This lint triggers when parsing a reference to a large struct as a
generic argument, which is wrong.
Allow it crate wide because [subjectively] this lint never warns for
anything useful.
56132f59d5 Remove the `:#` formatting for `hex_fmt_impl` macro (448 OG)
Pull request description:
This commit attempts to solve #2505 by ensuring that formatting is not forced using the `:#` in the hex macro code generating in macro rule `hex_fmt_impl` in the hashes/utils.rs file.
The write! macro forces all formatting to add the prefix `0x` by adding an alternate by (#) default
```rust
impl<$($gen: $gent),*> $crate::_export::_core::fmt::Debug for $ty<$($gen),*> {
#[inline]
fn fmt(&self, f: &mut $crate::_export::_core::fmt::Formatter) -> $crate::_export::_core::fmt::Result {
write!(f, "{:#}", self) // <-- This is where the formatting is being forced.
}
}
```
By removing this formatting, the `:#` must be specified by the user in order for a prefix to be added.
```rust
let outpoint = bitcoin::OutPoint::default();
println!("{:?}", &outpoint);
println!("{:#?}", &outpoint);
println!("{:#}", &outpoint);
println!("{:x}", &outpoint.txid);
// `{:#}` must be specified to pretty print with a prefix
println!("{:#}", &outpoint.txid);
dbg!(&outpoint);
dbg!(&outpoint.txid);
```
The PR also adds testcase for this when running `cargo test` .
ACKs for top commit:
tcharding:
ACK 56132f59d5
apoelstra:
ACK 56132f59d5
Tree-SHA512: 9e4fc9f30ab0b3cf2651d3c09f7f01d8245ac8ea7ae3a82bb4efd19f25c77662bf279020a31fa61b37587cc0c74284696c56045c59f1ba63b2dd42a210d98ebc
4e3bb7350a Add support for SHA-384 (Matt Corallo)
Pull request description:
Based on #2473 as we need support for 48-byte arrays <-> hex conversions.
Closes#2483
ACKs for top commit:
Kixunil:
ACK 4e3bb7350a
sanket1729:
ACK 4e3bb7350a
Tree-SHA512: e78d97f80ab8afda8a3ea240023338f17f7e95604a879b38fc9bde057fbb45b74b1f3fb3bd2b17af89682b79dda42bf114989e7c63066b3029451ef07894e82f
f8de7954b2 Remove unused pow::TryFromError type (Tobin C. Harding)
43c5eb765c Fix witness_version leaf error type (Tobin C. Harding)
2af764e859 hashes: Fix leaf error type (Tobin C. Harding)
Pull request description:
In light of recent discussion go over the codebase and look for some places that the leaf errors are wrong. Does not do the whole code base, excludes `p2p` and a couple of other places.
ACKs for top commit:
apoelstra:
ACK f8de7954b2
Kixunil:
ACK f8de7954b2
Tree-SHA512: 2905878363869ee205cce49c58c060c712c9b7b55965ee60bb856128842968a4be86c93a194ffffdb35e215b2bea8ad33b04ee47e8e17cc784b0641ea48518e5
This fixes the issue where pretty debug like `dbg` or `{:#}` introduce the use of
`0x` prefix to hex encoded transaction ID.
The transaction id is being forced to pretty print inside the `hex_fmt_impl` macro
using `{:#}` in the line `write!(f, "{:#}", self)` debug formatter.
Resolves: #2505
Currently we have two functions for displaying forwards and backwards and
we also have `fmt_hex_exact`. I do not know why we added the functions.
In the latest version of hex we do not have the ability to construct a
`DisplayArray` type so we have to use `fmt_hex_exact`.
Make the change now, separate from the `hex` upgrade, to assist review.
Different hashes output to hex strings differently depending on whether
they display backward or not but we are not currently testing that our
parsing and formatting impls both correctly handle backwards/forwards.
Add unit tests to roundtrip through a hex string, do so for one forwards
printing hash (sha256), on backwards printing hash (sha256d), and also
test that the `hash_newtype!` macro correctly passes on display backward.
Make the trait level attributes uniform across all released crates in
the repo. Excludes things that are obviously not needed, eg, bench stuff
if there is not bench code.
- Remove `uninhabited_references` - this is allow by default now.
- Remove `unconditional_recursion` and mark the single false positive we
have with an `allow`.
Note, this does not add `missing_docs` to the `io` crate. There is an
open PR at the moment to add that along with the required docs.
Its not immediately obvious why we nest the whole `io` code in an `io`
submodule within `lib.rs`. As far as I can tell we can inline it and
re-export from `rust-bitcoin` same as we do for our other dependencies.
This change would effect other users of the crate but since the `io`
crate is unreleased this effects no-one except us.
We are trying to get rid of the `serde_derive` dependency from our
dependency graph.
Stop using default features for the `schemars` dependency which includes
`schemars_derive` which depends on `serder_derive`.
Manually implement `schemars::JsonSchema` instead of deriving it.
With the new `bitcoin_io` library, implementing `io::Write`
manually is somewhat tricky - for `std` users we really want to
provide an `std::io::Write` implementation, however for `no-std`
users we want to implement against our internal trait.
Sadly we cannot provide a blanket implementation of
`std::io::Write` for all types whcih implement our `io::Write`
trait as its an out-of-crate impl.
Instead, we provide a macro which will either implement
`std::io::Write` or our `io::Write` depending on the feature flags
set on `bitcoin_io`.
In order to support standard (de)serialization of structs, the
`rust-bitcoin` ecosystem uses the standard `std::io::{Read,Write}`
traits. This works great for environments with `std`, however sadly
the `std::io` module has not yet been added to the `core` crate.
Thus, in `no-std`, the `rust-bitcoin` ecosystem has historically
used the `core2` crate to provide copies of the `std::io` module
without any major dependencies. Sadly, its one dependency,
`memchr`, recently broke our MSRV.
Worse, because we didn't want to take on any excess dependencies
for `std` builds, `rust-bitcoin` has had to have
mutually-exclusive `std` and `no-std` builds. This breaks general
assumptions about how features work in Rust, causing substantial
pain for applications far downstream of `rust-bitcoin` crates.
Here, we add a new `bitcoin_io` crate, making it an unconditional
dependency and using its `io` module in the in-repository crates
in place of `std::io` and `core2::io`. As it is not substantial
additional code, the `hashes` io implementations are no longer
feature-gated.
This doesn't actually accomplish anything on its own, only adding
the new crate which still depends on `core2`.
71454d438a Use hash_type macro for sha512::Hash (Tobin C. Harding)
d51c1857fd sha512: Move from_engine functions (Tobin C. Harding)
Pull request description:
This PR does not introduce any logic changes.
- Patch 1 is a code move.
- Patch 2 uses the `hash_type!` macro to define the `sha512::Hash` type.
ACKs for top commit:
Kixunil:
ACK 71454d438a
apoelstra:
ACK 71454d438a
Tree-SHA512: c0148391fbea3602f0c52e5e08883faac6b5cb3f75ae62bfb53b1d2762e28871d349b3d3fb589f59d8bf2912dd63934f8f9a6fe6390afd378e5391eb2c91c237
Make the `sha512_256` module use similar code layout to the other hash
modules by putting the call to `hash_type` at the top followed by the
`from_engine` function.
Code move only, no other changes.
Currently we are defining the `sha512::Hash` type manually instead of
using the `hash_type` macro.
The generated code using the macro is identical to that without
it (although I didn't actually look at the generated code :)
On our way to v1.0.0 we are defining a standard for our error types,
this includes:
- Uses the following derives (unless not possible, usually because of `io::Error`)
`#[derive(Debug, Clone, PartialEq, Eq)]`
- Has `non_exhaustive` unless we really know we can commit to not adding
anything.
Furthermore, we are trying to make the codebase easy to read. Error code
is write-once-read-many (well it should be) so if we make all the error
code super uniform the users can flick to an error and quickly see what
it includes. In an effort to achieve this I have made up a style and
over recent times have change much of the error code to that new style,
this PR audits _all_ error types in the code base and enforces the
style, specifically:
- Is layed out: definition, [impl block], Display impl, error::Error impl, From impls
- `error::Error` impl matches on enum even if it returns `None` for all variants
- Display/Error impls import enum variants locally
- match uses *self and `ref e`
- error::Error variants that return `Some` come first, `None` after
Re: non_exhaustive
To make dev and review easier I have added `non_exhaustive` to _every_
error type. We can then remove it error by error as we see fit. This is
because it takes a bit of thinking to do and review where as this patch
should not take much brain power to review.
f2c5f19557 Introduce the `small-hash` feature for `bitcoin_hashes` (Alekos Filini)
Pull request description:
When enabled this feature swaps the hash implementation of sha512, sha256 and ripemd160 for a smaller (but also slower) one.
On embedded processors (Cortex-M4) it can lead to up to a 52% size reduction, from around 37KiB for just the `process_block` methods of the three hash functions to 17.8KiB.
The following numbers were collected on `aarch64-unknown-linux-gnu` with `cargo 1.72.0-nightly`.
## Original
```
RUSTFLAGS='--cfg=bench -C opt-level=z' cargo bench
```
```
test hash160::benches::hash160_10 ... bench: 33 ns/iter (+/- 1) = 303 MB/s
test hash160::benches::hash160_1k ... bench: 2,953 ns/iter (+/- 187) = 346 MB/s
test hash160::benches::hash160_64k ... bench: 188,480 ns/iter (+/- 11,595) = 347 MB/s
test hmac::benches::hmac_sha256_10 ... bench: 33 ns/iter (+/- 2) = 303 MB/s
test hmac::benches::hmac_sha256_1k ... bench: 2,957 ns/iter (+/- 104) = 346 MB/s
test hmac::benches::hmac_sha256_64k ... bench: 192,022 ns/iter (+/- 6,407) = 341 MB/s
test ripemd160::benches::ripemd160_10 ... bench: 25 ns/iter (+/- 1) = 400 MB/s
test ripemd160::benches::ripemd160_1k ... bench: 2,288 ns/iter (+/- 93) = 447 MB/s
test ripemd160::benches::ripemd160_64k ... bench: 146,823 ns/iter (+/- 1,102) = 446 MB/s
test sha1::benches::sha1_10 ... bench: 41 ns/iter (+/- 0) = 243 MB/s
test sha1::benches::sha1_1k ... bench: 3,844 ns/iter (+/- 70) = 266 MB/s
test sha1::benches::sha1_64k ... bench: 245,854 ns/iter (+/- 10,158) = 266 MB/s
test sha256::benches::sha256_10 ... bench: 35 ns/iter (+/- 0) = 285 MB/s
test sha256::benches::sha256_1k ... bench: 3,063 ns/iter (+/- 15) = 334 MB/s
test sha256::benches::sha256_64k ... bench: 195,729 ns/iter (+/- 2,880) = 334 MB/s
test sha256d::benches::sha256d_10 ... bench: 34 ns/iter (+/- 1) = 294 MB/s
test sha256d::benches::sha256d_1k ... bench: 3,071 ns/iter (+/- 107) = 333 MB/s
test sha256d::benches::sha256d_64k ... bench: 188,614 ns/iter (+/- 8,101) = 347 MB/s
test sha512::benches::sha512_10 ... bench: 21 ns/iter (+/- 0) = 476 MB/s
test sha512::benches::sha512_1k ... bench: 1,714 ns/iter (+/- 36) = 597 MB/s
test sha512::benches::sha512_64k ... bench: 110,084 ns/iter (+/- 3,637) = 595 MB/s
test sha512_256::benches::sha512_256_10 ... bench: 22 ns/iter (+/- 1) = 454 MB/s
test sha512_256::benches::sha512_256_1k ... bench: 1,822 ns/iter (+/- 70) = 562 MB/s
test sha512_256::benches::sha512_256_64k ... bench: 116,231 ns/iter (+/- 4,745) = 563 MB/s
test siphash24::benches::siphash24_1ki ... bench: 1,072 ns/iter (+/- 41) = 955 MB/s
test siphash24::benches::siphash24_1ki_hash ... bench: 1,102 ns/iter (+/- 42) = 929 MB/s
test siphash24::benches::siphash24_1ki_hash_u64 ... bench: 1,064 ns/iter (+/- 41) = 962 MB/s
test siphash24::benches::siphash24_64ki ... bench: 69,957 ns/iter (+/- 2,712) = 936 MB/
```
```
0000000000005872 t _ZN84_$LT$bitcoin_hashes..ripemd160..HashEngine$u20$as$u20$bitcoin_hashes..HashEngine$GT$5input17hc4800746a9da7ff4E
0000000000007956 t _ZN81_$LT$bitcoin_hashes..sha256..HashEngine$u20$as$u20$bitcoin_hashes..HashEngine$GT$5input17hf49345f65130ce9bE
0000000000008024 t _ZN14bitcoin_hashes6sha2568Midstate10const_hash17h57317bc8012004b4E.llvm.441255102889972912
0000000000010528 t _ZN81_$LT$bitcoin_hashes..sha512..HashEngine$u20$as$u20$bitcoin_hashes..HashEngine$GT$5input17h9bc868d4392bd9acE
```
Total size: 32380 bytes
## With `small-hash` enabled
```
RUSTFLAGS='--cfg=bench -C opt-level=z' cargo bench --features small-hash
```
```
test hash160::benches::hash160_10 ... bench: 52 ns/iter (+/- 3) = 192 MB/s
test hash160::benches::hash160_1k ... bench: 4,817 ns/iter (+/- 286) = 212 MB/s
test hash160::benches::hash160_64k ... bench: 319,572 ns/iter (+/- 11,031) = 205 MB/s
test hmac::benches::hmac_sha256_10 ... bench: 54 ns/iter (+/- 2) = 185 MB/s
test hmac::benches::hmac_sha256_1k ... bench: 4,846 ns/iter (+/- 204) = 211 MB/s
test hmac::benches::hmac_sha256_64k ... bench: 319,114 ns/iter (+/- 4,451) = 205 MB/s
test ripemd160::benches::ripemd160_10 ... bench: 27 ns/iter (+/- 0) = 370 MB/s
test ripemd160::benches::ripemd160_1k ... bench: 2,358 ns/iter (+/- 150) = 434 MB/s
test ripemd160::benches::ripemd160_64k ... bench: 154,573 ns/iter (+/- 3,954) = 423 MB/s
test sha1::benches::sha1_10 ... bench: 41 ns/iter (+/- 1) = 243 MB/s
test sha1::benches::sha1_1k ... bench: 3,700 ns/iter (+/- 243) = 276 MB/s
test sha1::benches::sha1_64k ... bench: 231,039 ns/iter (+/- 13,989) = 283 MB/s
test sha256::benches::sha256_10 ... bench: 51 ns/iter (+/- 3) = 196 MB/s
test sha256::benches::sha256_1k ... bench: 4,823 ns/iter (+/- 182) = 212 MB/s
test sha256::benches::sha256_64k ... bench: 299,960 ns/iter (+/- 17,545) = 218 MB/s
test sha256d::benches::sha256d_10 ... bench: 52 ns/iter (+/- 2) = 192 MB/s
test sha256d::benches::sha256d_1k ... bench: 4,827 ns/iter (+/- 323) = 212 MB/s
test sha256d::benches::sha256d_64k ... bench: 302,844 ns/iter (+/- 15,796) = 216 MB/s
test sha512::benches::sha512_10 ... bench: 34 ns/iter (+/- 1) = 294 MB/s
test sha512::benches::sha512_1k ... bench: 3,002 ns/iter (+/- 123) = 341 MB/s
test sha512::benches::sha512_64k ... bench: 189,767 ns/iter (+/- 10,396) = 345 MB/s
test sha512_256::benches::sha512_256_10 ... bench: 34 ns/iter (+/- 1) = 294 MB/s
test sha512_256::benches::sha512_256_1k ... bench: 2,996 ns/iter (+/- 198) = 341 MB/s
test sha512_256::benches::sha512_256_64k ... bench: 192,024 ns/iter (+/- 8,181) = 341 MB/s
test siphash24::benches::siphash24_1ki ... bench: 1,081 ns/iter (+/- 65) = 947 MB/s
test siphash24::benches::siphash24_1ki_hash ... bench: 1,083 ns/iter (+/- 63) = 945 MB/s
test siphash24::benches::siphash24_1ki_hash_u64 ... bench: 1,084 ns/iter (+/- 63) = 944 MB/s
test siphash24::benches::siphash24_64ki ... bench: 67,237 ns/iter (+/- 4,185) = 974 MB/s
```
```
0000000000005384 t _ZN81_$LT$bitcoin_hashes..sha256..HashEngine$u20$as$u20$bitcoin_hashes..HashEngine$GT$5input17hae341658cf9b880bE
0000000000005608 t _ZN14bitcoin_hashes9ripemd16010HashEngine13process_block17h3276b13f1e9feef8E.llvm.13618235596061801146
0000000000005616 t _ZN14bitcoin_hashes6sha2568Midstate10const_hash17h3e6fbef64c15ee00E.llvm.7326223909590351031
0000000000005944 t _ZN81_$LT$bitcoin_hashes..sha512..HashEngine$u20$as$u20$bitcoin_hashes..HashEngine$GT$5input17h321a237bfbe5c0bbE
```
Total size: 22552 bytes
## Conclusion
On `aarch64` there's overall a ~30% improvement in size, although ripemd160 doesn't really shrink that much (and its performance also aren't impacted much with only a 6% slowdown). sha512 and sha256 instead are almost 40% slower with `small-hash` enabled.
I don't have performance numbers for other architectures, but in terms of size there was an even larger improvements on `thumbv7em-none-eabihf`, with a 52% size reduction overall:
```
Size Crate Name
25.3KiB bitcoin_hashes <bitcoin_hashes[fe467ef2aa3a1470]::sha512::HashEngine as bitcoin_hashes[fe467ef2aa3a1470]::HashEngine>::input
6.9KiB bitcoin_hashes <bitcoin_hashes[fe467ef2aa3a1470]::sha256::HashEngine as bitcoin_hashes[fe467ef2aa3a1470]::HashEngine>::input
4.8KiB bitcoin_hashes <bitcoin_hashes[fe467ef2aa3a1470]::ripemd160::HashEngine as bitcoin_hashes[fe467ef2aa3a1470]::HashEngine>::input
```
vs
```
Size Crate Name
9.5KiB bitcoin_hashes <bitcoin_hashes[974bb476ef905797]::sha512::HashEngine as bitcoin_hashes[974bb476ef905797]::HashEngine>::input
4.5KiB bitcoin_hashes <bitcoin_hashes[974bb476ef905797]::ripemd160::HashEngine>::process_block
3.8KiB bitcoin_hashes <bitcoin_hashes[974bb476ef905797]::sha256::HashEngine as bitcoin_hashes[974bb476ef905797]::HashEngine>::input
```
I'm assuming this is because on more limited architectures the compiler needs to use more instructions to move data in and out of registers (especially for sha512 which ideally would benefit from 64-bit registers), so reusing the code by moving it into functions saves a lot of those instructions.
Also note that the `const_hash` method on `sha256` causes the compiler to emit two independent implementations. I haven't looked into the code yet, maybe there's a way to merge them so that the non-const `process_block` calls into the const fn.
-----
Note: commits are unverified right now because I don't have the keys available, I will sign them after addressing the review comments.
ACKs for top commit:
apoelstra:
ACK f2c5f19557
tcharding:
ACK f2c5f19557
Tree-SHA512: 1d5eb56324c458660e2571e8cf59895dc31dae9c5427c7ed36f8a0e81ca2e9a0f39026f56b6803df03635cc8b66aee3bf5182d51ab8972d169d56bcfec33771c
546c0122d7 Add simd sha256 intrinsics for x86 machines (sanket1729)
Pull request description:
This is my first time dabbling into architecture specific code and simd. The algorithm is a word to word translation of the C code from 4899efc81d/sha256-x86.c .
Some benchmarks:
With simd
```
test sha256::benches::sha256_10 ... bench: 11 ns/iter (+/- 0) = 909 MB/s
test sha256::benches::sha256_1k ... bench: 712 ns/iter (+/- 2) = 1438 MB/s
test sha256::benches::sha256_64k ... bench: 45,597 ns/iter (+/- 189) = 1437 MB/s
```
Without simd
```
test sha256::benches::sha256_10 ... bench: 47 ns/iter (+/- 0) = 212 MB/s
test sha256::benches::sha256_1k ... bench: 4,243 ns/iter (+/- 17) = 241 MB/s
test sha256::benches::sha256_64k ... bench: 271,263 ns/iter (+/- 1,610) = 241 MB/s
```
ACKs for top commit:
apoelstra:
ACK 546c0122d7
tcharding:
ACK 546c0122d7
Tree-SHA512: 7167c900b77e63cf38135a3960cf9ac2615f73b2ef7020a12b5cc3f4c047910063ba9045217b9ecfa70f7de1eb0f02f2674f291bd023a853bad2b9162fae831e
When enabled this feature swaps the hash implementation of sha512,
sha256 and ripemd160 for a smaller (but also slower) one.
On embedded processors (Cortex-M4) it can lead to up to a 52% size
reduction, from around 37KiB for just the `process_block` methods of the
three hash functions to 17.8KiB.
154552e334 docs: Do not link to std::option::Option (Tobin C. Harding)
24843468c3 Remove rustdocs links to serde (Tobin C. Harding)
Pull request description:
Two minor patches to fix up docs links. These were originally done as part of #1880 but are unrelated so pushing them up separately.
ACKs for top commit:
apoelstra:
ACK 154552e334
RCasatta:
utACK 154552e334
Tree-SHA512: e45e1538c66b59d63a66898896927bb6c1336fb4c8515bb9e2204c8035870ef8e4a6fd32dfc83db2938afda67feb27c48989e382410f9e7ea7a967132941c720
We have just released the `hex-conservative` crate, we can now use it.
Do the following:
- Depend on `hex-conservative` in `bitcoin` and `hashes`
- Re-export `hex-conservative` as `hex` from both crate roots.
- Remove all the old hex code from `hashes`
- Fix all the import statements (makes up the bulk of the lines changed
in this patch)
Recently we made the hash engine fields pub crate so that `sha512_256`
could construct a hash engine with different constants. We can make the
code slightly cleaner by adding a pub crate constructor and making the
fields private again.
Idea from Kixunil:
https://github.com/rust-bitcoin/rust-bitcoin/pull/1413#pullrequestreview-1197207593
We are trying to make error types stable on the way to v1.0
The current `hashes::Error` is a "general" enum error type with a single
variant, better to use a struct and make the error usecase specific.
Improve the `hashes::Error` by doing:
- Make it a struct
- Rename to `FromSliceError`
- Move it to the crate root (remove `error` module)
Includes usage in `bitcoin`.
Whether or not every file needs an explicit license comment is out of
scope for this patch; in the `bitcoin` crate we use SPDX identifiers
because they are a single line with no loss of "benefit" over any longer
form.
Use SPDX identifiers in `hashes`. Drop the mention of re-licensing code
from Apache to CC0-1 (because the original code was written by Andrew
as well as the copied code then if the argument ever comes up it can be
easily countered).
6c61e1019e Fix pinning (schemars and MSRV) (Tobin C. Harding)
c8e38d6a5a hashes: Implement JsonSchema for sha256t::Hash<T> (Tobin C. Harding)
Pull request description:
This has grown due to now including pinning work also done in https://github.com/rust-bitcoin/rust-bitcoin/pull/1736, I decided to do this because the PRs conflict and doing it all here saves accidentally getting out of sync. And https://github.com/rust-bitcoin/rust-bitcoin/pull/1764 requires this PR.
- Patch 1 is unchanged
- Patch 2 now fixes pinning in bitcoin and hashes CI scripts and in the docs of both as well as the manifest stuff relating to `schemars` - phew.
Fix: #1687
ACKs for top commit:
Kixunil:
ACK 6c61e1019e
apoelstra:
ACK 6c61e1019e
Tree-SHA512: eae4aa9700817bab6ad444e07709e8b1a4ffb1625e08be6ba399abde38bf6f8e5ea216a0836e2e26dfaddc76c392802cd016738ea6e753a1bca2584d9d2a9796