// Rust Bitcoin Library
// Written in 2021 by
// The rust-bitcoin developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see .
//
//! # Generalized, efficient, signature hash implementation
//!
//! Implementation of the algorithm to compute the message to be signed according to [Bip341](https://github.com/bitcoin/bips/blob/150ab6f5c3aca9da05fccc5b435e9667853407f4/bip-0341.mediawiki),
//! [Bip143](https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki)
//! and legacy
//!
pub use blockdata::transaction::SigHashType as LegacySigHashType;
use consensus::{encode, Encodable};
use core::fmt;
use core::ops::{Deref, DerefMut};
use hashes::{sha256, sha256d, Hash};
use io;
use util::taproot::{TapLeafHash, TapSighashHash};
use SigHash;
use {Script, Transaction, TxOut};
use prelude::*;
/// Efficiently calculates signature hash message for legacy, segwit and taproot inputs.
pub struct SigHashCache> {
/// Access to transaction required for various introspection, moreover type
/// `T: Deref` allows to accept borrow and mutable borrow, the
/// latter in particular is necessary for [SigHashCache::access_witness]
tx: T,
/// Common cache for taproot and segwit inputs. It's an option because it's not needed for legacy inputs
common_cache: Option,
/// Cache for segwit v0 inputs, it's the result of another round of sha256 on `common_cache`
segwit_cache: Option,
/// Cache for taproot v1 inputs
taproot_cache: Option,
}
/// Values cached common between segwit and taproot inputs
pub struct CommonCache {
prevouts: sha256::Hash,
sequences: sha256::Hash,
/// in theory, `outputs` could be `Option` since `NONE` and `SINGLE` doesn't need it, but since
/// `ALL` is the mostly used variant by large, we don't bother
outputs: sha256::Hash,
}
/// Values cached for segwit inputs, it's equal to [CommonCache] plus another round of `sha256`
pub struct SegwitCache {
prevouts: sha256d::Hash,
sequences: sha256d::Hash,
outputs: sha256d::Hash,
}
/// Values cached for taproot inputs
pub struct TaprootCache {
amounts: sha256::Hash,
script_pubkeys: sha256::Hash,
}
/// Contains outputs of previous transactions.
/// In the case [SigHashType] variant is `ANYONECANPAY`, [Prevouts::One] may be provided
pub enum Prevouts<'u> {
/// `One` variant allows to provide the single Prevout needed. It's useful for example
/// when modifier `ANYONECANPAY` is provided, only prevout of the current input is needed.
/// The first `usize` argument is the input index this [TxOut] is referring to.
One(usize, &'u TxOut),
/// When `ANYONECANPAY` is not provided, or the caller is handy giving all prevouts so the same
/// variable can be used for multiple inputs.
All(&'u [TxOut]),
}
const LEAF_VERSION_TAPSCRIPT: u8 = 0xc0;
/// Information related to the script path spending
pub struct ScriptPath<'s> {
script: &'s Script,
code_separator_pos: u32,
leaf_version: u8,
}
/// Hashtype of an input's signature, encoded in the last byte of the signature
/// Fixed values so they can be casted as integer types for encoding
#[derive(PartialEq, Eq, Debug, Copy, Clone)]
pub enum SigHashType {
/// 0x0: Used when not explicitly specified, defaulting to [SigHashType::All]
Default = 0x00,
/// 0x1: Sign all outputs
All = 0x01,
/// 0x2: Sign no outputs --- anyone can choose the destination
None = 0x02,
/// 0x3: Sign the output whose index matches this input's index. If none exists,
/// sign the hash `0000000000000000000000000000000000000000000000000000000000000001`.
/// (This rule is probably an unintentional C++ism, but it's consensus so we have
/// to follow it.)
Single = 0x03,
/// 0x81: Sign all outputs but only this input
AllPlusAnyoneCanPay = 0x81,
/// 0x82: Sign no outputs and only this input
NonePlusAnyoneCanPay = 0x82,
/// 0x83: Sign one output and only this input (see `Single` for what "one output" means)
SinglePlusAnyoneCanPay = 0x83,
/// Reserved for future use
Reserved = 0xFF,
}
/// Possible errors in computing the signature message
#[derive(Debug, Eq, PartialEq)]
pub enum Error {
/// Should never happen since we are always encoding, thus we are avoiding wrap the IO error
IoError,
/// Requested index is greater or equal than the number of inputs in the transaction
IndexOutOfInputsBounds {
/// Requested index
index: usize,
/// Number of transaction inputs
inputs_size: usize,
},
/// Using SIGHASH_SINGLE without a "corresponding output" (an output with the same index as the
/// input being verified) is a validation failure
SingleWithoutCorrespondingOutput {
/// Requested index
index: usize,
/// Number of transaction outputs
outputs_size: usize,
},
/// There are mismatches in the number of prevouts provided compared with the number of
/// inputs in the transaction
PrevoutsSize,
/// Requested a prevout index which is greater than the number of prevouts provided or a
/// [Prevouts::One] with different index
PrevoutIndex,
/// A single prevout has been provided but all prevouts are needed without `ANYONECANPAY`
PrevoutKind,
/// Annex must be at least one byte long and the first bytes must be `0x50`
WrongAnnex,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Error::IoError => write!(f, "IoError"),
Error::IndexOutOfInputsBounds { index, inputs_size } => write!(f, "Requested index ({}) is greater or equal than the number of transaction inputs ({})", index, inputs_size),
Error::SingleWithoutCorrespondingOutput { index, outputs_size } => write!(f, "SIGHASH_SINGLE for input ({}) haven't a corresponding output (#outputs:{})", index, outputs_size),
Error::PrevoutsSize => write!(f, "Number of supplied prevouts differs from the number of inputs in transaction"),
Error::PrevoutIndex => write!(f, "The index requested is greater than available prevouts or different from the provided [Provided::Anyone] index"),
Error::PrevoutKind => write!(f, "A single prevout has been provided but all prevouts are needed without `ANYONECANPAY`"),
Error::WrongAnnex => write!(f, "Annex must be at least one byte long and the first bytes must be `0x50`"),
}
}
}
#[cfg(feature = "std")]
impl ::std::error::Error for Error {}
impl<'u> Prevouts<'u> {
fn check_all(&self, tx: &Transaction) -> Result<(), Error> {
if let Prevouts::All(prevouts) = self {
if prevouts.len() != tx.input.len() {
return Err(Error::PrevoutsSize);
}
}
Ok(())
}
fn get_all(&self) -> Result<&[TxOut], Error> {
match self {
Prevouts::All(prevouts) => Ok(prevouts),
_ => Err(Error::PrevoutKind),
}
}
fn get(&self, input_index: usize) -> Result<&TxOut, Error> {
match self {
Prevouts::One(index, prevout) => {
if input_index == *index {
Ok(prevout)
} else {
Err(Error::PrevoutIndex)
}
}
Prevouts::All(prevouts) => prevouts.get(input_index).ok_or(Error::PrevoutIndex),
}
}
}
impl<'s> ScriptPath<'s> {
/// Create a new ScriptPath structure
pub fn new(script: &'s Script, code_separator_pos: u32, leaf_version: u8) -> Self {
ScriptPath {
script,
code_separator_pos,
leaf_version,
}
}
/// Create a new ScriptPath structure using default values for `code_separator_pos` and `leaf_version`
pub fn with_defaults(script: &'s Script) -> Self {
Self::new(script, 0xFFFFFFFFu32, LEAF_VERSION_TAPSCRIPT)
}
}
impl From for SigHashType {
fn from(s: LegacySigHashType) -> Self {
match s {
LegacySigHashType::All => SigHashType::All,
LegacySigHashType::None => SigHashType::None,
LegacySigHashType::Single => SigHashType::Single,
LegacySigHashType::AllPlusAnyoneCanPay => SigHashType::AllPlusAnyoneCanPay,
LegacySigHashType::NonePlusAnyoneCanPay => SigHashType::NonePlusAnyoneCanPay,
LegacySigHashType::SinglePlusAnyoneCanPay => SigHashType::SinglePlusAnyoneCanPay,
}
}
}
impl SigHashType {
/// Break the sighash flag into the "real" sighash flag and the ANYONECANPAY boolean
pub(crate) fn split_anyonecanpay_flag(self) -> (SigHashType, bool) {
match self {
SigHashType::Default => (SigHashType::Default, false),
SigHashType::All => (SigHashType::All, false),
SigHashType::None => (SigHashType::None, false),
SigHashType::Single => (SigHashType::Single, false),
SigHashType::AllPlusAnyoneCanPay => (SigHashType::All, true),
SigHashType::NonePlusAnyoneCanPay => (SigHashType::None, true),
SigHashType::SinglePlusAnyoneCanPay => (SigHashType::Single, true),
SigHashType::Reserved => (SigHashType::Reserved, false),
}
}
}
impl> SigHashCache {
/// Compute the sighash components from an unsigned transaction and auxiliary
/// in a lazy manner when required.
/// For the generated sighashes to be valid, no fields in the transaction may change except for
/// script_sig and witnesses.
pub fn new(tx: R) -> Self {
SigHashCache {
tx,
common_cache: None,
taproot_cache: None,
segwit_cache: None,
}
}
/// Encode the BIP341 signing data for any flag type into a given object implementing a
/// std::io::Write trait.
pub fn taproot_encode_signing_data_to(
&mut self,
mut writer: Write,
input_index: usize,
prevouts: &Prevouts,
annex: Option,
script_path: Option,
sighash_type: SigHashType,
) -> Result<(), Error> {
prevouts.check_all(&self.tx)?;
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
// epoch
0u8.consensus_encode(&mut writer)?;
// * Control:
// hash_type (1).
(sighash_type as u8).consensus_encode(&mut writer)?;
// * Transaction Data:
// nVersion (4): the nVersion of the transaction.
self.tx.version.consensus_encode(&mut writer)?;
// nLockTime (4): the nLockTime of the transaction.
self.tx.lock_time.consensus_encode(&mut writer)?;
// If the hash_type & 0x80 does not equal SIGHASH_ANYONECANPAY:
// sha_prevouts (32): the SHA256 of the serialization of all input outpoints.
// sha_amounts (32): the SHA256 of the serialization of all spent output amounts.
// sha_scriptpubkeys (32): the SHA256 of the serialization of all spent output scriptPubKeys.
// sha_sequences (32): the SHA256 of the serialization of all input nSequence.
if !anyone_can_pay {
self.common_cache().prevouts.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?)
.amounts
.consensus_encode(&mut writer)?;
self.taproot_cache(prevouts.get_all()?)
.script_pubkeys
.consensus_encode(&mut writer)?;
self.common_cache()
.sequences
.consensus_encode(&mut writer)?;
}
// If hash_type & 3 does not equal SIGHASH_NONE or SIGHASH_SINGLE:
// sha_outputs (32): the SHA256 of the serialization of all outputs in CTxOut format.
if sighash != SigHashType::None && sighash != SigHashType::Single {
self.common_cache().outputs.consensus_encode(&mut writer)?;
}
// * Data about this input:
// spend_type (1): equal to (ext_flag * 2) + annex_present, where annex_present is 0
// if no annex is present, or 1 otherwise
let mut spend_type = 0u8;
if annex.is_some() {
spend_type |= 1u8;
}
if script_path.is_some() {
spend_type |= 2u8;
}
spend_type.consensus_encode(&mut writer)?;
// If hash_type & 0x80 equals SIGHASH_ANYONECANPAY:
// outpoint (36): the COutPoint of this input (32-byte hash + 4-byte little-endian).
// amount (8): value of the previous output spent by this input.
// scriptPubKey (35): scriptPubKey of the previous output spent by this input, serialized as script inside CTxOut. Its size is always 35 bytes.
// nSequence (4): nSequence of this input.
if anyone_can_pay {
let txin =
&self
.tx
.input
.get(input_index)
.ok_or_else(|| Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
let previous_output = prevouts.get(input_index)?;
txin.previous_output.consensus_encode(&mut writer)?;
previous_output.value.consensus_encode(&mut writer)?;
previous_output
.script_pubkey
.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
} else {
(input_index as u32).consensus_encode(&mut writer)?;
}
// If an annex is present (the lowest bit of spend_type is set):
// sha_annex (32): the SHA256 of (compact_size(size of annex) || annex), where annex
// includes the mandatory 0x50 prefix.
if let Some(annex) = annex {
let mut enc = sha256::Hash::engine();
annex.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// * Data about this output:
// If hash_type & 3 equals SIGHASH_SINGLE:
// sha_single_output (32): the SHA256 of the corresponding output in CTxOut format.
if sighash == SigHashType::Single {
let mut enc = sha256::Hash::engine();
self.tx
.output
.get(input_index)
.ok_or_else(|| Error::SingleWithoutCorrespondingOutput {
index: input_index,
outputs_size: self.tx.output.len(),
})?
.consensus_encode(&mut enc)?;
let hash = sha256::Hash::from_engine(enc);
hash.consensus_encode(&mut writer)?;
}
// if (scriptpath):
// ss += TaggedHash("TapLeaf", bytes([leaf_ver]) + ser_string(script))
// ss += bytes([0])
// ss += struct.pack(",
script_path: Option,
sighash_type: SigHashType,
) -> Result {
let mut enc = TapSighashHash::engine();
self.taproot_encode_signing_data_to(
&mut enc,
input_index,
prevouts,
annex,
script_path,
sighash_type,
)?;
Ok(TapSighashHash::from_engine(enc))
}
/// Encode the BIP143 signing data for any flag type into a given object implementing a
/// [std::io::Write] trait.
pub fn segwit_encode_signing_data_to(
&mut self,
mut writer: Write,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: LegacySigHashType,
) -> Result<(), Error> {
let zero_hash = sha256d::Hash::default();
let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag();
self.tx.version.consensus_encode(&mut writer)?;
if !anyone_can_pay {
self.segwit_cache().prevouts.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
if !anyone_can_pay
&& sighash != LegacySigHashType::Single
&& sighash != LegacySigHashType::None
{
self.segwit_cache()
.sequences
.consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
{
let txin =
&self
.tx
.input
.get(input_index)
.ok_or_else(|| Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
})?;
txin.previous_output.consensus_encode(&mut writer)?;
script_code.consensus_encode(&mut writer)?;
value.consensus_encode(&mut writer)?;
txin.sequence.consensus_encode(&mut writer)?;
}
if sighash != LegacySigHashType::Single && sighash != LegacySigHashType::None {
self.segwit_cache().outputs.consensus_encode(&mut writer)?;
} else if sighash == LegacySigHashType::Single && input_index < self.tx.output.len() {
let mut single_enc = SigHash::engine();
self.tx.output[input_index].consensus_encode(&mut single_enc)?;
SigHash::from_engine(single_enc).consensus_encode(&mut writer)?;
} else {
zero_hash.consensus_encode(&mut writer)?;
}
self.tx.lock_time.consensus_encode(&mut writer)?;
sighash_type.as_u32().consensus_encode(&mut writer)?;
Ok(())
}
/// Compute the BIP143 sighash for any flag type.
pub fn segwit_signature_hash(
&mut self,
input_index: usize,
script_code: &Script,
value: u64,
sighash_type: LegacySigHashType,
) -> Result {
let mut enc = SigHash::engine();
self.segwit_encode_signing_data_to(
&mut enc,
input_index,
script_code,
value,
sighash_type,
)?;
Ok(SigHash::from_engine(enc))
}
/// Encode the legacy signing data for any flag type into a given object implementing a
/// [std::io::Write] trait. Internally calls [Transaction::encode_signing_data_to]
pub fn legacy_encode_signing_data_to>(
&self,
mut writer: Write,
input_index: usize,
script_pubkey: &Script,
sighash_type: U,
) -> Result<(), Error> {
if input_index >= self.tx.input.len() {
return Err(Error::IndexOutOfInputsBounds {
index: input_index,
inputs_size: self.tx.input.len(),
});
}
self.tx
.encode_signing_data_to(&mut writer, input_index, script_pubkey, sighash_type.into())
.expect("writers don't error");
Ok(())
}
/// Computes the legacy sighash for any SigHashType
pub fn legacy_signature_hash(
&self,
input_index: usize,
script_pubkey: &Script,
sighash_type: u32,
) -> Result {
let mut enc = SigHash::engine();
self.legacy_encode_signing_data_to(&mut enc, input_index, script_pubkey, sighash_type)?;
Ok(SigHash::from_engine(enc))
}
fn common_cache(&mut self) -> &CommonCache {
if self.common_cache.is_none() {
let mut enc_prevouts = sha256::Hash::engine();
let mut enc_sequences = sha256::Hash::engine();
for txin in self.tx.input.iter() {
txin.previous_output
.consensus_encode(&mut enc_prevouts)
.unwrap();
txin.sequence.consensus_encode(&mut enc_sequences).unwrap();
}
let cache = CommonCache {
prevouts: sha256::Hash::from_engine(enc_prevouts),
sequences: sha256::Hash::from_engine(enc_sequences),
outputs: {
let mut enc = sha256::Hash::engine();
for txout in self.tx.output.iter() {
txout.consensus_encode(&mut enc).unwrap();
}
sha256::Hash::from_engine(enc)
},
};
self.common_cache = Some(cache);
}
self.common_cache.as_ref().unwrap() // safe to unwrap because we checked is_none()
}
fn segwit_cache(&mut self) -> &SegwitCache {
if self.segwit_cache.is_none() {
let cache = SegwitCache {
prevouts: sha256d::Hash::from_inner(
sha256::Hash::hash(&self.common_cache().prevouts).into_inner(),
),
sequences: sha256d::Hash::from_inner(
sha256::Hash::hash(&self.common_cache().sequences).into_inner(),
),
outputs: sha256d::Hash::from_inner(
sha256::Hash::hash(&self.common_cache().outputs).into_inner(),
),
};
self.segwit_cache = Some(cache);
}
self.segwit_cache.as_ref().unwrap() // safe to unwrap because we checked is_none()
}
fn taproot_cache(&mut self, prevouts: &[TxOut]) -> &TaprootCache {
if self.taproot_cache.is_none() {
let mut enc_amounts = sha256::Hash::engine();
let mut enc_script_pubkeys = sha256::Hash::engine();
for prevout in prevouts {
prevout.value.consensus_encode(&mut enc_amounts).unwrap();
prevout
.script_pubkey
.consensus_encode(&mut enc_script_pubkeys)
.unwrap();
}
let cache = TaprootCache {
amounts: sha256::Hash::from_engine(enc_amounts),
script_pubkeys: sha256::Hash::from_engine(enc_script_pubkeys),
};
self.taproot_cache = Some(cache);
}
self.taproot_cache.as_ref().unwrap() // safe to unwrap because we checked is_none()
}
}
impl> SigHashCache {
/// When the SigHashCache is initialized with a mutable reference to a transaction instead of a
/// regular reference, this method is available to allow modification to the witnesses.
///
/// This allows in-line signing such as
/// ```
/// use bitcoin::blockdata::transaction::{Transaction, SigHashType};
/// use bitcoin::util::bip143::SigHashCache;
/// use bitcoin::Script;
///
/// let mut tx_to_sign = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: Vec::new() };
/// let input_count = tx_to_sign.input.len();
///
/// let mut sig_hasher = SigHashCache::new(&mut tx_to_sign);
/// for inp in 0..input_count {
/// let prevout_script = Script::new();
/// let _sighash = sig_hasher.signature_hash(inp, &prevout_script, 42, SigHashType::All);
/// // ... sign the sighash
/// sig_hasher.access_witness(inp).push(Vec::new());
/// }
/// ```
pub fn access_witness(&mut self, input_index: usize) -> &mut Vec> {
&mut self.tx.input[input_index].witness
}
}
impl From for Error {
fn from(_: io::Error) -> Self {
Error::IoError
}
}
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
/// The `Annex` struct is a slice wrapper enforcing first byte to be `0x50`
pub struct Annex<'a>(&'a [u8]);
impl<'a> Annex<'a> {
/// Creates a new `Annex` struct checking the first byte is `0x50`
pub fn new(annex_bytes: &'a [u8]) -> Result {
if annex_bytes.first() == Some(&0x50) {
Ok(Annex(annex_bytes))
} else {
Err(Error::WrongAnnex)
}
}
/// Returns the Annex bytes data (including first byte `0x50`)
pub fn as_bytes(&self) -> &[u8] {
&*self.0
}
}
impl<'a> Encodable for Annex<'a> {
fn consensus_encode(&self, writer: W) -> Result {
encode::consensus_encode_with_size(&self.0, writer)
}
}
#[cfg(test)]
mod tests {
use consensus::deserialize;
use hashes::hex::FromHex;
use hashes::{Hash, HashEngine};
use util::sighash::{Annex, Error, Prevouts, ScriptPath, SigHashCache, SigHashType};
use util::taproot::TapSighashHash;
use {Script, Transaction, TxIn, TxOut};
#[test]
fn test_tap_sighash_hash() {
let bytes = Vec::from_hex("00011b96877db45ffa23b307e9f0ac87b80ef9a80b4c5f0db3fbe734422453e83cc5576f3d542c5d4898fb2b696c15d43332534a7c1d1255fda38993545882df92c3e353ff6d36fbfadc4d168452afd8467f02fe53d71714fcea5dfe2ea759bd00185c4cb02bc76d42620393ca358a1a713f4997f9fc222911890afb3fe56c6a19b202df7bffdcfad08003821294279043746631b00e2dc5e52a111e213bbfe6ef09a19428d418dab0d50000000000").unwrap();
let expected =
Vec::from_hex("04e808aad07a40b3767a1442fead79af6ef7e7c9316d82dec409bb31e77699b0")
.unwrap();
let mut enc = TapSighashHash::engine();
enc.input(&bytes);
let hash = TapSighashHash::from_engine(enc);
assert_eq!(expected, hash.into_inner());
}
#[test]
fn test_sighashes_keyspending() {
// following test case has been taken from bitcoin core test framework
test_taproot_sighash(
"020000000164eb050a5e3da0c2a65e4786f26d753b7bc69691fabccafb11f7acef36641f1846010000003101b2b404392a22000000000017a9147f2bde86fe78bf68a0544a4f290e12f0b7e0a08c87580200000000000017a91425d11723074ecfb96a0a83c3956bfaf362ae0c908758020000000000001600147e20f938993641de67bb0cdd71682aa34c4d29ad5802000000000000160014c64984dc8761acfa99418bd6bedc79b9287d652d72000000",
"01365724000000000023542156b39dab4f8f3508e0432cfb41fab110170acaa2d4c42539cb90a4dc7c093bc500",
0,
"33ca0ebfb4a945eeee9569fc0f5040221275f88690b7f8592ada88ce3bdf6703",
SigHashType::Default, None,None,
);
test_taproot_sighash(
"0200000002fff49be59befe7566050737910f6ccdc5e749c7f8860ddc140386463d88c5ad0f3000000002cf68eb4a3d67f9d4c079249f7e4f27b8854815cb1ed13842d4fbf395f9e217fd605ee24090100000065235d9203f458520000000000160014b6d48333bb13b4c644e57c43a9a26df3a44b785e58020000000000001976a914eea9461a9e1e3f765d3af3e726162e0229fe3eb688ac58020000000000001976a9143a8869c9f2b5ea1d4ff3aeeb6a8fb2fffb1ad5fe88ac0ad7125c",
"02591f220000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece48fb310000000000225120f25ad35583ea31998d968871d7de1abd2a52f6fe4178b54ea158274806ff4ece",
1,
"626ab955d58c9a8a600a0c580549d06dc7da4e802eb2a531f62a588e430967a8",
SigHashType::All, None,None,
);
test_taproot_sighash(
"0200000001350005f65aa830ced2079df348e2d8c2bdb4f10e2dde6a161d8a07b40d1ad87dae000000001611d0d603d9dc0e000000000017a914459b6d7d6bbb4d8837b4bf7e9a4556f952da2f5c8758020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88ac58020000000000001976a9141dd70e1299ffc2d5b51f6f87de9dfe9398c33cbb88aca71c1f4f",
"01c4811000000000002251201bf9297d0a2968ae6693aadd0fa514717afefd218087a239afb7418e2d22e65c",
0,
"dfa9437f9c9a1d1f9af271f79f2f5482f287cdb0d2e03fa92c8a9b216cc6061c",
SigHashType::AllPlusAnyoneCanPay, None,None,
);
test_taproot_sighash(
"020000000185bed1a6da2bffbd60ec681a1bfb71c5111d6395b99b3f8b2bf90167111bcb18f5010000007c83ace802ded24a00000000001600142c4698f9f7a773866879755aa78c516fb332af8e5802000000000000160014d38639dfbac4259323b98a472405db0c461b31fa61073747",
"0144c84d0000000000225120e3f2107989c88e67296ab2faca930efa2e3a5bd3ff0904835a11c9e807458621",
0,
"3129de36a5d05fff97ffca31eb75fcccbbbc27b3147a7a36a9e4b45d8b625067",
SigHashType::None, None,None,
);
test_taproot_sighash(
"eb93dbb901028c8515589dac980b6e7f8e4088b77ed866ca0d6d210a7218b6fd0f6b22dd6d7300000000eb4740a9047efc0e0000000000160014913da2128d8fcf292b3691db0e187414aa1783825802000000000000160014913da2128d8fcf292b3691db0e187414aa178382580200000000000017a9143dd27f01c6f7ef9bb9159937b17f17065ed01a0c875802000000000000160014d7630e19df70ada9905ede1722b800c0005f246641000000",
"013fed110000000000225120eb536ae8c33580290630fc495046e998086a64f8f33b93b07967d9029b265c55",
0,
"2441e8b0e063a2083ee790f14f2045022f07258ddde5ee01de543c9e789d80ae",
SigHashType::NonePlusAnyoneCanPay, None,None,
);
test_taproot_sighash(
"02000000017836b409a5fed32211407e44b971591f2032053f14701fb5b3a30c0ff382f2cc9c0100000061ac55f60288fb5600000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ac58020000000000001976a9144ea02f6f182b082fb6ce47e36bbde390b6a41b5088ace4000000",
"01efa558000000000022512007071ea3dc7e331b0687d0193d1e6d6ed10e645ef36f10ef8831d5e522ac9e80",
0,
"30239345177cadd0e3ea413d49803580abb6cb27971b481b7788a78d35117a88",
SigHashType::Single, None,None,
);
test_taproot_sighash(
"0100000001aa6deae89d5e0aaca58714fc76ef6f3c8284224888089232d4e663843ed3ab3eae010000008b6657a60450cb4c0000000000160014a3d42b5413ef0c0701c4702f3cd7d4df222c147058020000000000001976a91430b4ed8723a4ee8992aa2c8814cfe5c3ad0ab9d988ac5802000000000000160014365b1166a6ed0a5e8e9dff17a6d00bbb43454bc758020000000000001976a914bc98c51a84fe7fad5dc380eb8b39586eff47241688ac4f313247",
"0107af4e00000000002251202c36d243dfc06cb56a248e62df27ecba7417307511a81ae61aa41c597a929c69",
0,
"bf9c83f26c6dd16449e4921f813f551c4218e86f2ec906ca8611175b41b566df",
SigHashType::SinglePlusAnyoneCanPay, None,None,
);
}
#[test]
fn test_sighashes_with_annex() {
test_taproot_sighash(
"0200000001df8123752e8f37d132c4e9f1ff7e4f9b986ade9211267e9ebd5fd22a5e718dec6d01000000ce4023b903cb7b23000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787580200000000000017a914afd0d512a2c5c2b40e25669e9cc460303c325b8b87580200000000000017a914a18b36ea7a094db2f4940fc09edf154e86de7bd787f6020000",
"01ea49260000000000225120ab5e9800806bf18cb246edcf5fe63441208fe955a4b5a35bbff65f5db622a010",
0,
"3b003000add359a364a156e73e02846782a59d0d95ca8c4638aaad99f2ef915c",
SigHashType::SinglePlusAnyoneCanPay,
Some("507b979802e62d397acb29f56743a791894b99372872fc5af06a4f6e8d242d0615cda53062bb20e6ec79756fe39183f0c128adfe85559a8fa042b042c018aa8010143799e44f0893c40e1e"),
None,
);
}
#[test]
fn test_sighashes_with_script_path() {
test_taproot_sighash(
"020000000189fc651483f9296b906455dd939813bf086b1bbe7c77635e157c8e14ae29062195010000004445b5c7044561320000000000160014331414dbdada7fb578f700f38fb69995fc9b5ab958020000000000001976a914268db0a8104cc6d8afd91233cc8b3d1ace8ac3ef88ac580200000000000017a914ec00dcb368d6a693e11986d265f659d2f59e8be2875802000000000000160014c715799a49a0bae3956df9c17cb4440a673ac0df6f010000",
"011bec34000000000022512028055142ea437db73382e991861446040b61dd2185c4891d7daf6893d79f7182",
0,
"d66de5274a60400c7b08c86ba6b7f198f40660079edf53aca89d2a9501317f2e",
SigHashType::All,
None,
Some("20cc4e1107aea1d170c5ff5b6817e1303010049724fb3caa7941792ea9d29b3e2bacab"),
);
}
#[test]
fn test_sighashes_with_annex_and_script() {
test_taproot_sighash(
"020000000132fb72cb8fba496755f027a9743e2d698c831fdb8304e4d1a346ac92cbf51acba50100000026bdc7df044aad34000000000017a9144fa2554ed6174586854fa3bc01de58dcf33567d0875802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab95802000000000000160014950367e1e62cdf240b35b883fc2f5e39f0eb9ab958020000000000001600141b31217d48ccc8760dcc0710fade5866d628e733a02d5122",
"011458360000000000225120a7baec3fb9f84614e3899fcc010c638f80f13539344120e1f4d8b68a9a011a13",
0,
"a0042aa434f9a75904b64043f2a283f8b4c143c7f4f7f49a6cbe5b9f745f4c15",
SigHashType::All,
Some("50a6272b470e1460e3332ade7bb14b81671c564fb6245761bd5bd531394b28860e0b3808ab229fb51791fb6ae6fa82d915b2efb8f6df83ae1f5ab3db13e30928875e2a22b749d89358de481f19286cd4caa792ce27f9559082d227a731c5486882cc707f83da361c51b7aadd9a0cf68fe7480c410fa137b454482d9a1ebf0f96d760b4d61426fc109c6e8e99a508372c45caa7b000a41f8251305da3f206c1849985ba03f3d9592832b4053afbd23ab25d0465df0bc25a36c223aacf8e04ec736a418c72dc319e4da3e972e349713ca600965e7c665f2090d5a70e241ac164115a1f5639f28b1773327715ca307ace64a2de7f0e3df70a2ffee3857689f909c0dad46d8a20fa373a4cc6eed6d4c9806bf146f0d76baae1"),
Some("7520ab9160dd8299dc1367659be3e8f66781fe440d52940c7f8d314a89b9f2698d406ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6ead6eadac"),
);
}
#[test]
fn test_sighash_errors() {
let dumb_tx = Transaction {
version: 0,
lock_time: 0,
input: vec![TxIn::default()],
output: vec![],
};
let mut c = SigHashCache::new(&dumb_tx);
assert_eq!(
c.taproot_signature_hash(0, &Prevouts::All(&vec![]), None, None, SigHashType::All),
Err(Error::PrevoutsSize)
);
let two = vec![TxOut::default(), TxOut::default()];
let too_many_prevouts = Prevouts::All(&two);
assert_eq!(
c.taproot_signature_hash(0, &too_many_prevouts, None, None, SigHashType::All),
Err(Error::PrevoutsSize)
);
let tx_out = TxOut::default();
let prevout = Prevouts::One(1, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::All),
Err(Error::PrevoutKind)
);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::AllPlusAnyoneCanPay),
Err(Error::PrevoutIndex)
);
assert_eq!(
c.taproot_signature_hash(10, &prevout, None, None, SigHashType::AllPlusAnyoneCanPay),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
let prevout = Prevouts::One(0, &tx_out);
assert_eq!(
c.taproot_signature_hash(0, &prevout, None, None, SigHashType::SinglePlusAnyoneCanPay),
Err(Error::SingleWithoutCorrespondingOutput {
index: 0,
outputs_size: 0
})
);
assert_eq!(
c.legacy_signature_hash(10, &Script::default(), 0u32),
Err(Error::IndexOutOfInputsBounds {
index: 10,
inputs_size: 1
})
);
}
#[test]
fn test_annex_errors() {
assert_eq!(Annex::new(&vec![]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&vec![0x51]), Err(Error::WrongAnnex));
assert_eq!(Annex::new(&vec![0x51, 0x50]), Err(Error::WrongAnnex));
}
fn test_taproot_sighash(
tx_hex: &str,
prevout_hex: &str,
input_index: usize,
expected_hash: &str,
sighash_type: SigHashType,
annex_hex: Option<&str>,
script_hex: Option<&str>,
) {
let tx_bytes = Vec::from_hex(tx_hex).unwrap();
let tx: Transaction = deserialize(&tx_bytes).unwrap();
let prevout_bytes = Vec::from_hex(prevout_hex).unwrap();
let prevouts: Vec = deserialize(&prevout_bytes).unwrap();
let annex_inner;
let annex = match annex_hex {
Some(annex_hex) => {
annex_inner = Vec::from_hex(annex_hex).unwrap();
Some(Annex::new(&annex_inner).unwrap())
}
None => None,
};
let script_inner;
let script_path = match script_hex {
Some(script_hex) => {
script_inner = Script::from_hex(script_hex).unwrap();
Some(ScriptPath::with_defaults(&script_inner))
}
None => None,
};
let prevouts = if sighash_type.split_anyonecanpay_flag().1 && tx_bytes[0] % 2 == 0 {
// for anyonecanpay the `Prevouts::All` variant is good anyway, but sometimes we want to
// test other codepaths
Prevouts::One(input_index, &prevouts[input_index])
} else {
Prevouts::All(&prevouts)
};
let mut sig_hash_cache = SigHashCache::new(&tx);
let hash = sig_hash_cache
.taproot_signature_hash(input_index, &prevouts, annex, script_path, sighash_type)
.unwrap();
let expected = Vec::from_hex(expected_hash).unwrap();
assert_eq!(expected, hash.into_inner());
}
}