0xFF, 0xEF, 0xCD, 0xAB, 0x89, 0x67, 0x45, 0x23, 0x01];
encoded_value_9_byte_upper_bound, 9, u64::MAX, [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
}
macro_rules! check_decode {
($($test_name:ident, $size:expr, $want:expr, $encoded:expr);* $(;)?) => {
$(
#[test]
fn $test_name() {
let mut slice = $encoded.as_slice();
let got = decode_unchecked(&mut slice);
assert_eq!(got, $want);
assert_eq!(slice.len(), $encoded.len() - $size);
}
)*
}
}
check_decode! {
// 3 byte encoding.
decode_from_3_byte_slice_lower_bound, 3, 0xFD, [0xFD, 0xFD, 0x00];
decode_from_3_byte_slice_endianness, 3, 0xABCD, [0xFD, 0xCD, 0xAB];
decode_from_3_byte_slice_upper_bound, 3, 0xFFFF, [0xFD, 0xFF, 0xFF];
// 5 byte encoding.
decode_from_5_byte_slice_lower_bound, 5, 0x0001_0000, [0xFE, 0x00, 0x00, 0x01, 0x00];
decode_from_5_byte_slice_endianness, 5, 0x0123_4567, [0xFE, 0x67, 0x45, 0x23, 0x01];
decode_from_5_byte_slice_upper_bound, 5, 0xFFFF_FFFF, [0xFE, 0xFF, 0xFF, 0xFF, 0xFF];
// 9 byte encoding.
decode_from_9_byte_slice_lower_bound, 9, 0x0000_0001_0000_0000, [0xFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00];
decode_from_9_byte_slice_endianness, 9, 0x0123_4567_89AB_CDEF, [0xFF, 0xEF, 0xCD, 0xAB, 0x89, 0x67, 0x45, 0x23, 0x01];
decode_from_9_byte_slice_upper_bound, 9, u64::MAX, [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF];
// Check slices that are bigger than the actual encoding.
decode_1_byte_from_bigger_slice, 1, 32, [0x20, 0xAB, 0xBC];
decode_3_byte_from_bigger_slice, 3, 0xFFFF, [0xFD, 0xFF, 0xFF, 0xAB, 0xBC];
decode_5_byte_from_bigger_slice, 5, 0xFFFF_FFFF, [0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xAB, 0xBC];
decode_9_byte_from_bigger_slice, 9, u64::MAX, [0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xAB, 0xBC];
}
#[test]
#[should_panic]
fn decode_from_empty_slice_panics() {
let mut slice = [].as_slice();
let _ = decode_unchecked(&mut slice);
}
#[test]
#[should_panic]
// Non-minimal is referred to as non-canonical in Core (`bitcoin/src/serialize.h`).
fn decode_non_minimal_panics() {
let mut slice = [0xFE, 0xCD, 0xAB].as_slice();
let _ = decode_unchecked(&mut slice);
}
}

View File

@ -35,6 +35,7 @@ pub mod rust_version {
} }
pub mod array_vec; pub mod array_vec;
pub mod compact_size;
pub mod const_tools; pub mod const_tools;
pub mod error; pub mod error;
pub mod macros; pub mod macros;