// Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Miscellaneous functions //! //! Various utility functions use hashes::{sha256d, Hash, HashEngine}; use blockdata::opcodes; use consensus::{encode, Encodable}; #[cfg(feature = "secp-recovery")] pub use self::message_signing::{MessageSignature, MessageSignatureError}; /// The prefix for signed messages using Bitcoin's message signing protocol. pub const BITCOIN_SIGNED_MSG_PREFIX: &[u8] = b"\x18Bitcoin Signed Message:\n"; #[cfg(feature = "secp-recovery")] mod message_signing { use std::{error, fmt}; use hashes::sha256d; use secp256k1; use secp256k1::recovery::{RecoveryId, RecoverableSignature}; use util::ecdsa::PublicKey; use util::address::{Address, AddressType}; /// An error used for dealing with Bitcoin Signed Messages. #[derive(Debug, PartialEq, Eq)] pub enum MessageSignatureError { /// Signature is expected to be 65 bytes. InvalidLength, /// The signature is invalidly constructed. InvalidEncoding(secp256k1::Error), /// Invalid base64 encoding. InvalidBase64, } impl fmt::Display for MessageSignatureError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { MessageSignatureError::InvalidLength => write!(f, "length not 65 bytes"), MessageSignatureError::InvalidEncoding(ref e) => write!(f, "invalid encoding: {}", e), MessageSignatureError::InvalidBase64 => write!(f, "invalid base64"), } } } impl error::Error for MessageSignatureError { fn cause(&self) -> Option<&dyn error::Error> { match *self { MessageSignatureError::InvalidEncoding(ref e) => Some(e), _ => None, } } } #[doc(hidden)] impl From for MessageSignatureError { fn from(e: secp256k1::Error) -> MessageSignatureError { MessageSignatureError::InvalidEncoding(e) } } /// A signature on a Bitcoin Signed Message. /// /// In order to use the `to_base64` and `from_base64` methods, as well as the /// `fmt::Display` and `str::FromStr` implementations, the `base64` feature /// must be enabled. #[derive(Copy, Clone, PartialEq, Eq, Debug)] pub struct MessageSignature { /// The inner recoverable signature. pub signature: RecoverableSignature, /// Whether or not this signature was created with a compressed key. pub compressed: bool, } impl MessageSignature { /// Create a new [MessageSignature]. pub fn new(signature: RecoverableSignature, compressed: bool) -> MessageSignature { MessageSignature { signature: signature, compressed: compressed, } } /// Serialize to bytes. pub fn serialize(&self) -> [u8; 65] { let (recid, raw) = self.signature.serialize_compact(); let mut serialized = [0u8; 65]; serialized[0] = 27; serialized[0] += recid.to_i32() as u8; if self.compressed { serialized[0] += 4; } serialized[1..].copy_from_slice(&raw[..]); serialized } /// Create from a byte slice. pub fn from_slice(bytes: &[u8]) -> Result { if bytes.len() != 65 { return Err(MessageSignatureError::InvalidLength); } // We just check this here so we can safely subtract further. if bytes[0] < 27 { return Err(MessageSignatureError::InvalidEncoding(secp256k1::Error::InvalidRecoveryId)); }; let recid = RecoveryId::from_i32(((bytes[0] - 27) & 0x03) as i32)?; Ok(MessageSignature { signature: RecoverableSignature::from_compact(&bytes[1..], recid)?, compressed: ((bytes[0] - 27) & 0x04) != 0, }) } /// Attempt to recover a public key from the signature and the signed message. /// /// To get the message hash from a message, use [signed_msg_hash]. pub fn recover_pubkey( &self, secp_ctx: &secp256k1::Secp256k1, msg_hash: sha256d::Hash ) -> Result { let msg = secp256k1::Message::from_slice(&msg_hash[..])?; let pubkey = secp_ctx.recover(&msg, &self.signature)?; Ok(PublicKey { key: pubkey, compressed: self.compressed, }) } /// Verify that the signature signs the message and was signed by the given address. /// /// To get the message hash from a message, use [signed_msg_hash]. pub fn is_signed_by_address( &self, secp_ctx: &secp256k1::Secp256k1, address: &Address, msg_hash: sha256d::Hash ) -> Result { let pubkey = self.recover_pubkey(&secp_ctx, msg_hash)?; Ok(match address.address_type() { Some(AddressType::P2pkh) => { *address == Address::p2pkh(&pubkey, address.network) } Some(AddressType::P2sh) => false, Some(AddressType::P2wpkh) => false, Some(AddressType::P2wsh) => false, None => false, }) } #[cfg(feature = "base64")] /// Convert a signature from base64 encoding. pub fn from_base64(s: &str) -> Result { let bytes = ::base64::decode(s).map_err(|_| MessageSignatureError::InvalidBase64)?; MessageSignature::from_slice(&bytes) } #[cfg(feature = "base64")] /// Convert to base64 encoding. pub fn to_base64(&self) -> String { ::base64::encode(&self.serialize()[..]) } } #[cfg(feature = "base64")] impl fmt::Display for MessageSignature { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let bytes = self.serialize(); // This avoids the allocation of a String. write!(f, "{}", ::base64::display::Base64Display::with_config( &bytes[..], ::base64::STANDARD)) } } #[cfg(feature = "base64")] impl ::std::str::FromStr for MessageSignature { type Err = MessageSignatureError; fn from_str(s: &str) -> Result { MessageSignature::from_base64(s) } } } /// Search for `needle` in the vector `haystack` and remove every /// instance of it, returning the number of instances removed. /// Loops through the vector opcode by opcode, skipping pushed data. pub fn script_find_and_remove(haystack: &mut Vec, needle: &[u8]) -> usize { if needle.len() > haystack.len() { return 0; } if needle.is_empty() { return 0; } let mut top = haystack.len() - needle.len(); let mut n_deleted = 0; let mut i = 0; while i <= top { if &haystack[i..(i + needle.len())] == needle { for j in i..top { haystack.swap(j + needle.len(), j); } n_deleted += 1; // This is ugly but prevents infinite loop in case of overflow let overflow = top < needle.len(); top = top.wrapping_sub(needle.len()); if overflow { break; } } else { i += match opcodes::All::from((*haystack)[i]).classify() { opcodes::Class::PushBytes(n) => n as usize + 1, opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA1) => 2, opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA2) => 3, opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA4) => 5, _ => 1 }; } } haystack.truncate(top.wrapping_add(needle.len())); n_deleted } /// Hash message for signature using Bitcoin's message signing format. pub fn signed_msg_hash(msg: &str) -> sha256d::Hash { let mut engine = sha256d::Hash::engine(); engine.input(BITCOIN_SIGNED_MSG_PREFIX); let msg_len = encode::VarInt(msg.len() as u64); msg_len.consensus_encode(&mut engine).unwrap(); engine.input(msg.as_bytes()); sha256d::Hash::from_engine(engine) } #[cfg(test)] mod tests { use hashes::hex::ToHex; use super::script_find_and_remove; use super::signed_msg_hash; #[test] fn test_script_find_and_remove() { let mut v = vec![101u8, 102, 103, 104, 102, 103, 104, 102, 103, 104, 105, 106, 107, 108, 109]; assert_eq!(script_find_and_remove(&mut v, &[]), 0); assert_eq!(script_find_and_remove(&mut v, &[105, 105, 105]), 0); assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103, 104, 105, 106, 107, 108, 109]); assert_eq!(script_find_and_remove(&mut v, &[105, 106, 107]), 1); assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103, 104, 108, 109]); assert_eq!(script_find_and_remove(&mut v, &[104, 108, 109]), 1); assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103]); assert_eq!(script_find_and_remove(&mut v, &[101]), 1); assert_eq!(v, vec![102, 103, 104, 102, 103, 104, 102, 103]); assert_eq!(script_find_and_remove(&mut v, &[102]), 3); assert_eq!(v, vec![103, 104, 103, 104, 103]); assert_eq!(script_find_and_remove(&mut v, &[103, 104]), 2); assert_eq!(v, vec![103]); assert_eq!(script_find_and_remove(&mut v, &[105, 105, 5]), 0); assert_eq!(script_find_and_remove(&mut v, &[105]), 0); assert_eq!(script_find_and_remove(&mut v, &[103]), 1); assert_eq!(v, Vec::::new()); assert_eq!(script_find_and_remove(&mut v, &[105, 105, 5]), 0); assert_eq!(script_find_and_remove(&mut v, &[105]), 0); } #[test] fn test_script_codesep_remove() { let mut s = vec![33u8, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 171, 33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 171, 81]; assert_eq!(script_find_and_remove(&mut s, &[171]), 2); assert_eq!(s, vec![33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 81]); } #[test] fn test_signed_msg_hash() { let hash = signed_msg_hash("test"); assert_eq!(hash.to_hex(), "a6f87fe6d58a032c320ff8d1541656f0282c2c7bfcc69d61af4c8e8ed528e49c"); } #[test] #[cfg(all(feature = "secp-recovery", feature = "base64"))] fn test_message_signature() { use std::str::FromStr; use secp256k1; let secp = secp256k1::Secp256k1::new(); let message = "rust-bitcoin MessageSignature test"; let msg_hash = super::signed_msg_hash(&message); let msg = secp256k1::Message::from_slice(&msg_hash).unwrap(); let privkey = secp256k1::SecretKey::new(&mut secp256k1::rand::thread_rng()); let secp_sig = secp.sign_recoverable(&msg, &privkey); let signature = super::MessageSignature { signature: secp_sig, compressed: true, }; assert_eq!(signature.to_base64(), signature.to_string()); let signature2 = super::MessageSignature::from_str(&signature.to_string()).unwrap(); let pubkey = signature2.recover_pubkey(&secp, msg_hash).unwrap(); assert_eq!(pubkey.compressed, true); assert_eq!(pubkey.key, secp256k1::PublicKey::from_secret_key(&secp, &privkey)); let p2pkh = ::Address::p2pkh(&pubkey, ::Network::Bitcoin); assert_eq!(signature2.is_signed_by_address(&secp, &p2pkh, msg_hash), Ok(true)); let p2wpkh = ::Address::p2wpkh(&pubkey, ::Network::Bitcoin).unwrap(); assert_eq!(signature2.is_signed_by_address(&secp, &p2wpkh, msg_hash), Ok(false)); let p2shwpkh = ::Address::p2shwpkh(&pubkey, ::Network::Bitcoin).unwrap(); assert_eq!(signature2.is_signed_by_address(&secp, &p2shwpkh, msg_hash), Ok(false)); } }