//! Rust-Bitcoin IO Library //! //! The `std::io` module is not exposed in `no-std` Rust so building `no-std` applications which //! require reading and writing objects via standard traits is not generally possible. Thus, this //! library exists to export a minmal version of `std::io`'s traits which we use in `rust-bitcoin` //! so that we can support `no-std` applications. //! //! These traits are not one-for-one drop-ins, but are as close as possible while still implementing //! `std::io`'s traits without unnecessary complexity. #![cfg_attr(not(feature = "std"), no_std)] // Experimental features we need. #![cfg_attr(docsrs, feature(doc_auto_cfg))] // Coding conventions. // #![warn(missing_docs)] // Exclude lints we don't think are valuable. #![allow(clippy::needless_question_mark)] // https://github.com/rust-bitcoin/rust-bitcoin/pull/2134 #![allow(clippy::manual_range_contains)] // More readable than clippy's format. #[cfg(feature = "alloc")] extern crate alloc; mod error; mod macros; #[cfg(feature = "alloc")] use alloc::vec::Vec; use core::cmp; use core::convert::TryInto; #[rustfmt::skip] // Keep public re-exports separate. pub use self::error::{Error, ErrorKind}; pub type Result = core::result::Result; /// A generic trait describing an input stream. See [`std::io::Read`] for more info. pub trait Read { fn read(&mut self, buf: &mut [u8]) -> Result; #[inline] fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> { while !buf.is_empty() { match self.read(buf) { Ok(0) => return Err(ErrorKind::UnexpectedEof.into()), Ok(len) => buf = &mut buf[len..], Err(e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(()) } #[inline] fn take(&mut self, limit: u64) -> Take { Take { reader: self, remaining: limit } } /// Attempts to read up to limit bytes from the reader, allocating space in `buf` as needed. /// /// `limit` is used to prevent a denial of service attack vector since an unbounded reader will /// exhaust all memory. /// /// Similar to `std::io::Read::read_to_end` but with the DOS protection. #[doc(alias = "read_to_end")] #[cfg(any(feature = "alloc", feature = "std"))] #[inline] fn read_to_limit(&mut self, buf: &mut Vec, limit: u64) -> Result { self.take(limit).read_to_end(buf) } } /// A trait describing an input stream that uses an internal buffer when reading. pub trait BufRead: Read { /// Returns data read from this reader, filling the internal buffer if needed. fn fill_buf(&mut self) -> Result<&[u8]>; /// Marks the buffered data up to amount as consumed. /// /// # Panics /// /// May panic if `amount` is greater than amount of data read by `fill_buf`. fn consume(&mut self, amount: usize); } pub struct Take<'a, R: Read + ?Sized> { reader: &'a mut R, remaining: u64, } impl<'a, R: Read + ?Sized> Take<'a, R> { /// Reads all bytes until EOF from the underlying reader into `buf`. #[cfg(any(feature = "alloc", feature = "std"))] #[inline] pub fn read_to_end(&mut self, buf: &mut Vec) -> Result { let mut read: usize = 0; let mut chunk = [0u8; 64]; loop { match self.read(&mut chunk) { Ok(0) => break, Ok(n) => { buf.extend_from_slice(&chunk[0..n]); read += n; } Err(ref e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), }; } Ok(read) } } impl<'a, R: Read + ?Sized> Read for Take<'a, R> { #[inline] fn read(&mut self, buf: &mut [u8]) -> Result { let len = cmp::min(buf.len(), self.remaining.try_into().unwrap_or(buf.len())); let read = self.reader.read(&mut buf[..len])?; self.remaining -= read.try_into().unwrap_or(self.remaining); Ok(read) } } // Impl copied from Rust stdlib. impl<'a, R: BufRead + ?Sized> BufRead for Take<'a, R> { #[inline] fn fill_buf(&mut self) -> Result<&[u8]> { // Don't call into inner reader at all at EOF because it may still block if self.remaining == 0 { return Ok(&[]); } let buf = self.reader.fill_buf()?; // Cast length to a u64 instead of casting `remaining` to a `usize` // (in case `remaining > u32::MAX` and we are on a 32 bit machine). let cap = cmp::min(buf.len() as u64, self.remaining) as usize; Ok(&buf[..cap]) } #[inline] fn consume(&mut self, amount: usize) { assert!(amount as u64 <= self.remaining); self.remaining -= amount as u64; self.reader.consume(amount); } } #[cfg(feature = "std")] impl Read for R { #[inline] fn read(&mut self, buf: &mut [u8]) -> Result { Ok(::read(self, buf)?) } } #[cfg(feature = "std")] impl BufRead for R { #[inline] fn fill_buf(&mut self) -> Result<&[u8]> { Ok(std::io::BufRead::fill_buf(self)?) } #[inline] fn consume(&mut self, amount: usize) { std::io::BufRead::consume(self, amount) } } #[cfg(not(feature = "std"))] impl Read for &[u8] { #[inline] fn read(&mut self, buf: &mut [u8]) -> Result { let cnt = cmp::min(self.len(), buf.len()); buf[..cnt].copy_from_slice(&self[..cnt]); *self = &self[cnt..]; Ok(cnt) } } #[cfg(not(feature = "std"))] impl BufRead for &[u8] { #[inline] fn fill_buf(&mut self) -> Result<&[u8]> { Ok(self) } // This panics if amount is out of bounds, same as the std version. #[inline] fn consume(&mut self, amount: usize) { *self = &self[amount..] } } pub struct Cursor { inner: T, pos: u64, } impl> Cursor { #[inline] pub fn new(inner: T) -> Self { Cursor { inner, pos: 0 } } #[inline] pub fn position(&self) -> u64 { self.pos } #[inline] pub fn into_inner(self) -> T { self.inner } } impl> Read for Cursor { #[inline] fn read(&mut self, buf: &mut [u8]) -> Result { let inner: &[u8] = self.inner.as_ref(); let start_pos = self.pos.try_into().unwrap_or(inner.len()); let read = core::cmp::min(inner.len().saturating_sub(start_pos), buf.len()); buf[..read].copy_from_slice(&inner[start_pos..start_pos + read]); self.pos = self.pos.saturating_add(read.try_into().unwrap_or(u64::max_value() /* unreachable */)); Ok(read) } } impl> BufRead for Cursor { #[inline] fn fill_buf(&mut self) -> Result<&[u8]> { let inner: &[u8] = self.inner.as_ref(); Ok(&inner[self.pos as usize..]) } #[inline] fn consume(&mut self, amount: usize) { assert!(amount <= self.inner.as_ref().len()); self.pos += amount as u64; } } /// A generic trait describing an output stream. See [`std::io::Write`] for more info. pub trait Write { fn write(&mut self, buf: &[u8]) -> Result; fn flush(&mut self) -> Result<()>; #[inline] fn write_all(&mut self, mut buf: &[u8]) -> Result<()> { while !buf.is_empty() { match self.write(buf) { Ok(0) => return Err(ErrorKind::UnexpectedEof.into()), Ok(len) => buf = &buf[len..], Err(e) if e.kind() == ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(()) } } #[cfg(feature = "std")] impl Write for W { #[inline] fn write(&mut self, buf: &[u8]) -> Result { Ok(::write(self, buf)?) } #[inline] fn flush(&mut self) -> Result<()> { Ok(::flush(self)?) } } #[cfg(all(feature = "alloc", not(feature = "std")))] impl Write for alloc::vec::Vec { #[inline] fn write(&mut self, buf: &[u8]) -> Result { self.extend_from_slice(buf); Ok(buf.len()) } #[inline] fn flush(&mut self) -> Result<()> { Ok(()) } } #[cfg(not(feature = "std"))] impl<'a> Write for &'a mut [u8] { #[inline] fn write(&mut self, buf: &[u8]) -> Result { let cnt = core::cmp::min(self.len(), buf.len()); self[..cnt].copy_from_slice(&buf[..cnt]); *self = &mut core::mem::take(self)[cnt..]; Ok(cnt) } #[inline] fn flush(&mut self) -> Result<()> { Ok(()) } } /// A sink to which all writes succeed. See [`std::io::Sink`] for more info. pub struct Sink; #[cfg(not(feature = "std"))] impl Write for Sink { #[inline] fn write(&mut self, buf: &[u8]) -> Result { Ok(buf.len()) } #[inline] fn write_all(&mut self, _: &[u8]) -> Result<()> { Ok(()) } #[inline] fn flush(&mut self) -> Result<()> { Ok(()) } } #[cfg(feature = "std")] impl std::io::Write for Sink { #[inline] fn write(&mut self, buf: &[u8]) -> std::io::Result { Ok(buf.len()) } #[inline] fn write_all(&mut self, _: &[u8]) -> std::io::Result<()> { Ok(()) } #[inline] fn flush(&mut self) -> std::io::Result<()> { Ok(()) } } /// Returns a sink to which all writes succeed. See [`std::io::sink`] for more info. #[inline] pub fn sink() -> Sink { Sink } #[cfg(test)] mod tests { use super::*; #[cfg(feature = "alloc")] use alloc::{string::ToString, vec}; #[test] fn buf_read_fill_and_consume_slice() { let data = [0_u8, 1, 2]; let mut slice = &data[..]; let fill = BufRead::fill_buf(&mut slice).unwrap(); assert_eq!(fill.len(), 3); assert_eq!(fill, &[0_u8, 1, 2]); slice.consume(2); let fill = BufRead::fill_buf(&mut slice).unwrap(); assert_eq!(fill.len(), 1); assert_eq!(fill, &[2_u8]); slice.consume(1); // checks we can attempt to read from a now-empty reader. let fill = BufRead::fill_buf(&mut slice).unwrap(); assert_eq!(fill.len(), 0); assert_eq!(fill, &[]); } #[test] #[cfg(feature = "alloc")] fn read_to_limit_greater_than_total_length() { let s = "16-byte-string!!".to_string(); let mut reader = Cursor::new(&s); let mut buf = vec![]; // 32 is greater than the reader length. let read = reader.read_to_limit(&mut buf, 32).expect("failed to read to limit"); assert_eq!(read, s.len()); assert_eq!(&buf, s.as_bytes()) } #[test] #[cfg(feature = "alloc")] fn read_to_limit_less_than_total_length() { let s = "16-byte-string!!".to_string(); let mut reader = Cursor::new(&s); let mut buf = vec![]; let read = reader.read_to_limit(&mut buf, 2).expect("failed to read to limit"); assert_eq!(read, 2); assert_eq!(&buf, "16".as_bytes()) } }