// Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // macro_rules! impl_consensus_encoding { ($thing:ident, $($field:ident),+) => ( impl ::network::encodable::ConsensusEncodable for $thing { #[inline] fn consensus_encode(&self, s: &mut S) -> Result<(), S::Error> { $( try!(self.$field.consensus_encode(s)); )+ Ok(()) } } impl ::network::encodable::ConsensusDecodable for $thing { #[inline] fn consensus_decode(d: &mut D) -> Result<$thing, D::Error> { use network::encodable::ConsensusDecodable; Ok($thing { $( $field: try!(ConsensusDecodable::consensus_decode(d)), )+ }) } } ); } macro_rules! impl_newtype_consensus_encoding { ($thing:ident) => ( impl ::network::encodable::ConsensusEncodable for $thing { #[inline] fn consensus_encode(&self, s: &mut S) -> Result<(), S::Error> { let &$thing(ref data) = self; data.consensus_encode(s) } } impl ::network::encodable::ConsensusDecodable for $thing { #[inline] fn consensus_decode(d: &mut D) -> Result<$thing, D::Error> { Ok($thing(try!(ConsensusDecodable::consensus_decode(d)))) } } ); } macro_rules! impl_array_newtype { ($thing:ident, $ty:ty, $len:expr) => { impl $thing { #[inline] /// Converts the object to a raw pointer pub fn as_ptr(&self) -> *const $ty { let &$thing(ref dat) = self; dat.as_ptr() } #[inline] /// Converts the object to a mutable raw pointer pub fn as_mut_ptr(&mut self) -> *mut $ty { let &mut $thing(ref mut dat) = self; dat.as_mut_ptr() } #[inline] /// Returns the length of the object as an array pub fn len(&self) -> usize { $len } #[inline] /// Returns whether the object, as an array, is empty. Always false. pub fn is_empty(&self) -> bool { false } } impl<'a> From<&'a [$ty]> for $thing { fn from(data: &'a [$ty]) -> $thing { assert_eq!(data.len(), $len); unsafe { use std::intrinsics::copy_nonoverlapping; use std::mem; let mut ret: $thing = mem::uninitialized(); copy_nonoverlapping(data.as_ptr(), ret.as_mut_ptr(), mem::size_of::<$thing>()); ret } } } impl ::std::ops::Index for $thing { type Output = $ty; #[inline] fn index(&self, index: usize) -> &$ty { let &$thing(ref dat) = self; &dat[index] } } impl_index_newtype!($thing, $ty); impl PartialEq for $thing { #[inline] fn eq(&self, other: &$thing) -> bool { &self[..] == &other[..] } } impl Eq for $thing {} impl PartialOrd for $thing { #[inline] fn partial_cmp(&self, other: &$thing) -> Option<::std::cmp::Ordering> { Some(self.cmp(&other)) } } impl Ord for $thing { #[inline] fn cmp(&self, other: &$thing) -> ::std::cmp::Ordering { // manually implement comparison to get little-endian ordering // (we need this for our numeric types; non-numeric ones shouldn't // be ordered anyway except to put them in BTrees or whatever, and // they don't care how we order as long as we're consisistent). for i in 0..$len { if self[$len - 1 - i] < other[$len - 1 - i] { return ::std::cmp::Ordering::Less; } if self[$len - 1 - i] > other[$len - 1 - i] { return ::std::cmp::Ordering::Greater; } } ::std::cmp::Ordering::Equal } } impl Clone for $thing { #[inline] fn clone(&self) -> $thing { $thing::from(&self[..]) } } impl Copy for $thing {} impl ::std::hash::Hash for $thing { #[inline] fn hash(&self, state: &mut H) where H: ::std::hash::Hasher { (&self[..]).hash(state); } fn hash_slice(data: &[$thing], state: &mut H) where H: ::std::hash::Hasher { for d in data.iter() { (&d[..]).hash(state); } } } impl ::rand::Rand for $thing { #[inline] fn rand(r: &mut R) -> $thing { $thing(::rand::Rand::rand(r)) } } } } macro_rules! impl_array_newtype_encodable { ($thing:ident, $ty:ty, $len:expr) => { impl ::serde::Deserialize for $thing { fn deserialize(d: &mut D) -> Result<$thing, D::Error> where D: ::serde::Deserializer { // We have to define the Visitor struct inside the function // to make it local ... what we really need is that it's // local to the macro, but this is Close Enough. struct Visitor { marker: ::std::marker::PhantomData<$thing>, } impl ::serde::de::Visitor for Visitor { type Value = $thing; #[inline] fn visit_seq(&mut self, mut v: V) -> Result<$thing, V::Error> where V: ::serde::de::SeqVisitor { unsafe { use std::mem; let mut ret: [$ty; $len] = mem::uninitialized(); for item in ret.mut_iter() { *item = match try!(v.visit()) { Some(c) => c, None => return Err(::serde::de::Error::end_of_stream_error()) }; } try!(v.end()); Ok($thing(ret)) } } } // Begin actual function d.visit(Visitor { marker: ::std::marker::PhantomData }) } } impl ::serde::Serialize for $thing { fn serialize(&self, s: &mut S) -> Result<(), S::Error> where S: ::serde::Serializer { let &$thing(ref dat) = self; (&dat[..]).serialize(s) } } } } macro_rules! impl_array_newtype_show { ($thing:ident) => { impl ::std::fmt::Debug for $thing { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(f, concat!(stringify!($thing), "({:?})"), &self[..]) } } } } macro_rules! impl_index_newtype { ($thing:ident, $ty:ty) => { impl ::std::ops::Index<::std::ops::Range> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::Range) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeTo> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::RangeTo) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeFrom> for $thing { type Output = [$ty]; #[inline] fn index(&self, index: ::std::ops::RangeFrom) -> &[$ty] { &self.0[index] } } impl ::std::ops::Index<::std::ops::RangeFull> for $thing { type Output = [$ty]; #[inline] fn index(&self, _: ::std::ops::RangeFull) -> &[$ty] { &self.0[..] } } } } macro_rules! display_from_debug { ($thing:ident) => { impl ::std::fmt::Display for $thing { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> { ::std::fmt::Debug::fmt(self, f) } } } }