// Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! # Big unsigned integer types //! //! Implementation of a various large-but-fixed sized unsigned integer types. //! The functions here are designed to be fast. //! use std::fmt; use std::io::IoResult; use std::num::{Zero, One}; use std::mem::transmute; use network::serialize::Serializable; use util::BitArray; macro_rules! construct_uint( ($name:ident, $n_words:expr) => ( /// Little-endian large integer type #[repr(C)] pub struct $name(pub [u64, ..$n_words]); impl $name { /// Conversion to u32 #[inline] pub fn low_u32(&self) -> u32 { let &$name(ref arr) = self; arr[0] as u32 } /// Return the least number of bits needed to represent the number #[inline] pub fn bits(&self) -> uint { let &$name(ref arr) = self; for i in range(1u, $n_words) { if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as uint; } } 0x40 - arr[0].leading_zeros() as uint } /// Multiplication by u32 pub fn mul_u32(&self, other: u32) -> $name { let &$name(ref arr) = self; let mut carry = [0u64, ..$n_words]; let mut ret = [0u64, ..$n_words]; for i in range(0u, $n_words) { let upper = other as u64 * (arr[i] >> 32); let lower = other as u64 * (arr[i] & 0xFFFFFFFF); if i < 3 { carry[i + 1] += upper >> 32; } ret[i] = lower + (upper << 32); } $name(ret) + $name(carry) } } impl FromPrimitive for $name { #[inline] fn from_u64(init: u64) -> Option<$name> { let mut ret = [0, ..$n_words]; ret[0] = init; Some($name(ret)) } #[inline] fn from_i64(init: i64) -> Option<$name> { FromPrimitive::from_u64(init as u64) } } impl Zero for $name { fn zero() -> $name { $name([0, ..$n_words]) } fn is_zero(&self) -> bool { *self == Zero::zero() } } impl One for $name { fn one() -> $name { $name({ let mut ret = [0, ..$n_words]; ret[0] = 1; ret }) } } impl Add<$name,$name> for $name { fn add(&self, other: &$name) -> $name { let &$name(ref me) = self; let &$name(ref you) = other; let mut ret = [0u64, ..$n_words]; let mut carry = [0u64, ..$n_words]; let mut b_carry = false; for i in range(0u, $n_words) { ret[i] = me[i] + you[i]; if i < $n_words - 1 && ret[i] < me[i] { carry[i + 1] = 1; b_carry = true; } } if b_carry { $name(ret) + $name(carry) } else { $name(ret) } } } impl Sub<$name,$name> for $name { #[inline] fn sub(&self, other: &$name) -> $name { *self + !*other + One::one() } } impl Mul<$name,$name> for $name { fn mul(&self, other: &$name) -> $name { let mut me = *self; // TODO: be more efficient about this for i in range(0u, 2 * $n_words) { me = me + me.mul_u32((other >> (32 * i)).low_u32()) << (32 * i); } me } } impl Div<$name,$name> for $name { fn div(&self, other: &$name) -> $name { let mut sub_copy = *self; let mut shift_copy = *other; let mut ret = [0u64, ..$n_words]; let my_bits = self.bits(); let your_bits = other.bits(); // Check for division by 0 assert!(your_bits != 0); // Early return in case we are dividing by a larger number than us if my_bits < your_bits { return $name(ret); } // Bitwise long division let mut shift = my_bits - your_bits; shift_copy = shift_copy << shift; loop { if sub_copy >= shift_copy { ret[shift / 64] |= 1 << (shift % 64); sub_copy = sub_copy.sub(&shift_copy); } shift_copy = shift_copy >> 1; if shift == 0 { break; } shift -= 1; } $name(ret) } } impl BitArray for $name { #[inline] fn bit(&self, index: uint) -> bool { let &$name(ref arr) = self; arr[index / 64] & (1 << (index % 64)) != 0 } #[inline] fn bit_slice(&self, start: uint, end: uint) -> $name { (self >> start).mask(end - start) } #[inline] fn mask(&self, n: uint) -> $name { let &$name(ref arr) = self; let mut ret = [0, ..$n_words]; for i in range(0u, $n_words) { if n >= 0x40 * (i + 1) { ret[i] = arr[i]; } else { ret[i] = arr[i] & ((1 << (n - 0x40 * i)) - 1); break; } } $name(ret) } #[inline] fn trailing_zeros(&self) -> uint { let &$name(ref arr) = self; for i in range(0u, $n_words - 1) { if arr[i] > 0 { return (0x40 * i) + arr[i].trailing_zeros() as uint; } } (0x40 * ($n_words - 1)) + arr[3].trailing_zeros() as uint } } impl BitAnd<$name,$name> for $name { #[inline] fn bitand(&self, other: &$name) -> $name { let &$name(ref arr1) = self; let &$name(ref arr2) = other; let mut ret = [0u64, ..$n_words]; for i in range(0u, $n_words) { ret[i] = arr1[i] & arr2[i]; } $name(ret) } } impl BitXor<$name,$name> for $name { #[inline] fn bitxor(&self, other: &$name) -> $name { let &$name(ref arr1) = self; let &$name(ref arr2) = other; let mut ret = [0u64, ..$n_words]; for i in range(0u, $n_words) { ret[i] = arr1[i] ^ arr2[i]; } $name(ret) } } impl BitOr<$name,$name> for $name { #[inline] fn bitor(&self, other: &$name) -> $name { let &$name(ref arr1) = self; let &$name(ref arr2) = other; let mut ret = [0u64, ..$n_words]; for i in range(0u, $n_words) { ret[i] = arr1[i] | arr2[i]; } $name(ret) } } impl Not<$name> for $name { #[inline] fn not(&self) -> $name { let &$name(ref arr) = self; let mut ret = [0u64, ..$n_words]; for i in range(0u, $n_words) { ret[i] = !arr[i]; } $name(ret) } } impl Shl for $name { fn shl(&self, shift: &uint) -> $name { let &$name(ref original) = self; let mut ret = [0u64, ..$n_words]; let word_shift = *shift / 64; let bit_shift = *shift % 64; for i in range(0u, $n_words) { // Shift if bit_shift < 64 && i + word_shift < $n_words { ret[i + word_shift] += original[i] << bit_shift; } // Carry if bit_shift > 0 && i + word_shift + 1 < $n_words { ret[i + word_shift + 1] += original[i] >> (64 - bit_shift); } } $name(ret) } } impl Shr for $name { #[allow(unsigned_negate)] fn shr(&self, shift: &uint) -> $name { let &$name(ref original) = self; let mut ret = [0u64, ..$n_words]; let word_shift = *shift / 64; let bit_shift = *shift % 64; for i in range(0u, $n_words) { // Shift if bit_shift < 64 && i - word_shift < $n_words { ret[i - word_shift] += original[i] >> bit_shift; } // Carry if bit_shift > 0 && i - word_shift - 1 < $n_words { ret[i - word_shift - 1] += original[i] << (64 - bit_shift); } } $name(ret) } } impl PartialEq for $name { fn eq(&self, other: &$name) -> bool { let &$name(ref arr1) = self; let &$name(ref arr2) = other; for i in range(0, $n_words) { if arr1[i] != arr2[i] { return false; } } return true; } } impl Eq for $name {} impl Ord for $name { fn cmp(&self, other: &$name) -> Ordering { let &$name(ref me) = self; let &$name(ref you) = other; for i in range(0, $n_words) { if me[3 - i] < you[3 - i] { return Less; } if me[3 - i] > you[3 - i] { return Greater; } } return Equal; } } impl PartialOrd for $name { fn partial_cmp(&self, other: &$name) -> Option { Some(self.cmp(other)) } } impl fmt::Show for $name { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.serialize().as_slice()) } } impl Serializable for $name { fn serialize(&self) -> Vec { let vec = unsafe { transmute::<$name, [u8, ..($n_words*8)]>(*self) }; vec.serialize() } fn deserialize>(mut iter: I) -> IoResult<$name> { let ret: [u8, ..($n_words*8)] = try!(Serializable::deserialize(iter.by_ref())); Ok(unsafe { transmute(ret) }) } } ); ) construct_uint!(Uint256, 4) construct_uint!(Uint128, 2) impl Uint256 { /// Increment by 1 #[inline] pub fn increment(&mut self) { let &Uint256(ref mut arr) = self; arr[0] += 1; if arr[0] == 0 { arr[1] += 1; if arr[1] == 0 { arr[2] += 1; if arr[2] == 0 { arr[3] += 1; } } } } } #[cfg(test)] mod tests { use std::io::IoResult; use std::num::from_u64; use network::serialize::Serializable; use util::uint::Uint256; use util::BitArray; #[test] pub fn uint256_bits_test() { assert_eq!(from_u64::(255).unwrap().bits(), 8); assert_eq!(from_u64::(256).unwrap().bits(), 9); assert_eq!(from_u64::(300).unwrap().bits(), 9); assert_eq!(from_u64::(60000).unwrap().bits(), 16); assert_eq!(from_u64::(70000).unwrap().bits(), 17); // Try to read the following lines out loud quickly let mut shl: Uint256 = from_u64(70000).unwrap(); shl = shl << 100u; assert_eq!(shl.bits(), 117); shl = shl << 100u; assert_eq!(shl.bits(), 217); shl = shl << 100u; assert_eq!(shl.bits(), 0); // Bit set check assert!(!from_u64::(10).unwrap().bit(0)); assert!(from_u64::(10).unwrap().bit(1)); assert!(!from_u64::(10).unwrap().bit(2)); assert!(from_u64::(10).unwrap().bit(3)); assert!(!from_u64::(10).unwrap().bit(4)); } #[test] pub fn uint256_comp_test() { let small = Uint256([10u64, 0, 0, 0]); let big = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let bigger = Uint256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let biggest = Uint256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]); assert!(small < big); assert!(big < bigger); assert!(bigger < biggest); assert!(bigger <= biggest); assert!(biggest <= biggest); assert!(bigger >= big); assert!(bigger >= small); assert!(small <= small); } #[test] pub fn uint256_arithmetic_test() { let init: Uint256 = from_u64(0xDEADBEEFDEADBEEF).unwrap(); let copy = init; let add = init.add(©); assert_eq!(add, Uint256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0])); // Bitshifts let shl = add << 88u; assert_eq!(shl, Uint256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0])); let shr = shl >> 40u; assert_eq!(shr, Uint256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Increment let mut incr = shr; incr.increment(); assert_eq!(incr, Uint256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Subtraction let sub = incr.sub(&init); assert_eq!(sub, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); // Multiplication let mult = sub.mul_u32(300); assert_eq!(mult, Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0])); // Division assert_eq!(from_u64::(105).unwrap() / from_u64::(5).unwrap(), from_u64::(21).unwrap()); let div = mult / from_u64::(300).unwrap(); assert_eq!(div, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); // TODO: bit inversion } #[test] pub fn uint256_bitslice_test() { let init = from_u64::(0xDEADBEEFDEADBEEF).unwrap(); let add = init + (init << 64); assert_eq!(add.bit_slice(64, 128), init); assert_eq!(add.mask(64), init); } #[test] pub fn uint256_extreme_bitshift_test() { // Shifting a u64 by 64 bits gives an undefined value, so make sure that // we're doing the Right Thing here let init = from_u64::(0xDEADBEEFDEADBEEF).unwrap(); assert_eq!(init << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0, 0])); let add = (init << 64).add(&init); assert_eq!(add, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add << 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 64, Uint256([0xDEADBEEFDEADBEEF, 0, 0, 0])); assert_eq!(add << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0])); } #[test] pub fn uint256_serialize_test() { let start1 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let start2 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0xABCD, 0xFFFF]); let serial1 = start1.serialize(); let serial2 = start2.serialize(); let end1: IoResult = Serializable::deserialize(serial1.iter().map(|n| *n)); let end2: IoResult = Serializable::deserialize(serial2.iter().map(|n| *n)); assert_eq!(end1, Ok(start1)); assert_eq!(end2, Ok(start2)); } }