// SPDX-License-Identifier: CC0-1.0 //! Bitcoin amounts. //! //! This module mainly introduces the [`Amount`] and [`SignedAmount`] types. //! We refer to the documentation on the types for more information. pub mod error; #[cfg(kani)] mod verification; #[cfg(feature = "alloc")] use alloc::string::{String, ToString}; use core::cmp::Ordering; use core::str::FromStr; use core::{default, fmt, ops}; #[cfg(feature = "serde")] use ::serde::{Deserialize, Serialize}; #[cfg(feature = "arbitrary")] use arbitrary::{Arbitrary, Unstructured}; use self::error::MissingDigitsKind; #[cfg(feature = "alloc")] use crate::{FeeRate, Weight}; #[rustfmt::skip] // Keep public re-exports separate. #[doc(inline)] pub use self::error::{ InputTooLargeError, InvalidCharacterError, MissingDenominationError, MissingDigitsError, OutOfRangeError, ParseAmountError, ParseDenominationError, ParseError, PossiblyConfusingDenominationError, TooPreciseError, UnknownDenominationError, }; /// A set of denominations in which amounts can be expressed. /// /// # Accepted Denominations /// /// All upper or lower case, excluding SI prefix (c, m, u) which must be lower case. /// - Singular: BTC, cBTC, mBTC, uBTC /// - Plural or singular: sat, satoshi, bit /// /// # Note /// /// Due to ambiguity between mega and milli we prohibit usage of leading capital 'M'. It is /// more important to protect users from incorrectly using a capital M to mean milli than to /// allow Megabitcoin which is not a realistic denomination, and Megasatoshi which is /// equivalent to cBTC which is allowed. /// /// # Examples /// /// ``` /// # use bitcoin_units::Amount; /// /// assert_eq!("1 BTC".parse::().unwrap(), Amount::from_sat(100_000_000)); /// assert_eq!("1 cBTC".parse::().unwrap(), Amount::from_sat(1_000_000)); /// assert_eq!("1 mBTC".parse::().unwrap(), Amount::from_sat(100_000)); /// assert_eq!("1 uBTC".parse::().unwrap(), Amount::from_sat(100)); /// assert_eq!("1 bit".parse::().unwrap(), Amount::from_sat(100)); /// assert_eq!("1 sat".parse::().unwrap(), Amount::from_sat(1)); /// ``` #[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)] #[non_exhaustive] pub enum Denomination { /// BTC Bitcoin, /// cBTC CentiBitcoin, /// mBTC MilliBitcoin, /// uBTC MicroBitcoin, /// bits Bit, /// satoshi Satoshi, } impl Denomination { /// Convenience alias for `Denomination::Bitcoin`. pub const BTC: Self = Denomination::Bitcoin; /// Convenience alias for `Denomination::Satoshi`. pub const SAT: Self = Denomination::Satoshi; /// The number of decimal places more than a satoshi. fn precision(self) -> i8 { match self { Denomination::Bitcoin => -8, Denomination::CentiBitcoin => -6, Denomination::MilliBitcoin => -5, Denomination::MicroBitcoin => -2, Denomination::Bit => -2, Denomination::Satoshi => 0, } } /// Returns a string representation of this denomination. fn as_str(self) -> &'static str { match self { Denomination::Bitcoin => "BTC", Denomination::CentiBitcoin => "cBTC", Denomination::MilliBitcoin => "mBTC", Denomination::MicroBitcoin => "uBTC", Denomination::Bit => "bits", Denomination::Satoshi => "satoshi", } } /// The different `str` forms of denominations that are recognized. fn forms(s: &str) -> Option { match s { "BTC" | "btc" => Some(Denomination::Bitcoin), "cBTC" | "cbtc" => Some(Denomination::CentiBitcoin), "mBTC" | "mbtc" => Some(Denomination::MilliBitcoin), "uBTC" | "ubtc" => Some(Denomination::MicroBitcoin), "bit" | "bits" | "BIT" | "BITS" => Some(Denomination::Bit), "SATOSHI" | "satoshi" | "SATOSHIS" | "satoshis" | "SAT" | "sat" | "SATS" | "sats" => Some(Denomination::Satoshi), _ => None, } } } /// These form are ambigous and could have many meanings. For example, M could denote Mega or Milli. /// If any of these forms are used, an error type PossiblyConfusingDenomination is returned. const CONFUSING_FORMS: [&str; 6] = ["MBTC", "Mbtc", "CBTC", "Cbtc", "UBTC", "Ubtc"]; impl fmt::Display for Denomination { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(self.as_str()) } } impl FromStr for Denomination { type Err = ParseDenominationError; /// Converts from a `str` to a `Denomination`. /// /// # Errors /// /// - If the denomination begins with a capital `M` a [`PossiblyConfusingDenominationError`] is /// returned. /// /// - If an unknown denomination is used, an [`UnknownDenominationError`] is returned. fn from_str(s: &str) -> Result { use self::ParseDenominationError::*; if CONFUSING_FORMS.contains(&s) { return Err(PossiblyConfusing(PossiblyConfusingDenominationError(s.into()))); }; let form = self::Denomination::forms(s); form.ok_or_else(|| Unknown(UnknownDenominationError(s.into()))) } } /// Returns `Some(position)` if the precision is not supported. /// /// The position indicates the first digit that is too precise. fn is_too_precise(s: &str, precision: usize) -> Option { match s.find('.') { Some(pos) if precision >= pos => Some(0), Some(pos) => s[..pos] .char_indices() .rev() .take(precision) .find(|(_, d)| *d != '0') .map(|(i, _)| i) .or_else(|| { s[(pos + 1)..].char_indices().find(|(_, d)| *d != '0').map(|(i, _)| i + pos + 1) }), None if precision >= s.len() => Some(0), None => s.char_indices().rev().take(precision).find(|(_, d)| *d != '0').map(|(i, _)| i), } } const INPUT_STRING_LEN_LIMIT: usize = 50; /// Parses a decimal string in the given denomination into a satoshi value and a /// [`bool`] indicator for a negative amount. fn parse_signed_to_satoshi( mut s: &str, denom: Denomination, ) -> Result<(bool, u64), InnerParseError> { if s.is_empty() { return Err(InnerParseError::MissingDigits(MissingDigitsError { kind: MissingDigitsKind::Empty, })); } if s.len() > INPUT_STRING_LEN_LIMIT { return Err(InnerParseError::InputTooLarge(s.len())); } let is_negative = s.starts_with('-'); if is_negative { if s.len() == 1 { return Err(InnerParseError::MissingDigits(MissingDigitsError { kind: MissingDigitsKind::OnlyMinusSign, })); } s = &s[1..]; } let max_decimals = { // The difference in precision between native (satoshi) // and desired denomination. let precision_diff = -denom.precision(); if precision_diff <= 0 { // If precision diff is negative, this means we are parsing // into a less precise amount. That is not allowed unless // there are no decimals and the last digits are zeroes as // many as the difference in precision. let last_n = precision_diff.unsigned_abs().into(); if let Some(position) = is_too_precise(s, last_n) { match s.parse::() { Ok(0) => return Ok((is_negative, 0)), _ => return Err(InnerParseError::TooPrecise(TooPreciseError { position: position + is_negative as usize, })), } } s = &s[0..s.find('.').unwrap_or(s.len()) - last_n]; 0 } else { precision_diff } }; let mut decimals = None; let mut value: u64 = 0; // as satoshis for (i, c) in s.char_indices() { match c { '0'..='9' => { // Do `value = 10 * value + digit`, catching overflows. match 10_u64.checked_mul(value) { None => return Err(InnerParseError::Overflow { is_negative }), Some(val) => match val.checked_add((c as u8 - b'0') as u64) { None => return Err(InnerParseError::Overflow { is_negative }), Some(val) => value = val, }, } // Increment the decimal digit counter if past decimal. decimals = match decimals { None => None, Some(d) if d < max_decimals => Some(d + 1), _ => return Err(InnerParseError::TooPrecise(TooPreciseError { position: i + is_negative as usize, })), }; } '.' => match decimals { None if max_decimals <= 0 => break, None => decimals = Some(0), // Double decimal dot. _ => return Err(InnerParseError::InvalidCharacter(InvalidCharacterError { invalid_char: '.', position: i + is_negative as usize, })), }, c => return Err(InnerParseError::InvalidCharacter(InvalidCharacterError { invalid_char: c, position: i + is_negative as usize, })), } } // Decimally shift left by `max_decimals - decimals`. let scale_factor = max_decimals - decimals.unwrap_or(0); for _ in 0..scale_factor { value = match 10_u64.checked_mul(value) { Some(v) => v, None => return Err(InnerParseError::Overflow { is_negative }), }; } Ok((is_negative, value)) } enum InnerParseError { Overflow { is_negative: bool }, TooPrecise(TooPreciseError), MissingDigits(MissingDigitsError), InputTooLarge(usize), InvalidCharacter(InvalidCharacterError), } internals::impl_from_infallible!(InnerParseError); impl InnerParseError { fn convert(self, is_signed: bool) -> ParseAmountError { match self { Self::Overflow { is_negative } => OutOfRangeError { is_signed, is_greater_than_max: !is_negative }.into(), Self::TooPrecise(error) => ParseAmountError::TooPrecise(error), Self::MissingDigits(error) => ParseAmountError::MissingDigits(error), Self::InputTooLarge(len) => ParseAmountError::InputTooLarge(InputTooLargeError { len }), Self::InvalidCharacter(error) => ParseAmountError::InvalidCharacter(error), } } } fn split_amount_and_denomination(s: &str) -> Result<(&str, Denomination), ParseError> { let (i, j) = if let Some(i) = s.find(' ') { (i, i + 1) } else { let i = s .find(|c: char| c.is_alphabetic()) .ok_or(ParseError::MissingDenomination(MissingDenominationError))?; (i, i) }; Ok((&s[..i], s[j..].parse()?)) } /// Options given by `fmt::Formatter` struct FormatOptions { fill: char, align: Option, width: Option, precision: Option, sign_plus: bool, sign_aware_zero_pad: bool, } impl FormatOptions { fn from_formatter(f: &fmt::Formatter) -> Self { FormatOptions { fill: f.fill(), align: f.align(), width: f.width(), precision: f.precision(), sign_plus: f.sign_plus(), sign_aware_zero_pad: f.sign_aware_zero_pad(), } } } impl Default for FormatOptions { fn default() -> Self { FormatOptions { fill: ' ', align: None, width: None, precision: None, sign_plus: false, sign_aware_zero_pad: false, } } } fn dec_width(mut num: u64) -> usize { let mut width = 1; loop { num /= 10; if num == 0 { break; } width += 1; } width } fn repeat_char(f: &mut dyn fmt::Write, c: char, count: usize) -> fmt::Result { for _ in 0..count { f.write_char(c)?; } Ok(()) } /// Format the given satoshi amount in the given denomination. fn fmt_satoshi_in( mut satoshi: u64, negative: bool, f: &mut dyn fmt::Write, denom: Denomination, show_denom: bool, options: FormatOptions, ) -> fmt::Result { let precision = denom.precision(); // First we normalize the number: // {num_before_decimal_point}{:0exp}{"." if nb_decimals > 0}{:0nb_decimals}{num_after_decimal_point}{:0trailing_decimal_zeros} let mut num_after_decimal_point = 0; let mut norm_nb_decimals = 0; let mut num_before_decimal_point = satoshi; let trailing_decimal_zeros; let mut exp = 0; match precision.cmp(&0) { // We add the number of zeroes to the end Ordering::Greater => { if satoshi > 0 { exp = precision as usize; } trailing_decimal_zeros = options.precision.unwrap_or(0); } Ordering::Less => { let precision = precision.unsigned_abs(); // round the number if needed // rather than fiddling with chars, we just modify satoshi and let the simpler algorithm take over. if let Some(format_precision) = options.precision { if usize::from(precision) > format_precision { // precision is u8 so in this branch options.precision() < 255 which fits in u32 let rounding_divisor = 10u64.pow(u32::from(precision) - format_precision as u32); let remainder = satoshi % rounding_divisor; satoshi -= remainder; if remainder / (rounding_divisor / 10) >= 5 { satoshi += rounding_divisor; } } } let divisor = 10u64.pow(precision.into()); num_before_decimal_point = satoshi / divisor; num_after_decimal_point = satoshi % divisor; // normalize by stripping trailing zeros if num_after_decimal_point == 0 { norm_nb_decimals = 0; } else { norm_nb_decimals = usize::from(precision); while num_after_decimal_point % 10 == 0 { norm_nb_decimals -= 1; num_after_decimal_point /= 10 } } // compute requested precision let opt_precision = options.precision.unwrap_or(0); trailing_decimal_zeros = opt_precision.saturating_sub(norm_nb_decimals); } Ordering::Equal => trailing_decimal_zeros = options.precision.unwrap_or(0), } let total_decimals = norm_nb_decimals + trailing_decimal_zeros; // Compute expected width of the number let mut num_width = if total_decimals > 0 { // 1 for decimal point 1 + total_decimals } else { 0 }; num_width += dec_width(num_before_decimal_point) + exp; if options.sign_plus || negative { num_width += 1; } if show_denom { // + 1 for space num_width += denom.as_str().len() + 1; } let width = options.width.unwrap_or(0); let align = options.align.unwrap_or(fmt::Alignment::Right); let (left_pad, pad_right) = match (num_width < width, options.sign_aware_zero_pad, align) { (false, _, _) => (0, 0), // Alignment is always right (ignored) when zero-padding (true, true, _) | (true, false, fmt::Alignment::Right) => (width - num_width, 0), (true, false, fmt::Alignment::Left) => (0, width - num_width), // If the required padding is odd it needs to be skewed to the left (true, false, fmt::Alignment::Center) => ((width - num_width) / 2, (width - num_width + 1) / 2), }; if !options.sign_aware_zero_pad { repeat_char(f, options.fill, left_pad)?; } if negative { write!(f, "-")?; } else if options.sign_plus { write!(f, "+")?; } if options.sign_aware_zero_pad { repeat_char(f, '0', left_pad)?; } write!(f, "{}", num_before_decimal_point)?; repeat_char(f, '0', exp)?; if total_decimals > 0 { write!(f, ".")?; } if norm_nb_decimals > 0 { write!(f, "{:0width$}", num_after_decimal_point, width = norm_nb_decimals)?; } repeat_char(f, '0', trailing_decimal_zeros)?; if show_denom { write!(f, " {}", denom.as_str())?; } repeat_char(f, options.fill, pad_right)?; Ok(()) } /// An amount. /// /// The [`Amount`] type can be used to express Bitcoin amounts that support /// arithmetic and conversion to various denominations. /// /// /// Warning! /// /// This type implements several arithmetic operations from [`core::ops`]. /// To prevent errors due to overflow or underflow when using these operations, /// it is advised to instead use the checked arithmetic methods whose names /// start with `checked_`. The operations from [`core::ops`] that [`Amount`] /// implements will panic when overflow or underflow occurs. Also note that /// since the internal representation of amounts is unsigned, subtracting below /// zero is considered an underflow and will cause a panic if you're not using /// the checked arithmetic methods. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] pub struct Amount(u64); impl Amount { /// The zero amount. pub const ZERO: Amount = Amount(0); /// Exactly one satoshi. pub const ONE_SAT: Amount = Amount(1); /// Exactly one bitcoin. pub const ONE_BTC: Amount = Self::from_int_btc(1); /// The maximum value allowed as an amount. Useful for sanity checking. pub const MAX_MONEY: Amount = Self::from_int_btc(21_000_000); /// The minimum value of an amount. pub const MIN: Amount = Amount::ZERO; /// The maximum value of an amount. pub const MAX: Amount = Amount(u64::MAX); /// The number of bytes that an amount contributes to the size of a transaction. pub const SIZE: usize = 8; // Serialized length of a u64. /// Creates an [`Amount`] with satoshi precision and the given number of satoshis. pub const fn from_sat(satoshi: u64) -> Amount { Amount(satoshi) } /// Gets the number of satoshis in this [`Amount`]. pub const fn to_sat(self) -> u64 { self.0 } /// Converts from a value expressing bitcoins to an [`Amount`]. #[cfg(feature = "alloc")] pub fn from_btc(btc: f64) -> Result { Amount::from_float_in(btc, Denomination::Bitcoin) } /// Converts from a value expressing integer values of bitcoins to an [`Amount`] /// in const context. /// /// # Panics /// /// The function panics if the argument multiplied by the number of sats /// per bitcoin overflows a u64 type. pub const fn from_int_btc(btc: u64) -> Amount { match btc.checked_mul(100_000_000) { Some(amount) => Amount::from_sat(amount), None => panic!("checked_mul overflowed"), } } /// Parses a decimal string as a value in the given denomination. /// /// Note: This only parses the value string. If you want to parse a value /// with denomination, use [`FromStr`]. pub fn from_str_in(s: &str, denom: Denomination) -> Result { let (negative, satoshi) = parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(false))?; if negative { return Err(ParseAmountError::OutOfRange(OutOfRangeError::negative())); } Ok(Amount::from_sat(satoshi)) } /// Parses amounts with denomination suffix like they are produced with /// [`Self::to_string_with_denomination`] or with [`fmt::Display`]. /// If you want to parse only the amount without the denomination, /// use [`Self::from_str_in`]. pub fn from_str_with_denomination(s: &str) -> Result { let (amt, denom) = split_amount_and_denomination(s)?; Amount::from_str_in(amt, denom).map_err(Into::into) } /// Expresses this [`Amount`] as a floating-point value in the given denomination. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn to_float_in(self, denom: Denomination) -> f64 { self.to_string_in(denom).parse::().unwrap() } /// Expresses this [`Amount`] as a floating-point value in Bitcoin. /// /// Please be aware of the risk of using floating-point numbers. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// let amount = Amount::from_sat(100_000); /// assert_eq!(amount.to_btc(), amount.to_float_in(Denomination::Bitcoin)) /// ``` #[cfg(feature = "alloc")] pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) } /// Converts this [`Amount`] in floating-point notation with a given /// denomination. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn from_float_in(value: f64, denom: Denomination) -> Result { if value < 0.0 { return Err(OutOfRangeError::negative().into()); } // This is inefficient, but the safest way to deal with this. The parsing logic is safe. // Any performance-critical application should not be dealing with floats. Amount::from_str_in(&value.to_string(), denom) } /// Creates an object that implements [`fmt::Display`] using specified denomination. pub fn display_in(self, denomination: Denomination) -> Display { Display { sats_abs: self.to_sat(), is_negative: false, style: DisplayStyle::FixedDenomination { denomination, show_denomination: false }, } } /// Creates an object that implements [`fmt::Display`] dynamically selecting denomination. /// /// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To /// avoid confusion the denomination is always shown. pub fn display_dynamic(self) -> Display { Display { sats_abs: self.to_sat(), is_negative: false, style: DisplayStyle::DynamicDenomination, } } /// Formats the value of this [`Amount`] in the given denomination. /// /// Does not include the denomination. #[rustfmt::skip] #[deprecated(since = "TBD", note = "use `display_in()` instead")] pub fn fmt_value_in(self, f: &mut dyn fmt::Write, denom: Denomination) -> fmt::Result { fmt_satoshi_in(self.to_sat(), false, f, denom, false, FormatOptions::default()) } /// Returns a formatted string of this [`Amount`] in the given denomination. /// /// Does not include the denomination. #[cfg(feature = "alloc")] pub fn to_string_in(self, denom: Denomination) -> String { self.display_in(denom).to_string() } /// Returns a formatted string of this [`Amount`] in the given denomination, /// suffixed with the abbreviation for the denomination. #[cfg(feature = "alloc")] pub fn to_string_with_denomination(self, denom: Denomination) -> String { self.display_in(denom).show_denomination().to_string() } // Some arithmetic that doesn't fit in [`core::ops`] traits. /// Checked addition. /// /// Returns [`None`] if overflow occurred. pub fn checked_add(self, rhs: Amount) -> Option { self.0.checked_add(rhs.0).map(Amount) } /// Checked subtraction. /// /// Returns [`None`] if overflow occurred. pub fn checked_sub(self, rhs: Amount) -> Option { self.0.checked_sub(rhs.0).map(Amount) } /// Checked multiplication. /// /// Returns [`None`] if overflow occurred. pub fn checked_mul(self, rhs: u64) -> Option { self.0.checked_mul(rhs).map(Amount) } /// Checked integer division. /// /// Be aware that integer division loses the remainder if no exact division /// can be made. /// Returns [`None`] if overflow occurred. pub fn checked_div(self, rhs: u64) -> Option { self.0.checked_div(rhs).map(Amount) } /// Checked weight division. /// /// Be aware that integer division loses the remainder if no exact division /// can be made. This method rounds up ensuring the transaction fee-rate is /// sufficient. If you wish to round-down, use the unchecked version instead. /// /// [`None`] is returned if an overflow occurred. #[cfg(feature = "alloc")] pub fn checked_div_by_weight(self, rhs: Weight) -> Option { let sats = self.0.checked_mul(1000)?; let wu = rhs.to_wu(); let fee_rate = sats.checked_add(wu.checked_sub(1)?)?.checked_div(wu)?; Some(FeeRate::from_sat_per_kwu(fee_rate)) } /// Checked remainder. /// /// Returns [`None`] if overflow occurred. pub fn checked_rem(self, rhs: u64) -> Option { self.0.checked_rem(rhs).map(Amount) } /// Unchecked addition. /// /// Computes `self + rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. pub fn unchecked_add(self, rhs: Amount) -> Amount { Self(self.0 + rhs.0) } /// Unchecked subtraction. /// /// Computes `self - rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. pub fn unchecked_sub(self, rhs: Amount) -> Amount { Self(self.0 - rhs.0) } /// Converts to a signed amount. pub fn to_signed(self) -> Result { if self.to_sat() > SignedAmount::MAX.to_sat() as u64 { Err(OutOfRangeError::too_big(true)) } else { Ok(SignedAmount::from_sat(self.to_sat() as i64)) } } } #[cfg(feature = "arbitrary")] impl<'a> Arbitrary<'a> for Amount { fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { let a = u64::arbitrary(u)?; Ok(Amount(a)) } } impl default::Default for Amount { fn default() -> Self { Amount::ZERO } } impl fmt::Debug for Amount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} SAT", self.to_sat()) } } // No one should depend on a binding contract for Display for this type. // Just using Bitcoin denominated string. impl fmt::Display for Amount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.display_in(Denomination::Bitcoin).show_denomination(), f) } } impl ops::Add for Amount { type Output = Amount; fn add(self, rhs: Amount) -> Self::Output { self.checked_add(rhs).expect("Amount addition error") } } impl ops::AddAssign for Amount { fn add_assign(&mut self, other: Amount) { *self = *self + other } } impl ops::Sub for Amount { type Output = Amount; fn sub(self, rhs: Amount) -> Self::Output { self.checked_sub(rhs).expect("Amount subtraction error") } } impl ops::SubAssign for Amount { fn sub_assign(&mut self, other: Amount) { *self = *self - other } } impl ops::Rem for Amount { type Output = Amount; fn rem(self, modulus: u64) -> Self { self.checked_rem(modulus).expect("Amount remainder error") } } impl ops::RemAssign for Amount { fn rem_assign(&mut self, modulus: u64) { *self = *self % modulus } } impl ops::Mul for Amount { type Output = Amount; fn mul(self, rhs: u64) -> Self::Output { self.checked_mul(rhs).expect("Amount multiplication error") } } impl ops::MulAssign for Amount { fn mul_assign(&mut self, rhs: u64) { *self = *self * rhs } } impl ops::Div for Amount { type Output = Amount; fn div(self, rhs: u64) -> Self::Output { self.checked_div(rhs).expect("Amount division error") } } impl ops::DivAssign for Amount { fn div_assign(&mut self, rhs: u64) { *self = *self / rhs } } impl FromStr for Amount { type Err = ParseError; /// Parses a string slice where the slice includes a denomination. /// /// If the string slice is zero, then no denomination is required. /// /// # Returns /// /// `Ok(Amount)` if the string amount and denomination parse successfully, /// otherwise, return `Err(ParseError)`. fn from_str(s: &str) -> Result { let result = Amount::from_str_with_denomination(s); match result { Err(ParseError::MissingDenomination(_)) => { let d = Amount::from_str_in(s, Denomination::Satoshi); if d == Ok(Amount::ZERO) { Ok(Amount::ZERO) } else { result } } _ => result, } } } impl TryFrom for Amount { type Error = OutOfRangeError; fn try_from(value: SignedAmount) -> Result { value.to_unsigned() } } impl core::iter::Sum for Amount { fn sum>(iter: I) -> Self { let sats: u64 = iter.map(|amt| amt.0).sum(); Amount::from_sat(sats) } } /// A helper/builder that displays amount with specified settings. /// /// This provides richer interface than [`fmt::Formatter`]: /// /// * Ability to select denomination /// * Show or hide denomination /// * Dynamically-selected denomination - show in sats if less than 1 BTC. /// /// However, this can still be combined with [`fmt::Formatter`] options to precisely control zeros, /// padding, alignment... The formatting works like floats from `core` but note that precision will /// **never** be lossy - that means no rounding. /// /// Note: This implementation is currently **unstable**. The only thing that we can promise is that /// unless the precision is changed, this will display an accurate, human-readable number, and the /// default serialization (one with unmodified [`fmt::Formatter`] options) will round-trip with [`FromStr`] /// /// See [`Amount::display_in`] and [`Amount::display_dynamic`] on how to construct this. #[derive(Debug, Clone)] pub struct Display { /// Absolute value of satoshis to display (sign is below) sats_abs: u64, /// The sign is_negative: bool, /// How to display the value style: DisplayStyle, } impl Display { /// Makes subsequent calls to `Display::fmt` display denomination. pub fn show_denomination(mut self) -> Self { match &mut self.style { DisplayStyle::FixedDenomination { show_denomination, .. } => *show_denomination = true, // No-op because dynamic denomination is always shown DisplayStyle::DynamicDenomination => (), } self } } impl fmt::Display for Display { #[rustfmt::skip] fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let format_options = FormatOptions::from_formatter(f); match &self.style { DisplayStyle::FixedDenomination { show_denomination, denomination } => { fmt_satoshi_in(self.sats_abs, self.is_negative, f, *denomination, *show_denomination, format_options) }, DisplayStyle::DynamicDenomination if self.sats_abs >= Amount::ONE_BTC.to_sat() => { fmt_satoshi_in(self.sats_abs, self.is_negative, f, Denomination::Bitcoin, true, format_options) }, DisplayStyle::DynamicDenomination => { fmt_satoshi_in(self.sats_abs, self.is_negative, f, Denomination::Satoshi, true, format_options) }, } } } #[derive(Clone, Debug)] enum DisplayStyle { FixedDenomination { denomination: Denomination, show_denomination: bool }, DynamicDenomination, } /// A signed amount. /// /// The [`SignedAmount`] type can be used to express Bitcoin amounts that support /// arithmetic and conversion to various denominations. /// /// /// Warning! /// /// This type implements several arithmetic operations from [`core::ops`]. /// To prevent errors due to overflow or underflow when using these operations, /// it is advised to instead use the checked arithmetic methods whose names /// start with `checked_`. The operations from [`core::ops`] that [`Amount`] /// implements will panic when overflow or underflow occurs. /// #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct SignedAmount(i64); impl SignedAmount { /// The zero amount. pub const ZERO: SignedAmount = SignedAmount(0); /// Exactly one satoshi. pub const ONE_SAT: SignedAmount = SignedAmount(1); /// Exactly one bitcoin. pub const ONE_BTC: SignedAmount = SignedAmount(100_000_000); /// The maximum value allowed as an amount. Useful for sanity checking. pub const MAX_MONEY: SignedAmount = SignedAmount(21_000_000 * 100_000_000); /// The minimum value of an amount. pub const MIN: SignedAmount = SignedAmount(i64::MIN); /// The maximum value of an amount. pub const MAX: SignedAmount = SignedAmount(i64::MAX); /// Create an [`SignedAmount`] with satoshi precision and the given number of satoshis. pub const fn from_sat(satoshi: i64) -> SignedAmount { SignedAmount(satoshi) } /// Gets the number of satoshis in this [`SignedAmount`]. pub const fn to_sat(self) -> i64 { self.0 } /// Convert from a value expressing bitcoins to an [`SignedAmount`]. #[cfg(feature = "alloc")] pub fn from_btc(btc: f64) -> Result { SignedAmount::from_float_in(btc, Denomination::Bitcoin) } /// Parse a decimal string as a value in the given denomination. /// /// Note: This only parses the value string. If you want to parse a value /// with denomination, use [`FromStr`]. pub fn from_str_in(s: &str, denom: Denomination) -> Result { match parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(true))? { // (negative, amount) (false, sat) if sat > i64::MAX as u64 => Err(ParseAmountError::OutOfRange(OutOfRangeError::too_big(true))), (false, sat) => Ok(SignedAmount(sat as i64)), (true, sat) if sat == i64::MIN.unsigned_abs() => Ok(SignedAmount(i64::MIN)), (true, sat) if sat > i64::MIN.unsigned_abs() => Err(ParseAmountError::OutOfRange(OutOfRangeError::too_small())), (true, sat) => Ok(SignedAmount(-(sat as i64))), } } /// Parses amounts with denomination suffix like they are produced with /// [`Self::to_string_with_denomination`] or with [`fmt::Display`]. /// If you want to parse only the amount without the denomination, /// use [`Self::from_str_in`]. pub fn from_str_with_denomination(s: &str) -> Result { let (amt, denom) = split_amount_and_denomination(s)?; SignedAmount::from_str_in(amt, denom).map_err(Into::into) } /// Express this [`SignedAmount`] as a floating-point value in the given denomination. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn to_float_in(self, denom: Denomination) -> f64 { self.to_string_in(denom).parse::().unwrap() } /// Express this [`SignedAmount`] as a floating-point value in Bitcoin. /// /// Equivalent to `to_float_in(Denomination::Bitcoin)`. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) } /// Convert this [`SignedAmount`] in floating-point notation with a given /// denomination. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn from_float_in( value: f64, denom: Denomination, ) -> Result { // This is inefficient, but the safest way to deal with this. The parsing logic is safe. // Any performance-critical application should not be dealing with floats. SignedAmount::from_str_in(&value.to_string(), denom) } /// Create an object that implements [`fmt::Display`] using specified denomination. pub fn display_in(self, denomination: Denomination) -> Display { Display { sats_abs: self.unsigned_abs().to_sat(), is_negative: self.is_negative(), style: DisplayStyle::FixedDenomination { denomination, show_denomination: false }, } } /// Create an object that implements [`fmt::Display`] dynamically selecting denomination. /// /// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To /// avoid confusion the denomination is always shown. pub fn display_dynamic(self) -> Display { Display { sats_abs: self.unsigned_abs().to_sat(), is_negative: self.is_negative(), style: DisplayStyle::DynamicDenomination, } } /// Format the value of this [`SignedAmount`] in the given denomination. /// /// Does not include the denomination. #[rustfmt::skip] #[deprecated(since = "TBD", note = "use `display_in()` instead")] pub fn fmt_value_in(self, f: &mut dyn fmt::Write, denom: Denomination) -> fmt::Result { fmt_satoshi_in(self.unsigned_abs().to_sat(), self.is_negative(), f, denom, false, FormatOptions::default()) } /// Get a string number of this [`SignedAmount`] in the given denomination. /// /// Does not include the denomination. #[cfg(feature = "alloc")] pub fn to_string_in(self, denom: Denomination) -> String { self.display_in(denom).to_string() } /// Get a formatted string of this [`SignedAmount`] in the given denomination, /// suffixed with the abbreviation for the denomination. #[cfg(feature = "alloc")] pub fn to_string_with_denomination(self, denom: Denomination) -> String { self.display_in(denom).show_denomination().to_string() } // Some arithmetic that doesn't fit in [`core::ops`] traits. /// Get the absolute value of this [`SignedAmount`]. pub fn abs(self) -> SignedAmount { SignedAmount(self.0.abs()) } /// Get the absolute value of this [`SignedAmount`] returning [`Amount`]. pub fn unsigned_abs(self) -> Amount { Amount(self.0.unsigned_abs()) } /// Returns a number representing sign of this [`SignedAmount`]. /// /// - `0` if the amount is zero /// - `1` if the amount is positive /// - `-1` if the amount is negative pub fn signum(self) -> i64 { self.0.signum() } /// Checks if this [`SignedAmount`] is positive. /// /// Returns `true` if this [`SignedAmount`] is positive and `false` if /// this [`SignedAmount`] is zero or negative. pub fn is_positive(self) -> bool { self.0.is_positive() } /// Checks if this [`SignedAmount`] is negative. /// /// Returns `true` if this [`SignedAmount`] is negative and `false` if /// this [`SignedAmount`] is zero or positive. pub fn is_negative(self) -> bool { self.0.is_negative() } /// Returns the absolute value of this [`SignedAmount`]. /// /// Consider using `unsigned_abs` which is often more practical. /// /// Returns [`None`] if overflow occurred. (`self == MIN`) pub fn checked_abs(self) -> Option { self.0.checked_abs().map(SignedAmount) } /// Checked addition. /// /// Returns [`None`] if overflow occurred. pub fn checked_add(self, rhs: SignedAmount) -> Option { self.0.checked_add(rhs.0).map(SignedAmount) } /// Checked subtraction. /// /// Returns [`None`] if overflow occurred. pub fn checked_sub(self, rhs: SignedAmount) -> Option { self.0.checked_sub(rhs.0).map(SignedAmount) } /// Checked multiplication. /// /// Returns [`None`] if overflow occurred. pub fn checked_mul(self, rhs: i64) -> Option { self.0.checked_mul(rhs).map(SignedAmount) } /// Checked integer division. /// /// Be aware that integer division loses the remainder if no exact division /// can be made. /// /// Returns [`None`] if overflow occurred. pub fn checked_div(self, rhs: i64) -> Option { self.0.checked_div(rhs).map(SignedAmount) } /// Checked remainder. /// /// Returns [`None`] if overflow occurred. pub fn checked_rem(self, rhs: i64) -> Option { self.0.checked_rem(rhs).map(SignedAmount) } /// Unchecked addition. /// /// Computes `self + rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. pub fn unchecked_add(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 + rhs.0) } /// Unchecked subtraction. /// /// Computes `self - rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. pub fn unchecked_sub(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 - rhs.0) } /// Subtraction that doesn't allow negative [`SignedAmount`]s. /// /// Returns [`None`] if either [`self`], `rhs` or the result is strictly negative. pub fn positive_sub(self, rhs: SignedAmount) -> Option { if self.is_negative() || rhs.is_negative() || rhs > self { None } else { self.checked_sub(rhs) } } /// Converts to an unsigned amount. pub fn to_unsigned(self) -> Result { if self.is_negative() { Err(OutOfRangeError::negative()) } else { Ok(Amount::from_sat(self.to_sat() as u64)) } } } impl default::Default for SignedAmount { fn default() -> Self { SignedAmount::ZERO } } impl fmt::Debug for SignedAmount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "SignedAmount({} SAT)", self.to_sat()) } } // No one should depend on a binding contract for Display for this type. // Just using Bitcoin denominated string. impl fmt::Display for SignedAmount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.display_in(Denomination::Bitcoin).show_denomination(), f) } } impl ops::Add for SignedAmount { type Output = SignedAmount; fn add(self, rhs: SignedAmount) -> Self::Output { self.checked_add(rhs).expect("SignedAmount addition error") } } impl ops::AddAssign for SignedAmount { fn add_assign(&mut self, other: SignedAmount) { *self = *self + other } } impl ops::Sub for SignedAmount { type Output = SignedAmount; fn sub(self, rhs: SignedAmount) -> Self::Output { self.checked_sub(rhs).expect("SignedAmount subtraction error") } } impl ops::SubAssign for SignedAmount { fn sub_assign(&mut self, other: SignedAmount) { *self = *self - other } } impl ops::Rem for SignedAmount { type Output = SignedAmount; fn rem(self, modulus: i64) -> Self { self.checked_rem(modulus).expect("SignedAmount remainder error") } } impl ops::RemAssign for SignedAmount { fn rem_assign(&mut self, modulus: i64) { *self = *self % modulus } } impl ops::Mul for SignedAmount { type Output = SignedAmount; fn mul(self, rhs: i64) -> Self::Output { self.checked_mul(rhs).expect("SignedAmount multiplication error") } } impl ops::MulAssign for SignedAmount { fn mul_assign(&mut self, rhs: i64) { *self = *self * rhs } } impl ops::Div for SignedAmount { type Output = SignedAmount; fn div(self, rhs: i64) -> Self::Output { self.checked_div(rhs).expect("SignedAmount division error") } } impl ops::DivAssign for SignedAmount { fn div_assign(&mut self, rhs: i64) { *self = *self / rhs } } impl ops::Neg for SignedAmount { type Output = Self; fn neg(self) -> Self::Output { Self(self.0.neg()) } } impl FromStr for SignedAmount { type Err = ParseError; /// Parses a string slice where the slice includes a denomination. /// /// If the string slice is zero or negative zero, then no denomination is required. /// /// # Returns /// /// `Ok(Amount)` if the string amount and denomination parse successfully, /// otherwise, return `Err(ParseError)`. fn from_str(s: &str) -> Result { let result = SignedAmount::from_str_with_denomination(s); match result { Err(ParseError::MissingDenomination(_)) => { let d = SignedAmount::from_str_in(s, Denomination::Satoshi); if d == Ok(SignedAmount::ZERO) { Ok(SignedAmount::ZERO) } else { result } } _ => result, } } } impl TryFrom for SignedAmount { type Error = OutOfRangeError; fn try_from(value: Amount) -> Result { value.to_signed() } } impl core::iter::Sum for SignedAmount { fn sum>(iter: I) -> Self { let sats: i64 = iter.map(|amt| amt.0).sum(); SignedAmount::from_sat(sats) } } #[cfg(feature = "arbitrary")] impl<'a> Arbitrary<'a> for SignedAmount { fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { let s = i64::arbitrary(u)?; Ok(SignedAmount(s)) } } /// Calculates the sum over the iterator using checked arithmetic. pub trait CheckedSum: private::SumSeal { /// Calculates the sum over the iterator using checked arithmetic. If an over or underflow would /// happen it returns [`None`]. fn checked_sum(self) -> Option; } impl CheckedSum for T where T: Iterator, { fn checked_sum(mut self) -> Option { let first = Some(self.next().unwrap_or_default()); self.fold(first, |acc, item| acc.and_then(|acc| acc.checked_add(item))) } } impl CheckedSum for T where T: Iterator, { fn checked_sum(mut self) -> Option { let first = Some(self.next().unwrap_or_default()); self.fold(first, |acc, item| acc.and_then(|acc| acc.checked_add(item))) } } mod private { use super::{Amount, SignedAmount}; /// Used to seal the `CheckedSum` trait pub trait SumSeal {} impl SumSeal for T where T: Iterator {} impl SumSeal for T where T: Iterator {} } #[cfg(feature = "serde")] pub mod serde { // methods are implementation of a standardized serde-specific signature #![allow(missing_docs)] //! This module adds serde serialization and deserialization support for Amounts. //! //! Since there is not a default way to serialize and deserialize Amounts, multiple //! ways are supported and it's up to the user to decide which serialiation to use. //! The provided modules can be used as follows: //! //! ```rust,ignore //! use serde::{Serialize, Deserialize}; //! use bitcoin_units::Amount; //! //! #[derive(Serialize, Deserialize)] //! pub struct HasAmount { //! #[serde(with = "bitcoin_units::amount::serde::as_btc")] //! pub amount: Amount, //! } //! ``` use core::fmt; use serde::{Deserialize, Deserializer, Serialize, Serializer}; #[cfg(feature = "alloc")] use super::Denomination; use super::{Amount, ParseAmountError, SignedAmount}; /// This trait is used only to avoid code duplication and naming collisions /// of the different serde serialization crates. pub trait SerdeAmount: Copy + Sized { fn ser_sat(self, s: S, _: private::Token) -> Result; fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result; #[cfg(feature = "alloc")] fn ser_btc(self, s: S, _: private::Token) -> Result; #[cfg(feature = "alloc")] fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result; } mod private { /// Controls access to the trait methods. pub struct Token; } /// This trait is only for internal Amount type serialization/deserialization pub trait SerdeAmountForOpt: Copy + Sized + SerdeAmount { fn type_prefix(_: private::Token) -> &'static str; fn ser_sat_opt(self, s: S, _: private::Token) -> Result; #[cfg(feature = "alloc")] fn ser_btc_opt(self, s: S, _: private::Token) -> Result; } struct DisplayFullError(ParseAmountError); #[cfg(feature = "std")] impl fmt::Display for DisplayFullError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { use std::error::Error; fmt::Display::fmt(&self.0, f)?; let mut source_opt = self.0.source(); while let Some(source) = source_opt { write!(f, ": {}", source)?; source_opt = source.source(); } Ok(()) } } #[cfg(not(feature = "std"))] impl fmt::Display for DisplayFullError { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) } } impl SerdeAmount for Amount { fn ser_sat(self, s: S, _: private::Token) -> Result { u64::serialize(&self.to_sat(), s) } fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result { Ok(Amount::from_sat(u64::deserialize(d)?)) } #[cfg(feature = "alloc")] fn ser_btc(self, s: S, _: private::Token) -> Result { f64::serialize(&self.to_float_in(Denomination::Bitcoin), s) } #[cfg(feature = "alloc")] fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result { use serde::de::Error; Amount::from_btc(f64::deserialize(d)?) .map_err(DisplayFullError) .map_err(D::Error::custom) } } impl SerdeAmountForOpt for Amount { fn type_prefix(_: private::Token) -> &'static str { "u" } fn ser_sat_opt(self, s: S, _: private::Token) -> Result { s.serialize_some(&self.to_sat()) } #[cfg(feature = "alloc")] fn ser_btc_opt(self, s: S, _: private::Token) -> Result { s.serialize_some(&self.to_btc()) } } impl SerdeAmount for SignedAmount { fn ser_sat(self, s: S, _: private::Token) -> Result { i64::serialize(&self.to_sat(), s) } fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result { Ok(SignedAmount::from_sat(i64::deserialize(d)?)) } #[cfg(feature = "alloc")] fn ser_btc(self, s: S, _: private::Token) -> Result { f64::serialize(&self.to_float_in(Denomination::Bitcoin), s) } #[cfg(feature = "alloc")] fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result { use serde::de::Error; SignedAmount::from_btc(f64::deserialize(d)?) .map_err(DisplayFullError) .map_err(D::Error::custom) } } impl SerdeAmountForOpt for SignedAmount { fn type_prefix(_: private::Token) -> &'static str { "i" } fn ser_sat_opt(self, s: S, _: private::Token) -> Result { s.serialize_some(&self.to_sat()) } #[cfg(feature = "alloc")] fn ser_btc_opt(self, s: S, _: private::Token) -> Result { s.serialize_some(&self.to_btc()) } } pub mod as_sat { //! Serialize and deserialize [`Amount`](crate::Amount) as real numbers denominated in satoshi. //! Use with `#[serde(with = "amount::serde::as_sat")]`. use serde::{Deserializer, Serializer}; use super::private; use crate::amount::serde::SerdeAmount; pub fn serialize(a: &A, s: S) -> Result { a.ser_sat(s, private::Token) } pub fn deserialize<'d, A: SerdeAmount, D: Deserializer<'d>>(d: D) -> Result { A::des_sat(d, private::Token) } pub mod opt { //! Serialize and deserialize [`Option`](crate::Amount) as real numbers denominated in satoshi. //! Use with `#[serde(default, with = "amount::serde::as_sat::opt")]`. use core::fmt; use core::marker::PhantomData; use serde::{de, Deserializer, Serializer}; use super::private; use crate::amount::serde::SerdeAmountForOpt; pub fn serialize( a: &Option, s: S, ) -> Result { match *a { Some(a) => a.ser_sat_opt(s, private::Token), None => s.serialize_none(), } } pub fn deserialize<'d, A: SerdeAmountForOpt, D: Deserializer<'d>>( d: D, ) -> Result, D::Error> { struct VisitOptAmt(PhantomData); impl<'de, X: SerdeAmountForOpt> de::Visitor<'de> for VisitOptAmt { type Value = Option; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "An Option<{}64>", X::type_prefix(private::Token)) } fn visit_none(self) -> Result where E: de::Error, { Ok(None) } fn visit_some(self, d: D) -> Result where D: Deserializer<'de>, { Ok(Some(X::des_sat(d, private::Token)?)) } } d.deserialize_option(VisitOptAmt::(PhantomData)) } } } #[cfg(feature = "alloc")] pub mod as_btc { //! Serialize and deserialize [`Amount`](crate::Amount) as JSON numbers denominated in BTC. //! Use with `#[serde(with = "amount::serde::as_btc")]`. use serde::{Deserializer, Serializer}; use super::private; use crate::amount::serde::SerdeAmount; pub fn serialize(a: &A, s: S) -> Result { a.ser_btc(s, private::Token) } pub fn deserialize<'d, A: SerdeAmount, D: Deserializer<'d>>(d: D) -> Result { A::des_btc(d, private::Token) } pub mod opt { //! Serialize and deserialize `Option` as JSON numbers denominated in BTC. //! Use with `#[serde(default, with = "amount::serde::as_btc::opt")]`. use core::fmt; use core::marker::PhantomData; use serde::{de, Deserializer, Serializer}; use super::private; use crate::amount::serde::SerdeAmountForOpt; pub fn serialize( a: &Option, s: S, ) -> Result { match *a { Some(a) => a.ser_btc_opt(s, private::Token), None => s.serialize_none(), } } pub fn deserialize<'d, A: SerdeAmountForOpt, D: Deserializer<'d>>( d: D, ) -> Result, D::Error> { struct VisitOptAmt(PhantomData); impl<'de, X: SerdeAmountForOpt> de::Visitor<'de> for VisitOptAmt { type Value = Option; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { write!(formatter, "An Option") } fn visit_none(self) -> Result where E: de::Error, { Ok(None) } fn visit_some(self, d: D) -> Result where D: Deserializer<'de>, { Ok(Some(X::des_btc(d, private::Token)?)) } } d.deserialize_option(VisitOptAmt::(PhantomData)) } } } } #[cfg(test)] mod tests { #[cfg(feature = "alloc")] use alloc::format; #[cfg(feature = "std")] use std::panic; use super::*; #[test] #[cfg(feature = "alloc")] fn from_str_zero() { let denoms = ["BTC", "mBTC", "uBTC", "bits", "sats"]; for denom in denoms { for v in &["0", "000"] { let s = format!("{} {}", v, denom); match s.parse::() { Err(e) => panic!("failed to crate amount from {}: {:?}", s, e), Ok(amount) => assert_eq!(amount, Amount::from_sat(0)), } } let s = format!("-0 {}", denom); match s.parse::() { Err(e) => assert_eq!( e, ParseError::Amount(ParseAmountError::OutOfRange(OutOfRangeError::negative())) ), Ok(_) => panic!("unsigned amount from {}", s), } match s.parse::() { Err(e) => panic!("failed to crate amount from {}: {:?}", s, e), Ok(amount) => assert_eq!(amount, SignedAmount::from_sat(0)), } } } #[test] fn from_str_zero_without_denomination() { let _a = Amount::from_str("0").unwrap(); let _a = Amount::from_str("0.0").unwrap(); let _a = Amount::from_str("00.0").unwrap(); assert!(Amount::from_str("-0").is_err()); assert!(Amount::from_str("-0.0").is_err()); assert!(Amount::from_str("-00.0").is_err()); let _a = SignedAmount::from_str("-0").unwrap(); let _a = SignedAmount::from_str("-0.0").unwrap(); let _a = SignedAmount::from_str("-00.0").unwrap(); let _a = SignedAmount::from_str("0").unwrap(); let _a = SignedAmount::from_str("0.0").unwrap(); let _a = SignedAmount::from_str("00.0").unwrap(); } #[test] fn from_int_btc() { let amt = Amount::from_int_btc(2); assert_eq!(Amount::from_sat(200_000_000), amt); } #[should_panic] #[test] fn from_int_btc_panic() { Amount::from_int_btc(u64::MAX); } #[test] fn test_signed_amount_try_from_amount() { let ua_positive = Amount::from_sat(123); let sa_positive = SignedAmount::try_from(ua_positive).unwrap(); assert_eq!(sa_positive, SignedAmount::from_sat(123)); let ua_max = Amount::MAX; let result = SignedAmount::try_from(ua_max); assert_eq!(result, Err(OutOfRangeError { is_signed: true, is_greater_than_max: true })); } #[test] fn test_amount_try_from_signed_amount() { let sa_positive = SignedAmount::from_sat(123); let ua_positive = Amount::try_from(sa_positive).unwrap(); assert_eq!(ua_positive, Amount::from_sat(123)); let sa_negative = SignedAmount::from_sat(-123); let result = Amount::try_from(sa_negative); assert_eq!(result, Err(OutOfRangeError { is_signed: false, is_greater_than_max: false })); } #[test] fn mul_div() { let sat = Amount::from_sat; let ssat = SignedAmount::from_sat; assert_eq!(sat(14) * 3, sat(42)); assert_eq!(sat(14) / 2, sat(7)); assert_eq!(sat(14) % 3, sat(2)); assert_eq!(ssat(-14) * 3, ssat(-42)); assert_eq!(ssat(-14) / 2, ssat(-7)); assert_eq!(ssat(-14) % 3, ssat(-2)); let mut b = ssat(30); b /= 3; assert_eq!(b, ssat(10)); b %= 3; assert_eq!(b, ssat(1)); } #[cfg(feature = "std")] #[test] fn test_overflows() { // panic on overflow let result = panic::catch_unwind(|| Amount::MAX + Amount::from_sat(1)); assert!(result.is_err()); let result = panic::catch_unwind(|| Amount::from_sat(8446744073709551615) * 3); assert!(result.is_err()); } #[test] fn checked_arithmetic() { let sat = Amount::from_sat; let ssat = SignedAmount::from_sat; assert_eq!(SignedAmount::MAX.checked_add(ssat(1)), None); assert_eq!(SignedAmount::MIN.checked_sub(ssat(1)), None); assert_eq!(Amount::MAX.checked_add(sat(1)), None); assert_eq!(Amount::MIN.checked_sub(sat(1)), None); assert_eq!(sat(5).checked_div(2), Some(sat(2))); // integer division assert_eq!(ssat(-6).checked_div(2), Some(ssat(-3))); } #[cfg(feature = "alloc")] #[test] fn amount_checked_div_by_weight() { let weight = Weight::from_kwu(1).unwrap(); let fee_rate = Amount::from_sat(1).checked_div_by_weight(weight).unwrap(); // 1 sats / 1,000 wu = 1 sats/kwu assert_eq!(fee_rate, FeeRate::from_sat_per_kwu(1)); let weight = Weight::from_wu(381); let fee_rate = Amount::from_sat(329).checked_div_by_weight(weight).unwrap(); // 329 sats / 381 wu = 863.5 sats/kwu // round up to 864 assert_eq!(fee_rate, FeeRate::from_sat_per_kwu(864)); let fee_rate = Amount::MAX.checked_div_by_weight(weight); assert!(fee_rate.is_none()); let fee_rate = Amount::ONE_SAT.checked_div_by_weight(Weight::ZERO); assert!(fee_rate.is_none()); } #[test] #[cfg(not(debug_assertions))] fn unchecked_amount_add() { let amt = Amount::MAX.unchecked_add(Amount::ONE_SAT); assert_eq!(amt, Amount::ZERO); } #[test] #[cfg(not(debug_assertions))] fn unchecked_signed_amount_add() { let signed_amt = SignedAmount::MAX.unchecked_add(SignedAmount::ONE_SAT); assert_eq!(signed_amt, SignedAmount::MIN); } #[test] #[cfg(not(debug_assertions))] fn unchecked_amount_subtract() { let amt = Amount::ZERO.unchecked_sub(Amount::ONE_SAT); assert_eq!(amt, Amount::MAX); } #[test] #[cfg(not(debug_assertions))] fn unchecked_signed_amount_subtract() { let signed_amt = SignedAmount::MIN.unchecked_sub(SignedAmount::ONE_SAT); assert_eq!(signed_amt, SignedAmount::MAX); } #[cfg(feature = "alloc")] #[test] fn floating_point() { use super::Denomination as D; let f = Amount::from_float_in; let sf = SignedAmount::from_float_in; let sat = Amount::from_sat; let ssat = SignedAmount::from_sat; assert_eq!(f(11.22, D::Bitcoin), Ok(sat(1122000000))); assert_eq!(sf(-11.22, D::MilliBitcoin), Ok(ssat(-1122000))); assert_eq!(f(11.22, D::Bit), Ok(sat(1122))); assert_eq!(f(0.0001234, D::Bitcoin), Ok(sat(12340))); assert_eq!(sf(-0.00012345, D::Bitcoin), Ok(ssat(-12345))); assert_eq!(f(11.22, D::Satoshi), Err(TooPreciseError { position: 3 }.into())); assert_eq!(f(42.123456781, D::Bitcoin), Err(TooPreciseError { position: 11 }.into())); assert_eq!(sf(-184467440738.0, D::Bitcoin), Err(OutOfRangeError::too_small().into())); assert_eq!( f(18446744073709551617.0, D::Satoshi), Err(OutOfRangeError::too_big(false).into()) ); // Amount can be grater than the max SignedAmount. assert!(f(SignedAmount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi).is_ok()); assert_eq!( f(Amount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi), Err(OutOfRangeError::too_big(false).into()) ); assert_eq!( sf(SignedAmount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi), Err(OutOfRangeError::too_big(true).into()) ); let btc = move |f| SignedAmount::from_btc(f).unwrap(); assert_eq!(btc(2.5).to_float_in(D::Bitcoin), 2.5); assert_eq!(btc(-2.5).to_float_in(D::MilliBitcoin), -2500.0); assert_eq!(btc(2.5).to_float_in(D::Satoshi), 250000000.0); let btc = move |f| Amount::from_btc(f).unwrap(); assert_eq!(&btc(0.0012).to_float_in(D::Bitcoin).to_string(), "0.0012") } #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn parsing() { use super::ParseAmountError as E; let btc = Denomination::Bitcoin; let sat = Denomination::Satoshi; let p = Amount::from_str_in; let sp = SignedAmount::from_str_in; assert_eq!( p("x", btc), Err(E::from(InvalidCharacterError { invalid_char: 'x', position: 0 })) ); assert_eq!( p("-", btc), Err(E::from(MissingDigitsError { kind: MissingDigitsKind::OnlyMinusSign })) ); assert_eq!( sp("-", btc), Err(E::from(MissingDigitsError { kind: MissingDigitsKind::OnlyMinusSign })) ); assert_eq!( p("-1.0x", btc), Err(E::from(InvalidCharacterError { invalid_char: 'x', position: 4 })) ); assert_eq!( p("0.0 ", btc), Err(E::from(InvalidCharacterError { invalid_char: ' ', position: 3 })) ); assert_eq!( p("0.000.000", btc), Err(E::from(InvalidCharacterError { invalid_char: '.', position: 5 })) ); #[cfg(feature = "alloc")] let more_than_max = format!("1{}", Amount::MAX); #[cfg(feature = "alloc")] assert_eq!(p(&more_than_max, btc), Err(OutOfRangeError::too_big(false).into())); assert_eq!(p("0.000000042", btc), Err(TooPreciseError { position: 10 }.into())); assert_eq!(p("1.0000000", sat), Ok(Amount::from_sat(1))); assert_eq!(p("1.1", sat), Err(TooPreciseError { position: 2 }.into())); assert_eq!(p("1000.1", sat), Err(TooPreciseError { position: 5 }.into())); assert_eq!(p("1001.0000000", sat), Ok(Amount::from_sat(1001))); assert_eq!(p("1000.0000001", sat), Err(TooPreciseError { position: 11 }.into())); assert_eq!(p("1", btc), Ok(Amount::from_sat(1_000_000_00))); assert_eq!(sp("-.5", btc), Ok(SignedAmount::from_sat(-500_000_00))); #[cfg(feature = "alloc")] assert_eq!(sp(&i64::MIN.to_string(), sat), Ok(SignedAmount::from_sat(i64::MIN))); assert_eq!(p("1.1", btc), Ok(Amount::from_sat(1_100_000_00))); assert_eq!(p("100", sat), Ok(Amount::from_sat(100))); assert_eq!(p("55", sat), Ok(Amount::from_sat(55))); assert_eq!(p("5500000000000000000", sat), Ok(Amount::from_sat(55_000_000_000_000_000_00))); // Should this even pass? assert_eq!(p("5500000000000000000.", sat), Ok(Amount::from_sat(55_000_000_000_000_000_00))); assert_eq!( p("12345678901.12345678", btc), Ok(Amount::from_sat(12_345_678_901__123_456_78)) ); // make sure satoshi > i64::MAX is checked. #[cfg(feature = "alloc")] { let amount = Amount::from_sat(i64::MAX as u64); assert_eq!(Amount::from_str_in(&amount.to_string_in(sat), sat), Ok(amount)); assert!( SignedAmount::from_str_in(&(amount + Amount::from_sat(1)).to_string_in(sat), sat).is_err() ); assert!(Amount::from_str_in(&(amount + Amount::from_sat(1)).to_string_in(sat), sat).is_ok()); } // exactly 50 chars. assert_eq!( p("100000000000000.0000000000000000000000000000000000", Denomination::Bitcoin), Err(OutOfRangeError::too_big(false).into()) ); // more than 50 chars. assert_eq!( p("100000000000000.00000000000000000000000000000000000", Denomination::Bitcoin), Err(E::InputTooLarge(InputTooLargeError { len: 51 })) ); } #[test] #[cfg(feature = "alloc")] fn to_string() { use super::Denomination as D; assert_eq!(Amount::ONE_BTC.to_string_in(D::Bitcoin), "1"); assert_eq!(format!("{:.8}", Amount::ONE_BTC.display_in(D::Bitcoin)), "1.00000000"); assert_eq!(Amount::ONE_BTC.to_string_in(D::Satoshi), "100000000"); assert_eq!(Amount::ONE_SAT.to_string_in(D::Bitcoin), "0.00000001"); assert_eq!(SignedAmount::from_sat(-42).to_string_in(D::Bitcoin), "-0.00000042"); assert_eq!(Amount::ONE_BTC.to_string_with_denomination(D::Bitcoin), "1 BTC"); assert_eq!( SignedAmount::ONE_BTC.to_string_with_denomination(D::Satoshi), "100000000 satoshi" ); assert_eq!(Amount::ONE_SAT.to_string_with_denomination(D::Bitcoin), "0.00000001 BTC"); assert_eq!( SignedAmount::from_sat(-42).to_string_with_denomination(D::Bitcoin), "-0.00000042 BTC" ); } // May help identify a problem sooner #[cfg(feature = "alloc")] #[test] fn test_repeat_char() { let mut buf = String::new(); repeat_char(&mut buf, '0', 0).unwrap(); assert_eq!(buf.len(), 0); repeat_char(&mut buf, '0', 42).unwrap(); assert_eq!(buf.len(), 42); assert!(buf.chars().all(|c| c == '0')); } // Creates individual test functions to make it easier to find which check failed. macro_rules! check_format_non_negative { ($denom:ident; $($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => { $( #[test] #[cfg(feature = "alloc")] fn $test_name() { assert_eq!(format!($format_string, Amount::from_sat($val).display_in(Denomination::$denom)), $expected); assert_eq!(format!($format_string, SignedAmount::from_sat($val as i64).display_in(Denomination::$denom)), $expected); } )* } } macro_rules! check_format_non_negative_show_denom { ($denom:ident, $denom_suffix:literal; $($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => { $( #[test] #[cfg(feature = "alloc")] fn $test_name() { assert_eq!(format!($format_string, Amount::from_sat($val).display_in(Denomination::$denom).show_denomination()), concat!($expected, $denom_suffix)); assert_eq!(format!($format_string, SignedAmount::from_sat($val as i64).display_in(Denomination::$denom).show_denomination()), concat!($expected, $denom_suffix)); } )* } } check_format_non_negative! { Satoshi; sat_check_fmt_non_negative_0, 0, "{}", "0"; sat_check_fmt_non_negative_1, 0, "{:2}", " 0"; sat_check_fmt_non_negative_2, 0, "{:02}", "00"; sat_check_fmt_non_negative_3, 0, "{:.1}", "0.0"; sat_check_fmt_non_negative_4, 0, "{:4.1}", " 0.0"; sat_check_fmt_non_negative_5, 0, "{:04.1}", "00.0"; sat_check_fmt_non_negative_6, 1, "{}", "1"; sat_check_fmt_non_negative_7, 1, "{:2}", " 1"; sat_check_fmt_non_negative_8, 1, "{:02}", "01"; sat_check_fmt_non_negative_9, 1, "{:.1}", "1.0"; sat_check_fmt_non_negative_10, 1, "{:4.1}", " 1.0"; sat_check_fmt_non_negative_11, 1, "{:04.1}", "01.0"; sat_check_fmt_non_negative_12, 10, "{}", "10"; sat_check_fmt_non_negative_13, 10, "{:2}", "10"; sat_check_fmt_non_negative_14, 10, "{:02}", "10"; sat_check_fmt_non_negative_15, 10, "{:3}", " 10"; sat_check_fmt_non_negative_16, 10, "{:03}", "010"; sat_check_fmt_non_negative_17, 10, "{:.1}", "10.0"; sat_check_fmt_non_negative_18, 10, "{:5.1}", " 10.0"; sat_check_fmt_non_negative_19, 10, "{:05.1}", "010.0"; sat_check_fmt_non_negative_20, 1, "{:<2}", "1 "; sat_check_fmt_non_negative_21, 1, "{:<02}", "01"; sat_check_fmt_non_negative_22, 1, "{:<3.1}", "1.0"; sat_check_fmt_non_negative_23, 1, "{:<4.1}", "1.0 "; } check_format_non_negative_show_denom! { Satoshi, " satoshi"; sat_check_fmt_non_negative_show_denom_0, 0, "{}", "0"; sat_check_fmt_non_negative_show_denom_1, 0, "{:2}", "0"; sat_check_fmt_non_negative_show_denom_2, 0, "{:02}", "0"; sat_check_fmt_non_negative_show_denom_3, 0, "{:9}", "0"; sat_check_fmt_non_negative_show_denom_4, 0, "{:09}", "0"; sat_check_fmt_non_negative_show_denom_5, 0, "{:10}", " 0"; sat_check_fmt_non_negative_show_denom_6, 0, "{:010}", "00"; sat_check_fmt_non_negative_show_denom_7, 0, "{:.1}", "0.0"; sat_check_fmt_non_negative_show_denom_8, 0, "{:11.1}", "0.0"; sat_check_fmt_non_negative_show_denom_9, 0, "{:011.1}", "0.0"; sat_check_fmt_non_negative_show_denom_10, 0, "{:12.1}", " 0.0"; sat_check_fmt_non_negative_show_denom_11, 0, "{:012.1}", "00.0"; sat_check_fmt_non_negative_show_denom_12, 1, "{}", "1"; sat_check_fmt_non_negative_show_denom_13, 1, "{:10}", " 1"; sat_check_fmt_non_negative_show_denom_14, 1, "{:010}", "01"; sat_check_fmt_non_negative_show_denom_15, 1, "{:.1}", "1.0"; sat_check_fmt_non_negative_show_denom_16, 1, "{:12.1}", " 1.0"; sat_check_fmt_non_negative_show_denom_17, 1, "{:012.1}", "01.0"; sat_check_fmt_non_negative_show_denom_18, 10, "{}", "10"; sat_check_fmt_non_negative_show_denom_19, 10, "{:10}", "10"; sat_check_fmt_non_negative_show_denom_20, 10, "{:010}", "10"; sat_check_fmt_non_negative_show_denom_21, 10, "{:11}", " 10"; sat_check_fmt_non_negative_show_denom_22, 10, "{:011}", "010"; } check_format_non_negative! { Bitcoin; btc_check_fmt_non_negative_0, 0, "{}", "0"; btc_check_fmt_non_negative_1, 0, "{:2}", " 0"; btc_check_fmt_non_negative_2, 0, "{:02}", "00"; btc_check_fmt_non_negative_3, 0, "{:.1}", "0.0"; btc_check_fmt_non_negative_4, 0, "{:4.1}", " 0.0"; btc_check_fmt_non_negative_5, 0, "{:04.1}", "00.0"; btc_check_fmt_non_negative_6, 1, "{}", "0.00000001"; btc_check_fmt_non_negative_7, 1, "{:2}", "0.00000001"; btc_check_fmt_non_negative_8, 1, "{:02}", "0.00000001"; btc_check_fmt_non_negative_9, 1, "{:.1}", "0.0"; btc_check_fmt_non_negative_10, 1, "{:11}", " 0.00000001"; btc_check_fmt_non_negative_11, 1, "{:11.1}", " 0.0"; btc_check_fmt_non_negative_12, 1, "{:011.1}", "000000000.0"; btc_check_fmt_non_negative_13, 1, "{:.9}", "0.000000010"; btc_check_fmt_non_negative_14, 1, "{:11.9}", "0.000000010"; btc_check_fmt_non_negative_15, 1, "{:011.9}", "0.000000010"; btc_check_fmt_non_negative_16, 1, "{:12.9}", " 0.000000010"; btc_check_fmt_non_negative_17, 1, "{:012.9}", "00.000000010"; btc_check_fmt_non_negative_18, 100_000_000, "{}", "1"; btc_check_fmt_non_negative_19, 100_000_000, "{:2}", " 1"; btc_check_fmt_non_negative_20, 100_000_000, "{:02}", "01"; btc_check_fmt_non_negative_21, 100_000_000, "{:.1}", "1.0"; btc_check_fmt_non_negative_22, 100_000_000, "{:4.1}", " 1.0"; btc_check_fmt_non_negative_23, 100_000_000, "{:04.1}", "01.0"; btc_check_fmt_non_negative_24, 110_000_000, "{}", "1.1"; btc_check_fmt_non_negative_25, 100_000_001, "{}", "1.00000001"; btc_check_fmt_non_negative_26, 100_000_001, "{:1}", "1.00000001"; btc_check_fmt_non_negative_27, 100_000_001, "{:.1}", "1.0"; btc_check_fmt_non_negative_28, 100_000_001, "{:10}", "1.00000001"; btc_check_fmt_non_negative_29, 100_000_001, "{:11}", " 1.00000001"; btc_check_fmt_non_negative_30, 100_000_001, "{:011}", "01.00000001"; btc_check_fmt_non_negative_31, 100_000_001, "{:.8}", "1.00000001"; btc_check_fmt_non_negative_32, 100_000_001, "{:.9}", "1.000000010"; btc_check_fmt_non_negative_33, 100_000_001, "{:11.9}", "1.000000010"; btc_check_fmt_non_negative_34, 100_000_001, "{:12.9}", " 1.000000010"; btc_check_fmt_non_negative_35, 100_000_001, "{:012.9}", "01.000000010"; btc_check_fmt_non_negative_36, 100_000_001, "{:+011.8}", "+1.00000001"; btc_check_fmt_non_negative_37, 100_000_001, "{:+12.8}", " +1.00000001"; btc_check_fmt_non_negative_38, 100_000_001, "{:+012.8}", "+01.00000001"; btc_check_fmt_non_negative_39, 100_000_001, "{:+12.9}", "+1.000000010"; btc_check_fmt_non_negative_40, 100_000_001, "{:+012.9}", "+1.000000010"; btc_check_fmt_non_negative_41, 100_000_001, "{:+13.9}", " +1.000000010"; btc_check_fmt_non_negative_42, 100_000_001, "{:+013.9}", "+01.000000010"; btc_check_fmt_non_negative_43, 100_000_001, "{:<10}", "1.00000001"; btc_check_fmt_non_negative_44, 100_000_001, "{:<11}", "1.00000001 "; btc_check_fmt_non_negative_45, 100_000_001, "{:<011}", "01.00000001"; btc_check_fmt_non_negative_46, 100_000_001, "{:<11.9}", "1.000000010"; btc_check_fmt_non_negative_47, 100_000_001, "{:<12.9}", "1.000000010 "; btc_check_fmt_non_negative_48, 100_000_001, "{:<12}", "1.00000001 "; btc_check_fmt_non_negative_49, 100_000_001, "{:^11}", "1.00000001 "; btc_check_fmt_non_negative_50, 100_000_001, "{:^11.9}", "1.000000010"; btc_check_fmt_non_negative_51, 100_000_001, "{:^12.9}", "1.000000010 "; btc_check_fmt_non_negative_52, 100_000_001, "{:^12}", " 1.00000001 "; btc_check_fmt_non_negative_53, 100_000_001, "{:^12.9}", "1.000000010 "; btc_check_fmt_non_negative_54, 100_000_001, "{:^13.9}", " 1.000000010 "; } check_format_non_negative_show_denom! { Bitcoin, " BTC"; btc_check_fmt_non_negative_show_denom_0, 1, "{:14.1}", " 0.0"; btc_check_fmt_non_negative_show_denom_1, 1, "{:14.8}", "0.00000001"; btc_check_fmt_non_negative_show_denom_2, 1, "{:15}", " 0.00000001"; btc_check_fmt_non_negative_show_denom_3, 1, "{:015}", "00.00000001"; btc_check_fmt_non_negative_show_denom_4, 1, "{:.9}", "0.000000010"; btc_check_fmt_non_negative_show_denom_5, 1, "{:15.9}", "0.000000010"; btc_check_fmt_non_negative_show_denom_6, 1, "{:16.9}", " 0.000000010"; btc_check_fmt_non_negative_show_denom_7, 1, "{:016.9}", "00.000000010"; } check_format_non_negative_show_denom! { Bitcoin, " BTC "; btc_check_fmt_non_negative_show_denom_align_0, 1, "{:<15}", "0.00000001"; btc_check_fmt_non_negative_show_denom_align_1, 1, "{:^15}", "0.00000001"; btc_check_fmt_non_negative_show_denom_align_2, 1, "{:^16}", " 0.00000001"; } #[test] fn test_unsigned_signed_conversion() { let sa = SignedAmount::from_sat; let ua = Amount::from_sat; assert_eq!(Amount::MAX.to_signed(), Err(OutOfRangeError::too_big(true))); assert_eq!(ua(i64::MAX as u64).to_signed(), Ok(sa(i64::MAX))); assert_eq!(ua(i64::MAX as u64 + 1).to_signed(), Err(OutOfRangeError::too_big(true))); assert_eq!(sa(i64::MAX).to_unsigned(), Ok(ua(i64::MAX as u64))); assert_eq!(sa(i64::MAX).to_unsigned().unwrap().to_signed(), Ok(sa(i64::MAX))); } #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn from_str() { use ParseDenominationError::*; use super::ParseAmountError as E; assert_eq!( "x BTC".parse::(), Err(InvalidCharacterError { invalid_char: 'x', position: 0 }.into()) ); assert_eq!( "xBTC".parse::(), Err(Unknown(UnknownDenominationError("xBTC".into())).into()), ); assert_eq!( "5 BTC BTC".parse::(), Err(Unknown(UnknownDenominationError("BTC BTC".into())).into()), ); assert_eq!( "5BTC BTC".parse::(), Err(E::from(InvalidCharacterError { invalid_char: 'B', position: 1 }).into()) ); assert_eq!( "5 5 BTC".parse::(), Err(Unknown(UnknownDenominationError("5 BTC".into())).into()), ); #[track_caller] fn ok_case(s: &str, expected: Amount) { assert_eq!(s.parse::().unwrap(), expected); assert_eq!(s.replace(' ', "").parse::().unwrap(), expected); } #[track_caller] fn case(s: &str, expected: Result>) { let expected = expected.map_err(Into::into); assert_eq!(s.parse::(), expected); assert_eq!(s.replace(' ', "").parse::(), expected); } #[track_caller] fn ok_scase(s: &str, expected: SignedAmount) { assert_eq!(s.parse::().unwrap(), expected); assert_eq!(s.replace(' ', "").parse::().unwrap(), expected); } #[track_caller] fn scase(s: &str, expected: Result>) { let expected = expected.map_err(Into::into); assert_eq!(s.parse::(), expected); assert_eq!(s.replace(' ', "").parse::(), expected); } case("5 BCH", Err(Unknown(UnknownDenominationError("BCH".into())))); case("-1 BTC", Err(OutOfRangeError::negative())); case("-0.0 BTC", Err(OutOfRangeError::negative())); case("0.123456789 BTC", Err(TooPreciseError { position: 10 })); scase("-0.1 satoshi", Err(TooPreciseError { position: 3 })); case("0.123456 mBTC", Err(TooPreciseError { position: 7 })); scase("-1.001 bits", Err(TooPreciseError { position: 5 })); scase("-200000000000 BTC", Err(OutOfRangeError::too_small())); case("18446744073709551616 sat", Err(OutOfRangeError::too_big(false))); ok_case(".5 bits", Amount::from_sat(50)); ok_scase("-.5 bits", SignedAmount::from_sat(-50)); ok_case("0.00253583 BTC", Amount::from_sat(253583)); ok_scase("-5 satoshi", SignedAmount::from_sat(-5)); ok_case("0.10000000 BTC", Amount::from_sat(100_000_00)); ok_scase("-100 bits", SignedAmount::from_sat(-10_000)); #[cfg(feature = "alloc")] ok_scase(&format!("{} SAT", i64::MIN), SignedAmount::from_sat(i64::MIN)); } #[cfg(feature = "alloc")] #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn to_from_string_in() { use super::Denomination as D; let ua_str = Amount::from_str_in; let ua_sat = Amount::from_sat; let sa_str = SignedAmount::from_str_in; let sa_sat = SignedAmount::from_sat; assert_eq!("0.5", Amount::from_sat(50).to_string_in(D::Bit)); assert_eq!("-0.5", SignedAmount::from_sat(-50).to_string_in(D::Bit)); assert_eq!("0.00253583", Amount::from_sat(253583).to_string_in(D::Bitcoin)); assert_eq!("-5", SignedAmount::from_sat(-5).to_string_in(D::Satoshi)); assert_eq!("0.1", Amount::from_sat(100_000_00).to_string_in(D::Bitcoin)); assert_eq!("-100", SignedAmount::from_sat(-10_000).to_string_in(D::Bit)); assert_eq!("0.50", format!("{:.2}", Amount::from_sat(50).display_in(D::Bit))); assert_eq!("-0.50", format!("{:.2}", SignedAmount::from_sat(-50).display_in(D::Bit))); assert_eq!( "0.10000000", format!("{:.8}", Amount::from_sat(100_000_00).display_in(D::Bitcoin)) ); assert_eq!("-100.00", format!("{:.2}", SignedAmount::from_sat(-10_000).display_in(D::Bit))); assert_eq!(ua_str(&ua_sat(0).to_string_in(D::Satoshi), D::Satoshi), Ok(ua_sat(0))); assert_eq!(ua_str(&ua_sat(500).to_string_in(D::Bitcoin), D::Bitcoin), Ok(ua_sat(500))); assert_eq!( ua_str(&ua_sat(21_000_000).to_string_in(D::Bit), D::Bit), Ok(ua_sat(21_000_000)) ); assert_eq!( ua_str(&ua_sat(1).to_string_in(D::MicroBitcoin), D::MicroBitcoin), Ok(ua_sat(1)) ); assert_eq!( ua_str(&ua_sat(1_000_000_000_000).to_string_in(D::MilliBitcoin), D::MilliBitcoin), Ok(ua_sat(1_000_000_000_000)) ); assert!(ua_str(&ua_sat(u64::MAX).to_string_in(D::MilliBitcoin), D::MilliBitcoin).is_ok()); assert_eq!( sa_str(&sa_sat(-1).to_string_in(D::MicroBitcoin), D::MicroBitcoin), Ok(sa_sat(-1)) ); assert_eq!( sa_str(&sa_sat(i64::MAX).to_string_in(D::Satoshi), D::MicroBitcoin), Err(OutOfRangeError::too_big(true).into()) ); // Test an overflow bug in `abs()` assert_eq!( sa_str(&sa_sat(i64::MIN).to_string_in(D::Satoshi), D::MicroBitcoin), Err(OutOfRangeError::too_small().into()) ); } #[cfg(feature = "alloc")] #[test] fn to_string_with_denomination_from_str_roundtrip() { use ParseDenominationError::*; use super::Denomination as D; let amt = Amount::from_sat(42); let denom = Amount::to_string_with_denomination; assert_eq!(denom(amt, D::Bitcoin).parse::(), Ok(amt)); assert_eq!(denom(amt, D::MilliBitcoin).parse::(), Ok(amt)); assert_eq!(denom(amt, D::MicroBitcoin).parse::(), Ok(amt)); assert_eq!(denom(amt, D::Bit).parse::(), Ok(amt)); assert_eq!(denom(amt, D::Satoshi).parse::(), Ok(amt)); assert_eq!( "42 satoshi BTC".parse::(), Err(Unknown(UnknownDenominationError("satoshi BTC".into())).into()), ); assert_eq!( "-42 satoshi BTC".parse::(), Err(Unknown(UnknownDenominationError("satoshi BTC".into())).into()), ); } #[cfg(feature = "serde")] #[test] fn serde_as_sat() { #[derive(Serialize, Deserialize, PartialEq, Debug)] struct T { #[serde(with = "crate::amount::serde::as_sat")] pub amt: Amount, #[serde(with = "crate::amount::serde::as_sat")] pub samt: SignedAmount, } serde_test::assert_tokens( &T { amt: Amount::from_sat(123456789), samt: SignedAmount::from_sat(-123456789) }, &[ serde_test::Token::Struct { name: "T", len: 2 }, serde_test::Token::Str("amt"), serde_test::Token::U64(123456789), serde_test::Token::Str("samt"), serde_test::Token::I64(-123456789), serde_test::Token::StructEnd, ], ); } #[cfg(feature = "serde")] #[cfg(feature = "alloc")] #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn serde_as_btc() { use serde_json; #[derive(Serialize, Deserialize, PartialEq, Debug)] struct T { #[serde(with = "crate::amount::serde::as_btc")] pub amt: Amount, #[serde(with = "crate::amount::serde::as_btc")] pub samt: SignedAmount, } let orig = T { amt: Amount::from_sat(21_000_000__000_000_01), samt: SignedAmount::from_sat(-21_000_000__000_000_01), }; let json = "{\"amt\": 21000000.00000001, \ \"samt\": -21000000.00000001}"; let t: T = serde_json::from_str(json).unwrap(); assert_eq!(t, orig); let value: serde_json::Value = serde_json::from_str(json).unwrap(); assert_eq!(t, serde_json::from_value(value).unwrap()); // errors let t: Result = serde_json::from_str("{\"amt\": 1000000.000000001, \"samt\": 1}"); assert!(t .unwrap_err() .to_string() .contains(&ParseAmountError::TooPrecise(TooPreciseError { position: 16 }).to_string())); let t: Result = serde_json::from_str("{\"amt\": -1, \"samt\": 1}"); assert!(t.unwrap_err().to_string().contains(&OutOfRangeError::negative().to_string())); } #[cfg(feature = "serde")] #[cfg(feature = "alloc")] #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn serde_as_btc_opt() { use serde_json; #[derive(Serialize, Deserialize, PartialEq, Debug, Eq)] struct T { #[serde(default, with = "crate::amount::serde::as_btc::opt")] pub amt: Option, #[serde(default, with = "crate::amount::serde::as_btc::opt")] pub samt: Option, } let with = T { amt: Some(Amount::from_sat(2_500_000_00)), samt: Some(SignedAmount::from_sat(-2_500_000_00)), }; let without = T { amt: None, samt: None }; // Test Roundtripping for s in [&with, &without].iter() { let v = serde_json::to_string(s).unwrap(); let w: T = serde_json::from_str(&v).unwrap(); assert_eq!(w, **s); } let t: T = serde_json::from_str("{\"amt\": 2.5, \"samt\": -2.5}").unwrap(); assert_eq!(t, with); let t: T = serde_json::from_str("{}").unwrap(); assert_eq!(t, without); let value_with: serde_json::Value = serde_json::from_str("{\"amt\": 2.5, \"samt\": -2.5}").unwrap(); assert_eq!(with, serde_json::from_value(value_with).unwrap()); let value_without: serde_json::Value = serde_json::from_str("{}").unwrap(); assert_eq!(without, serde_json::from_value(value_without).unwrap()); } #[cfg(feature = "serde")] #[cfg(feature = "alloc")] #[test] #[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin. fn serde_as_sat_opt() { use serde_json; #[derive(Serialize, Deserialize, PartialEq, Debug, Eq)] struct T { #[serde(default, with = "crate::amount::serde::as_sat::opt")] pub amt: Option, #[serde(default, with = "crate::amount::serde::as_sat::opt")] pub samt: Option, } let with = T { amt: Some(Amount::from_sat(2_500_000_00)), samt: Some(SignedAmount::from_sat(-2_500_000_00)), }; let without = T { amt: None, samt: None }; // Test Roundtripping for s in [&with, &without].iter() { let v = serde_json::to_string(s).unwrap(); let w: T = serde_json::from_str(&v).unwrap(); assert_eq!(w, **s); } let t: T = serde_json::from_str("{\"amt\": 250000000, \"samt\": -250000000}").unwrap(); assert_eq!(t, with); let t: T = serde_json::from_str("{}").unwrap(); assert_eq!(t, without); let value_with: serde_json::Value = serde_json::from_str("{\"amt\": 250000000, \"samt\": -250000000}").unwrap(); assert_eq!(with, serde_json::from_value(value_with).unwrap()); let value_without: serde_json::Value = serde_json::from_str("{}").unwrap(); assert_eq!(without, serde_json::from_value(value_without).unwrap()); } #[test] fn sum_amounts() { assert_eq!(Amount::from_sat(0), [].into_iter().sum::()); assert_eq!(SignedAmount::from_sat(0), [].into_iter().sum::()); let amounts = [Amount::from_sat(42), Amount::from_sat(1337), Amount::from_sat(21)]; let sum = amounts.into_iter().sum::(); assert_eq!(Amount::from_sat(1400), sum); let amounts = [SignedAmount::from_sat(-42), SignedAmount::from_sat(1337), SignedAmount::from_sat(21)]; let sum = amounts.into_iter().sum::(); assert_eq!(SignedAmount::from_sat(1316), sum); } #[test] fn checked_sum_amounts() { assert_eq!(Some(Amount::from_sat(0)), [].into_iter().checked_sum()); assert_eq!(Some(SignedAmount::from_sat(0)), [].into_iter().checked_sum()); let amounts = [Amount::from_sat(42), Amount::from_sat(1337), Amount::from_sat(21)]; let sum = amounts.into_iter().checked_sum(); assert_eq!(Some(Amount::from_sat(1400)), sum); let amounts = [Amount::from_sat(u64::MAX), Amount::from_sat(1337), Amount::from_sat(21)]; let sum = amounts.into_iter().checked_sum(); assert_eq!(None, sum); let amounts = [ SignedAmount::from_sat(i64::MIN), SignedAmount::from_sat(-1), SignedAmount::from_sat(21), ]; let sum = amounts.into_iter().checked_sum(); assert_eq!(None, sum); let amounts = [ SignedAmount::from_sat(i64::MAX), SignedAmount::from_sat(1), SignedAmount::from_sat(21), ]; let sum = amounts.into_iter().checked_sum(); assert_eq!(None, sum); let amounts = [SignedAmount::from_sat(42), SignedAmount::from_sat(3301), SignedAmount::from_sat(21)]; let sum = amounts.into_iter().checked_sum(); assert_eq!(Some(SignedAmount::from_sat(3364)), sum); } #[test] fn denomination_string_acceptable_forms() { // Non-exhaustive list of valid forms. let valid = [ "BTC", "btc", "mBTC", "mbtc", "uBTC", "ubtc", "SATOSHI", "satoshi", "SATOSHIS", "satoshis", "SAT", "sat", "SATS", "sats", "bit", "bits", ]; for denom in valid.iter() { assert!(denom.parse::().is_ok()); } } #[test] fn disallow_confusing_forms() { let confusing = ["CBTC", "Cbtc", "MBTC", "Mbtc", "UBTC", "Ubtc"]; for denom in confusing.iter() { match denom.parse::() { Ok(_) => panic!("from_str should error for {}", denom), Err(ParseDenominationError::PossiblyConfusing(_)) => {} Err(e) => panic!("unexpected error: {}", e), } } } #[test] fn disallow_unknown_denomination() { // Non-exhaustive list of unknown forms. let unknown = ["NBTC", "ABC", "abc", "mSat", "msat"]; for denom in unknown.iter() { match denom.parse::() { Ok(_) => panic!("from_str should error for {}", denom), Err(ParseDenominationError::Unknown(_)) => (), Err(e) => panic!("unexpected error: {}", e), } } } #[test] #[cfg(feature = "alloc")] fn trailing_zeros_for_amount() { assert_eq!(format!("{}", Amount::from_sat(1000000)), "0.01 BTC"); assert_eq!(format!("{}", Amount::ONE_SAT), "0.00000001 BTC"); assert_eq!(format!("{}", Amount::ONE_BTC), "1 BTC"); assert_eq!(format!("{}", Amount::from_sat(1)), "0.00000001 BTC"); assert_eq!(format!("{}", Amount::from_sat(10)), "0.0000001 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(10)), "0.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(100)), "0.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(1000)), "0.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(10_000)), "0.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(100_000)), "0.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(1_000_000)), "0.01 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(10_000_000)), "0.10 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(100_000_000)), "1.00 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(500_000)), "0.01 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(9_500_000)), "0.10 BTC"); assert_eq!(format!("{:.2}", Amount::from_sat(99_500_000)), "1.00 BTC"); assert_eq!(format!("{}", Amount::from_sat(100_000_000)), "1 BTC"); assert_eq!(format!("{}", Amount::from_sat(40_000_000_000)), "400 BTC"); assert_eq!(format!("{:.10}", Amount::from_sat(100_000_000)), "1.0000000000 BTC"); assert_eq!(format!("{}", Amount::from_sat(400_000_000_000_010)), "4000000.0000001 BTC"); assert_eq!(format!("{}", Amount::from_sat(400_000_000_000_000)), "4000000 BTC"); } }