// SPDX-License-Identifier: CC0-1.0 //! A signed bitcoin amount. #[cfg(feature = "alloc")] use alloc::string::{String, ToString}; use core::str::FromStr; use core::{default, fmt, ops}; #[cfg(feature = "arbitrary")] use arbitrary::{Arbitrary, Unstructured}; use super::error::{ParseAmountErrorInner, ParseErrorInner}; use super::{ parse_signed_to_satoshi, split_amount_and_denomination, Amount, Denomination, Display, DisplayStyle, OutOfRangeError, ParseAmountError, ParseError, }; /// A signed amount. /// /// The [`SignedAmount`] type can be used to express Bitcoin amounts that support arithmetic and /// conversion to various denominations. The `Amount` type does not implement `serde` traits but we /// do provide modules for serializing as satoshis or bitcoin. /// /// Warning! /// /// This type implements several arithmetic operations from [`core::ops`]. /// To prevent errors due to overflow or underflow when using these operations, /// it is advised to instead use the checked arithmetic methods whose names /// start with `checked_`. The operations from [`core::ops`] that [`Amount`] /// implements will panic when overflow or underflow occurs. /// /// # Examples /// /// ``` /// # #[cfg(feature = "serde")] { /// use serde::{Serialize, Deserialize}; /// use bitcoin_units::SignedAmount; /// /// #[derive(Serialize, Deserialize)] /// struct Foo { /// // If you are using `rust-bitcoin` then `bitcoin::amount::serde::as_sat` also works. /// #[serde(with = "bitcoin_units::amount::serde::as_sat")] // Also `serde::as_btc`. /// amount: SignedAmount, /// } /// # } /// ``` #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SignedAmount(i64); impl SignedAmount { /// The zero amount. pub const ZERO: Self = SignedAmount(0); /// Exactly one satoshi. pub const ONE_SAT: Self = SignedAmount(1); /// Exactly one bitcoin. pub const ONE_BTC: Self = SignedAmount(100_000_000); /// The maximum value allowed as an amount. Useful for sanity checking. pub const MAX_MONEY: Self = SignedAmount(21_000_000 * 100_000_000); /// The minimum value of an amount. pub const MIN: Self = SignedAmount(-21_000_000 * 100_000_000); /// The maximum value of an amount. pub const MAX: Self = SignedAmount::MAX_MONEY; /// Constructs a new [`SignedAmount`] with satoshi precision and the given number of satoshis. pub const fn from_sat(satoshi: i64) -> SignedAmount { SignedAmount(satoshi) } /// Gets the number of satoshis in this [`SignedAmount`]. pub const fn to_sat(self) -> i64 { self.0 } /// Converts from a value expressing a whole number of bitcoin to a [`SignedAmount`]. #[cfg(feature = "alloc")] pub fn from_btc(btc: f64) -> Result { SignedAmount::from_float_in(btc, Denomination::Bitcoin) } /// Converts from a value expressing a whole number of bitcoin to a [`SignedAmount`]. /// /// # Errors /// /// The function errors if the argument multiplied by the number of sats /// per bitcoin overflows an `i64` type. pub fn from_int_btc>(whole_bitcoin: T) -> Result { match whole_bitcoin.into().checked_mul(100_000_000) { Some(amount) => Ok(SignedAmount::from_sat(amount)), None => Err(OutOfRangeError { is_signed: true, is_greater_than_max: true }), } } /// Converts from a value expressing a whole number of bitcoin to a [`SignedAmount`] /// in const context. /// /// # Panics /// /// The function panics if the argument multiplied by the number of sats /// per bitcoin overflows an `i64` type. pub const fn from_int_btc_const(whole_bitcoin: i64) -> SignedAmount { match whole_bitcoin.checked_mul(100_000_000) { Some(amount) => SignedAmount::from_sat(amount), None => panic!("checked_mul overflowed"), } } /// Parses a decimal string as a value in the given denomination. /// /// Note: This only parses the value string. If you want to parse a value /// with denomination, use [`FromStr`]. pub fn from_str_in(s: &str, denom: Denomination) -> Result { match parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(true))? { // (negative, amount) (false, sat) if sat > SignedAmount::MAX.to_sat() as u64 => Err(ParseAmountError( ParseAmountErrorInner::OutOfRange(OutOfRangeError::too_big(true)), )), (false, sat) => Ok(SignedAmount(sat as i64)), // Cast ok, value in this arm does not wrap. (true, sat) if sat > SignedAmount::MIN.to_sat().unsigned_abs() => Err( ParseAmountError(ParseAmountErrorInner::OutOfRange(OutOfRangeError::too_small())), ), (true, sat) => Ok(SignedAmount(-(sat as i64))), // Cast ok, value in this arm does not wrap. } } /// Parses amounts with denomination suffix as produced by [`Self::to_string_with_denomination`] /// or with [`fmt::Display`]. /// /// If you want to parse only the amount without the denomination, use [`Self::from_str_in`]. pub fn from_str_with_denomination(s: &str) -> Result { let (amt, denom) = split_amount_and_denomination(s)?; SignedAmount::from_str_in(amt, denom).map_err(Into::into) } /// Express this [`SignedAmount`] as a floating-point value in the given denomination. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn to_float_in(self, denom: Denomination) -> f64 { self.to_string_in(denom).parse::().unwrap() } /// Express this [`SignedAmount`] as a floating-point value in Bitcoin. /// /// Please be aware of the risk of using floating-point numbers. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{SignedAmount, Denomination}; /// let amount = SignedAmount::from_sat(100_000); /// assert_eq!(amount.to_btc(), amount.to_float_in(Denomination::Bitcoin)) /// ``` #[cfg(feature = "alloc")] pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) } /// Convert this [`SignedAmount`] in floating-point notation with a given /// denomination. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn from_float_in( value: f64, denom: Denomination, ) -> Result { // This is inefficient, but the safest way to deal with this. The parsing logic is safe. // Any performance-critical application should not be dealing with floats. SignedAmount::from_str_in(&value.to_string(), denom) } /// Constructs a new object that implements [`fmt::Display`] using specified denomination. #[must_use] pub fn display_in(self, denomination: Denomination) -> Display { Display { sats_abs: self.unsigned_abs().to_sat(), is_negative: self.is_negative(), style: DisplayStyle::FixedDenomination { denomination, show_denomination: false }, } } /// Constructs a new object that implements [`fmt::Display`] dynamically selecting denomination. /// /// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To /// avoid confusion the denomination is always shown. #[must_use] pub fn display_dynamic(self) -> Display { Display { sats_abs: self.unsigned_abs().to_sat(), is_negative: self.is_negative(), style: DisplayStyle::DynamicDenomination, } } /// Returns a formatted string representing this [`SignedAmount`] in the given denomination. /// /// Does not include the denomination. #[cfg(feature = "alloc")] pub fn to_string_in(self, denom: Denomination) -> String { self.display_in(denom).to_string() } /// Returns a formatted string representing this [`Amount`] in the given denomination, suffixed /// with the abbreviation for the denomination. #[cfg(feature = "alloc")] pub fn to_string_with_denomination(self, denom: Denomination) -> String { self.display_in(denom).show_denomination().to_string() } // Some arithmetic that doesn't fit in [`core::ops`] traits. /// Get the absolute value of this [`SignedAmount`]. #[must_use] pub fn abs(self) -> SignedAmount { SignedAmount(self.0.abs()) } /// Gets the absolute value of this [`SignedAmount`] returning [`Amount`]. #[must_use] pub fn unsigned_abs(self) -> Amount { Amount::from_sat(self.0.unsigned_abs()) } /// Returns a number representing sign of this [`SignedAmount`]. /// /// - `0` if the amount is zero /// - `1` if the amount is positive /// - `-1` if the amount is negative #[must_use] pub fn signum(self) -> i64 { self.0.signum() } /// Checks if this [`SignedAmount`] is positive. /// /// Returns `true` if this [`SignedAmount`] is positive and `false` if /// this [`SignedAmount`] is zero or negative. pub fn is_positive(self) -> bool { self.0.is_positive() } /// Checks if this [`SignedAmount`] is negative. /// /// Returns `true` if this [`SignedAmount`] is negative and `false` if /// this [`SignedAmount`] is zero or positive. pub fn is_negative(self) -> bool { self.0.is_negative() } /// Returns the absolute value of this [`SignedAmount`]. /// /// Consider using `unsigned_abs` which is often more practical. /// /// Returns [`None`] if overflow occurred. (`self == MIN`) #[must_use] pub const fn checked_abs(self) -> Option { // No `map()` in const context. match self.0.checked_abs() { Some(res) => Some(SignedAmount(res)), None => None, } } /// Checked addition. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_add(self, rhs: SignedAmount) -> Option { // No `map()` in const context. match self.0.checked_add(rhs.0) { Some(res) => SignedAmount(res).check_min_max(), None => None, } } /// Checked subtraction. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_sub(self, rhs: SignedAmount) -> Option { // No `map()` in const context. match self.0.checked_sub(rhs.0) { Some(res) => SignedAmount(res).check_min_max(), None => None, } } /// Checked multiplication. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_mul(self, rhs: i64) -> Option { // No `map()` in const context. match self.0.checked_mul(rhs) { Some(res) => SignedAmount(res).check_min_max(), None => None, } } /// Checked integer division. /// /// Be aware that integer division loses the remainder if no exact division can be made. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_div(self, rhs: i64) -> Option { // No `map()` in const context. match self.0.checked_div(rhs) { Some(res) => Some(SignedAmount(res)), None => None, } } /// Checked remainder. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_rem(self, rhs: i64) -> Option { // No `map()` in const context. match self.0.checked_rem(rhs) { Some(res) => Some(SignedAmount(res)), None => None, } } /// Unchecked addition. /// /// Computes `self + rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. #[must_use] #[deprecated(since = "TBD", note = "consider converting to u64 using `to_sat`")] pub fn unchecked_add(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 + rhs.0) } /// Unchecked subtraction. /// /// Computes `self - rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. #[must_use] #[deprecated(since = "TBD", note = "consider converting to u64 using `to_sat`")] pub fn unchecked_sub(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 - rhs.0) } /// Subtraction that doesn't allow negative [`SignedAmount`]s. /// /// Returns [`None`] if either `self`, `rhs` or the result is strictly negative. #[must_use] pub fn positive_sub(self, rhs: SignedAmount) -> Option { if self.is_negative() || rhs.is_negative() || rhs > self { None } else { self.checked_sub(rhs) } } /// Converts to an unsigned amount. pub fn to_unsigned(self) -> Result { if self.is_negative() { Err(OutOfRangeError::negative()) } else { Ok(Amount::from_sat(self.to_sat() as u64)) // Cast ok, checked not negative above. } } /// Checks the amount is within the allowed range. const fn check_min_max(self) -> Option { if self.0 < Self::MIN.0 || self.0 > Self::MAX.0 { None } else { Some(self) } } } impl default::Default for SignedAmount { fn default() -> Self { SignedAmount::ZERO } } impl fmt::Debug for SignedAmount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "SignedAmount({} SAT)", self.to_sat()) } } // No one should depend on a binding contract for Display for this type. // Just using Bitcoin denominated string. impl fmt::Display for SignedAmount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.display_in(Denomination::Bitcoin).show_denomination(), f) } } impl ops::Add for SignedAmount { type Output = SignedAmount; fn add(self, rhs: SignedAmount) -> Self::Output { self.checked_add(rhs).expect("SignedAmount addition error") } } crate::internal_macros::impl_add_for_references!(SignedAmount); crate::internal_macros::impl_add_assign!(SignedAmount); impl ops::Sub for SignedAmount { type Output = SignedAmount; fn sub(self, rhs: SignedAmount) -> Self::Output { self.checked_sub(rhs).expect("SignedAmount subtraction error") } } crate::internal_macros::impl_sub_for_references!(SignedAmount); crate::internal_macros::impl_sub_assign!(SignedAmount); impl ops::Rem for SignedAmount { type Output = SignedAmount; fn rem(self, modulus: i64) -> Self { self.checked_rem(modulus).expect("SignedAmount remainder error") } } impl ops::RemAssign for SignedAmount { fn rem_assign(&mut self, modulus: i64) { *self = *self % modulus } } impl ops::Mul for SignedAmount { type Output = SignedAmount; fn mul(self, rhs: i64) -> Self::Output { self.checked_mul(rhs).expect("SignedAmount multiplication error") } } impl ops::MulAssign for SignedAmount { fn mul_assign(&mut self, rhs: i64) { *self = *self * rhs } } impl ops::Div for SignedAmount { type Output = SignedAmount; fn div(self, rhs: i64) -> Self::Output { self.checked_div(rhs).expect("SignedAmount division error") } } impl ops::DivAssign for SignedAmount { fn div_assign(&mut self, rhs: i64) { *self = *self / rhs } } impl ops::Neg for SignedAmount { type Output = Self; fn neg(self) -> Self::Output { Self(self.0.neg()) } } impl FromStr for SignedAmount { type Err = ParseError; /// Parses a string slice where the slice includes a denomination. /// /// If the returned value would be zero or negative zero, then no denomination is required. fn from_str(s: &str) -> Result { let result = SignedAmount::from_str_with_denomination(s); match result { Err(ParseError(ParseErrorInner::MissingDenomination(_))) => { let d = SignedAmount::from_str_in(s, Denomination::Satoshi); if d == Ok(SignedAmount::ZERO) { Ok(SignedAmount::ZERO) } else { result } } _ => result, } } } impl TryFrom for SignedAmount { type Error = OutOfRangeError; fn try_from(value: Amount) -> Result { value.to_signed() } } impl core::iter::Sum for SignedAmount { fn sum>(iter: I) -> Self { let sats: i64 = iter.map(|amt| amt.0).sum(); SignedAmount::from_sat(sats) } } impl<'a> core::iter::Sum<&'a SignedAmount> for SignedAmount { fn sum(iter: I) -> Self where I: Iterator, { let sats: i64 = iter.map(|amt| amt.0).sum(); SignedAmount::from_sat(sats) } } #[cfg(feature = "arbitrary")] impl<'a> Arbitrary<'a> for SignedAmount { fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { let s = i64::arbitrary(u)?; Ok(SignedAmount(s)) } }