// Rust Bitcoin Library // Written by // John L. Jegutanis // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // // // This code was translated from merkleblock.h, merkleblock.cpp and pmt_tests.cpp // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2018 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. //! Merkle Block and Partial Merkle Tree //! //! Support proofs that transaction(s) belong to a block. //! //! # Examples //! //! ```rust //! extern crate bitcoin_hashes; //! extern crate bitcoin; //! use bitcoin_hashes::sha256d; //! use bitcoin_hashes::hex::FromHex; //! use bitcoin::{Block, MerkleBlock}; //! //! # fn main() { //! // Get the proof from a bitcoind by running in the terminal: //! // $ TXID="5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2" //! // $ bitcoin-cli gettxoutproof [\"$TXID\"] //! let mb_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad27b913719\ //! 0000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33a5914ce6ed5b\ //! 1b01e32f570200000002252bf9d75c4f481ebb6278d708257d1f12beb6dd30301d26c623f789b2ba6fc0e2d3\ //! 2adb5f8ca820731dff234a84e78ec30bce4ec69dbd562d0b2b8266bf4e5a0105").unwrap(); //! let mb: MerkleBlock = bitcoin::consensus::deserialize(&mb_bytes).unwrap(); //! //! // Authenticate and extract matched transaction ids //! let mut matches: Vec = vec![]; //! let mut index: Vec = vec![]; //! assert!(mb.extract_matches(&mut matches, &mut index).is_ok()); //! assert_eq!(1, matches.len()); //! assert_eq!( //! sha256d::Hash::from_hex( //! "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2").unwrap(), //! matches[0] //! ); //! assert_eq!(1, index.len()); //! assert_eq!(1, index[0]); //! # } //! ``` use std::collections::HashSet; use bitcoin_hashes::{sha256d, Hash}; use blockdata::constants::{MAX_BLOCK_WEIGHT, MIN_TRANSACTION_WEIGHT}; use consensus::encode::{Encodable, Error}; use consensus::{Decodable, ReadExt, WriteExt}; use util::hash::BitcoinHash; use util::merkleblock::MerkleBlockError::*; use {Block, BlockHeader}; /// An error when verifying the merkle block #[derive(Clone, PartialEq, Eq, Debug)] pub enum MerkleBlockError { /// When header merkle root don't match to the root calculated from the partial merkle tree MerkleRootMismatch, /// When partial merkle tree contains no transactions NoTransactions, /// When there are too many transactions TooManyTransactions, /// General format error BadFormat(String), } /// Data structure that represents a partial merkle tree. /// /// It represents a subset of the txid's of a known block, in a way that /// allows recovery of the list of txid's and the merkle root, in an /// authenticated way. /// /// The encoding works as follows: we traverse the tree in depth-first order, /// storing a bit for each traversed node, signifying whether the node is the /// parent of at least one matched leaf txid (or a matched txid itself). In /// case we are at the leaf level, or this bit is 0, its merkle node hash is /// stored, and its children are not explored further. Otherwise, no hash is /// stored, but we recurse into both (or the only) child branch. During /// decoding, the same depth-first traversal is performed, consuming bits and /// hashes as they written during encoding. /// /// The serialization is fixed and provides a hard guarantee about the /// encoded size: /// /// SIZE <= 10 + ceil(32.25*N) /// /// Where N represents the number of leaf nodes of the partial tree. N itself /// is bounded by: /// /// N <= total_transactions /// N <= 1 + matched_transactions*tree_height /// /// The serialization format: /// - uint32 total_transactions (4 bytes) /// - varint number of hashes (1-3 bytes) /// - uint256[] hashes in depth-first order (<= 32*N bytes) /// - varint number of bytes of flag bits (1-3 bytes) /// - byte[] flag bits, packed per 8 in a byte, least significant bit first (<= 2*N-1 bits) /// The size constraints follow from this. #[derive(PartialEq, Eq, Clone, Debug)] pub struct PartialMerkleTree { /// The total number of transactions in the block num_transactions: u32, /// node-is-parent-of-matched-txid bits bits: Vec, /// Transaction ids and internal hashes hashes: Vec, } impl PartialMerkleTree { /// Construct a partial merkle tree /// The `txids` are the transaction hashes of the block and the `matches` is the contains flags /// wherever a tx hash should be included in the proof. /// /// Panics when `txids` is empty or when `matches` has a different length /// /// # Examples /// /// ```rust /// extern crate bitcoin_hashes; /// extern crate bitcoin; /// use bitcoin_hashes::sha256d; /// use bitcoin_hashes::hex::FromHex; /// use bitcoin::util::merkleblock::PartialMerkleTree; /// /// # fn main() { /// // Block 80000 /// let txids: Vec = [ /// "c06fbab289f723c6261d3030ddb6be121f7d2508d77862bb1e484f5cd7f92b25", /// "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2", /// ] /// .iter() /// .map(|hex| sha256d::Hash::from_hex(hex).unwrap()) /// .collect(); /// /// // Select the second transaction /// let matches = vec![false, true]; /// let tree = PartialMerkleTree::from_txids(&txids, &matches); /// assert!(tree.extract_matches(&mut vec![], &mut vec![]).is_ok()); /// # } /// ``` pub fn from_txids(txids: &[sha256d::Hash], matches: &[bool]) -> Self { // We can never have zero txs in a merkle block, we always need the coinbase tx assert_ne!(txids.len(), 0); assert_eq!(txids.len(), matches.len()); let mut pmt = PartialMerkleTree { num_transactions: txids.len() as u32, bits: Vec::with_capacity(txids.len()), hashes: vec![], }; // calculate height of tree let mut height = 0; while pmt.calc_tree_width(height) > 1 { height += 1; } // traverse the partial tree pmt.traverse_and_build(height, 0, txids, matches); pmt } /// Extract the matching txid's represented by this partial merkle tree /// and their respective indices within the partial tree. /// returns the merkle root, or error in case of failure pub fn extract_matches( &self, matches: &mut Vec, indexes: &mut Vec, ) -> Result { matches.clear(); indexes.clear(); // An empty set will not work if self.num_transactions == 0 { return Err(NoTransactions); }; // check for excessively high numbers of transactions if self.num_transactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT { return Err(TooManyTransactions); } // there can never be more hashes provided than one for every txid if self.hashes.len() as u32 > self.num_transactions { return Err(BadFormat( "Proof contains more hashes than transactions".to_owned(), )); }; // there must be at least one bit per node in the partial tree, and at least one node per hash if self.bits.len() < self.hashes.len() { return Err(BadFormat("Proof contains less bits than hashes".to_owned())); }; // calculate height of tree let mut height = 0; while self.calc_tree_width(height) > 1 { height += 1; } // traverse the partial tree let mut bits_used = 0u32; let mut hash_used = 0u32; let hash_merkle_root = self.traverse_and_extract(height, 0, &mut bits_used, &mut hash_used, matches, indexes)?; // Verify that all bits were consumed (except for the padding caused by // serializing it as a byte sequence) if (bits_used + 7) / 8 != (self.bits.len() as u32 + 7) / 8 { return Err(BadFormat("Not all bit were consumed".to_owned())); } // Verify that all hashes were consumed if hash_used != self.hashes.len() as u32 { return Err(BadFormat("Not all hashes were consumed".to_owned())); } Ok(hash_merkle_root) } /// Helper function to efficiently calculate the number of nodes at given height /// in the merkle tree #[inline] fn calc_tree_width(&self, height: u32) -> u32 { (self.num_transactions + (1 << height) - 1) >> height } /// Calculate the hash of a node in the merkle tree (at leaf level: the txid's themselves) fn calc_hash(&self, height: u32, pos: u32, txids: &[sha256d::Hash]) -> sha256d::Hash { if height == 0 { // Hash at height 0 is the txid itself txids[pos as usize] } else { // Calculate left hash let left = self.calc_hash(height - 1, pos * 2, txids); // Calculate right hash if not beyond the end of the array - copy left hash otherwise let right = if pos * 2 + 1 < self.calc_tree_width(height - 1) { self.calc_hash(height - 1, pos * 2 + 1, txids) } else { left }; // Combine subhashes PartialMerkleTree::parent_hash(left, right) } } /// Recursive function that traverses tree nodes, storing the data as bits and hashes fn traverse_and_build( &mut self, height: u32, pos: u32, txids: &[sha256d::Hash], matches: &[bool], ) { // Determine whether this node is the parent of at least one matched txid let mut parent_of_match = false; let mut p = pos << height; while p < (pos + 1) << height && p < self.num_transactions { parent_of_match |= matches[p as usize]; p += 1; } // Store as flag bit self.bits.push(parent_of_match); if height == 0 || !parent_of_match { // If at height 0, or nothing interesting below, store hash and stop let hash = self.calc_hash(height, pos, txids); self.hashes.push(hash); } else { // Otherwise, don't store any hash, but descend into the subtrees self.traverse_and_build(height - 1, pos * 2, txids, matches); if pos * 2 + 1 < self.calc_tree_width(height - 1) { self.traverse_and_build(height - 1, pos * 2 + 1, txids, matches); } } } /// Recursive function that traverses tree nodes, consuming the bits and hashes produced by /// TraverseAndBuild. It returns the hash of the respective node and its respective index. fn traverse_and_extract( &self, height: u32, pos: u32, bits_used: &mut u32, hash_used: &mut u32, matches: &mut Vec, indexes: &mut Vec, ) -> Result { if *bits_used as usize >= self.bits.len() { return Err(BadFormat("Overflowed the bits array".to_owned())); } let parent_of_match = self.bits[*bits_used as usize]; *bits_used += 1; if height == 0 || !parent_of_match { // If at height 0, or nothing interesting below, use stored hash and do not descend if *hash_used as usize >= self.hashes.len() { return Err(BadFormat("Overflowed the hash array".to_owned())); } let hash = self.hashes[*hash_used as usize]; *hash_used += 1; if height == 0 && parent_of_match { // in case of height 0, we have a matched txid matches.push(hash); indexes.push(pos); } Ok(hash) } else { // otherwise, descend into the subtrees to extract matched txids and hashes let left = self.traverse_and_extract( height - 1, pos * 2, bits_used, hash_used, matches, indexes, )?; let right; if pos * 2 + 1 < self.calc_tree_width(height - 1) { right = self.traverse_and_extract( height - 1, pos * 2 + 1, bits_used, hash_used, matches, indexes, )?; if right == left { // The left and right branches should never be identical, as the transaction // hashes covered by them must each be unique. return Err(BadFormat("Found identical transaction hashes".to_owned())); } } else { right = left; } // and combine them before returning Ok(PartialMerkleTree::parent_hash(left, right)) } } /// Helper method to produce SHA256D(left + right) fn parent_hash(left: sha256d::Hash, right: sha256d::Hash) -> sha256d::Hash { let mut encoder = sha256d::Hash::engine(); left.consensus_encode(&mut encoder).unwrap(); right.consensus_encode(&mut encoder).unwrap(); sha256d::Hash::from_engine(encoder) } } impl Encodable for PartialMerkleTree { fn consensus_encode(&self, s: &mut S) -> Result { let ret = self.num_transactions.consensus_encode(s)? + self.hashes.consensus_encode(s)?; let mut bytes: Vec = vec![0; (self.bits.len() + 7) / 8]; for p in 0..self.bits.len() { bytes[p / 8] |= (self.bits[p] as u8) << (p % 8) as u8; } Ok(ret + bytes.consensus_encode(s)?) } } impl Decodable for PartialMerkleTree { fn consensus_decode(d: &mut D) -> Result { let num_transactions: u32 = Decodable::consensus_decode(d)?; let hashes: Vec = Decodable::consensus_decode(d)?; let bytes: Vec = Decodable::consensus_decode(d)?; let mut bits: Vec = vec![false; bytes.len() * 8]; for (p, bit) in bits.iter_mut().enumerate() { *bit = (bytes[p / 8] & (1 << (p % 8) as u8)) != 0; } Ok(PartialMerkleTree { num_transactions, hashes, bits, }) } } /// Data structure that represents a block header paired to a partial merkle tree. /// /// NOTE: This assumes that the given Block has *at least* 1 transaction. If the Block has 0 txs, /// it will hit an assertion. #[derive(PartialEq, Eq, Clone, Debug)] pub struct MerkleBlock { /// The block header pub header: BlockHeader, /// Transactions making up a partial merkle tree pub txn: PartialMerkleTree, } impl MerkleBlock { /// Create a MerkleBlock from a block, that should contain proofs for the txids. /// /// The `block` is a full block containing the header and transactions and `match_txids` is a /// set containing the transaction ids that should be included in the partial merkle tree. /// /// # Examples /// /// ```rust /// extern crate bitcoin_hashes; /// extern crate bitcoin; /// use bitcoin_hashes::sha256d; /// use bitcoin_hashes::hex::FromHex; /// use bitcoin::{Block, MerkleBlock}; /// /// # fn main() { /// // Block 80000 /// let block_bytes = Vec::from_hex("01000000ba8b9cda965dd8e536670f9ddec10e53aab14b20bacad2\ /// 7b9137190000000000190760b278fe7b8565fda3b968b918d5fd997f993b23674c0af3b6fde300b38f33\ /// a5914ce6ed5b1b01e32f5702010000000100000000000000000000000000000000000000000000000000\ /// 00000000000000ffffffff0704e6ed5b1b014effffffff0100f2052a01000000434104b68a50eaa0287e\ /// ff855189f949c1c6e5f58b37c88231373d8a59809cbae83059cc6469d65c665ccfd1cfeb75c6e8e19413\ /// bba7fbff9bc762419a76d87b16086eac000000000100000001a6b97044d03da79c005b20ea9c0e1a6d9d\ /// c12d9f7b91a5911c9030a439eed8f5000000004948304502206e21798a42fae0e854281abd38bacd1aee\ /// d3ee3738d9e1446618c4571d1090db022100e2ac980643b0b82c0e88ffdfec6b64e3e6ba35e7ba5fdd7d\ /// 5d6cc8d25c6b241501ffffffff0100f2052a010000001976a914404371705fa9bd789a2fcd52d2c580b6\ /// 5d35549d88ac00000000").unwrap(); /// let block: Block = bitcoin::consensus::deserialize(&block_bytes).unwrap(); /// /// // Create a merkle block containing a single transaction /// let txid = sha256d::Hash::from_hex( /// "5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2").unwrap(); /// let match_txids = vec![txid].into_iter().collect(); /// let mb = MerkleBlock::from_block(&block, &match_txids); /// /// // Authenticate and extract matched transaction ids /// let mut matches: Vec = vec![]; /// let mut index: Vec = vec![]; /// assert!(mb.extract_matches(&mut matches, &mut index).is_ok()); /// assert_eq!(txid, matches[0]); /// # } /// ``` pub fn from_block(block: &Block, match_txids: &HashSet) -> Self { let header = block.header; let mut matches: Vec = Vec::with_capacity(block.txdata.len()); let mut hashes: Vec = Vec::with_capacity(block.txdata.len()); for hash in block.txdata.iter().map(BitcoinHash::bitcoin_hash) { matches.push(match_txids.contains(&hash)); hashes.push(hash); } let pmt = PartialMerkleTree::from_txids(&hashes, &matches); MerkleBlock { header, txn: pmt } } /// Extract the matching txid's represented by this partial merkle tree /// and their respective indices within the partial tree. /// returns Ok(()) on success, or error in case of failure pub fn extract_matches( &self, matches: &mut Vec, indexes: &mut Vec, ) -> Result<(), MerkleBlockError> { let merkle_root = self.txn.extract_matches(matches, indexes)?; if merkle_root.eq(&self.header.merkle_root) { Ok(()) } else { Err(MerkleRootMismatch) } } } impl Encodable for MerkleBlock { fn consensus_encode(&self, s: &mut S) -> Result { Ok(self.header.consensus_encode(s)? + self.txn.consensus_encode(s)?) } } impl Decodable for MerkleBlock { fn consensus_decode(d: &mut D) -> Result { Ok(MerkleBlock { header: Decodable::consensus_decode(d)?, txn: Decodable::consensus_decode(d)?, }) } } #[cfg(test)] mod tests { use std::cmp::min; use bitcoin_hashes::hex::{FromHex, ToHex}; use bitcoin_hashes::{sha256d, Hash}; use secp256k1::rand::{weak_rng, Rng, XorShiftRng}; use consensus::encode::{deserialize, serialize}; use util::hash::{bitcoin_merkle_root, BitcoinHash}; use util::merkleblock::{MerkleBlock, PartialMerkleTree}; use {hex, Block}; #[test] fn pmt_tests() { let mut rng = weak_rng(); let tx_counts = vec![1, 4, 7, 17, 56, 100, 127, 256, 312, 513, 1000, 4095]; for num_tx in tx_counts { // Create some fake tx ids let txids = (1..num_tx + 1) // change to `1..=num_tx` when min Rust >= 1.26.0 .map(|i| sha256d::Hash::from_hex(&format!("{:064x}", i)).unwrap()) .collect::>(); // Calculate the merkle root and height let merkle_root_1 = bitcoin_merkle_root(txids.clone()); let mut height = 1; let mut ntx = num_tx; while ntx > 1 { ntx = (ntx + 1) / 2; height += 1; } // Check with random subsets with inclusion chances 1, 1/2, 1/4, ..., 1/128 for att in 1..15 { let mut matches = vec![false; num_tx]; let mut match_txid1 = vec![]; for j in 0..num_tx { // Generate `att / 2` random bits let rand_bits = match att / 2 { 0 => 0, bits => rng.gen::() >> (64 - bits), }; let include = rand_bits == 0; matches[j] = include; if include { match_txid1.push(txids[j]); }; } // Build the partial merkle tree let pmt1 = PartialMerkleTree::from_txids(&txids, &matches); let serialized = serialize(&pmt1); // Verify PartialMerkleTree's size guarantees let n = min(num_tx, 1 + match_txid1.len() * height); assert!(serialized.len() <= 10 + (258 * n + 7) / 8); // Deserialize into a tester copy let pmt2: PartialMerkleTree = deserialize(&serialized).expect("Could not deserialize own data"); // Extract merkle root and matched txids from copy let mut match_txid2 = vec![]; let mut indexes = vec![]; let merkle_root_2 = pmt2 .extract_matches(&mut match_txid2, &mut indexes) .expect("Could not extract matches"); // Check that it has the same merkle root as the original, and a valid one assert_eq!(merkle_root_1, merkle_root_2); assert_ne!(merkle_root_2, sha256d::Hash::default()); // check that it contains the matched transactions (in the same order!) assert_eq!(match_txid1, match_txid2); // check that random bit flips break the authentication for _ in 0..4 { let mut pmt3: PartialMerkleTree = deserialize(&serialized).unwrap(); pmt3.damage(&mut rng); let mut match_txid3 = vec![]; let merkle_root_3 = pmt3 .extract_matches(&mut match_txid3, &mut indexes) .unwrap(); assert_ne!(merkle_root_3, merkle_root_1); } } } } #[test] fn pmt_malleability() { // Create some fake tx ids with the last 2 hashes repeating let txids: Vec = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 10] .iter() .map(|i| sha256d::Hash::from_hex(&format!("{:064x}", i)).unwrap()) .collect(); let matches = vec![ false, false, false, false, false, false, false, false, false, true, true, false, ]; let tree = PartialMerkleTree::from_txids(&txids, &matches); // Should fail due to duplicate txs found let result = tree.extract_matches(&mut vec![], &mut vec![]); assert!(result.is_err()); } #[test] fn merkleblock_serialization() { // Got it by running the rpc call // `gettxoutproof '["220ebc64e21abece964927322cba69180ed853bb187fbc6923bac7d010b9d87a"]'` let mb_hex = "0100000090f0a9f110702f808219ebea1173056042a714bad51b916cb6800000000000005275289558f51c\ 9966699404ae2294730c3c9f9bda53523ce50e9b95e558da2fdb261b4d4c86041b1ab1bf930900000005fac\ 7708a6e81b2a986dea60db2663840ed141130848162eb1bd1dee54f309a1b2ee1e12587e497ada70d9bd10d\ 31e83f0a924825b96cb8d04e8936d793fb60db7ad8b910d0c7ba2369bc7f18bb53d80e1869ba2c32274996c\ ebe1ae264bc0e2289189ff0316cdc10511da71da757e553cada9f3b5b1434f3923673adb57d83caac392c38\ af156d6fc30b55fad4112df2b95531e68114e9ad10011e72f7b7cfdb025700"; let mb: MerkleBlock = deserialize(&hex::decode(mb_hex).unwrap()).unwrap(); assert_eq!(get_block_13b8a().bitcoin_hash(), mb.header.bitcoin_hash()); assert_eq!( mb.header.merkle_root, mb.txn.extract_matches(&mut vec![], &mut vec![]).unwrap() ); // Serialize again and check that it matches the original bytes assert_eq!(mb_hex, serialize(&mb).to_hex().as_str()); } /// Create a CMerkleBlock using a list of txids which will be found in the /// given block. #[test] fn merkleblock_construct_from_txids_found() { let block = get_block_13b8a(); let txids: Vec = [ "74d681e0e03bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20", "f9fc751cb7dc372406a9f8d738d5e6f8f63bab71986a39cf36ee70ee17036d07", ] .iter() .map(|hex| sha256d::Hash::from_hex(hex).unwrap()) .collect(); let txid1 = txids[0]; let txid2 = txids[1]; let txids = txids.into_iter().collect(); let merkle_block = MerkleBlock::from_block(&block, &txids); assert_eq!(merkle_block.header.bitcoin_hash(), block.bitcoin_hash()); let mut matches: Vec = vec![]; let mut index: Vec = vec![]; assert_eq!( merkle_block .txn .extract_matches(&mut matches, &mut index) .unwrap(), block.header.merkle_root ); assert_eq!(matches.len(), 2); // Ordered by occurrence in depth-first tree traversal. assert_eq!(matches[0], txid2); assert_eq!(index[0], 1); assert_eq!(matches[1], txid1); assert_eq!(index[1], 8); } /// Create a CMerkleBlock using a list of txids which will not be found in the given block #[test] fn merkleblock_construct_from_txids_not_found() { let block = get_block_13b8a(); let txids = ["c0ffee00003bafa802c8aa084379aa98d9fcd632ddc2ed9782b586ec87451f20"] .iter() .map(|hex| sha256d::Hash::from_hex(hex).unwrap()) .collect(); let merkle_block = MerkleBlock::from_block(&block, &txids); assert_eq!(merkle_block.header.bitcoin_hash(), block.bitcoin_hash()); let mut matches: Vec = vec![]; let mut index: Vec = vec![]; assert_eq!( merkle_block .txn .extract_matches(&mut matches, &mut index) .unwrap(), block.header.merkle_root ); assert_eq!(matches.len(), 0); assert_eq!(index.len(), 0); } impl PartialMerkleTree { /// Flip one bit in one of the hashes - this should break the authentication fn damage(&mut self, rng: &mut XorShiftRng) { let n = rng.gen_range(0, self.hashes.len()); let bit = rng.gen::(); let hashes = &mut self.hashes; let mut hash = hashes[n].into_inner(); hash[(bit >> 3) as usize] ^= 1 << (bit & 7); hashes[n] = sha256d::Hash::from_slice(&hash).unwrap(); } } /// Returns a real block (0000000000013b8ab2cd513b0261a14096412195a72a0c4827d229dcc7e0f7af) /// with 9 txs. fn get_block_13b8a() -> Block { let block_hex = "0100000090f0a9f110702f808219ebea1173056042a714bad51b916cb6800000000000005275289558f51c\ 9966699404ae2294730c3c9f9bda53523ce50e9b95e558da2fdb261b4d4c86041b1ab1bf930901000000010\ 000000000000000000000000000000000000000000000000000000000000000ffffffff07044c86041b0146\ ffffffff0100f2052a01000000434104e18f7afbe4721580e81e8414fc8c24d7cfacf254bb5c7b949450c3e\ 997c2dc1242487a8169507b631eb3771f2b425483fb13102c4eb5d858eef260fe70fbfae0ac000000000100\ 00000196608ccbafa16abada902780da4dc35dafd7af05fa0da08cf833575f8cf9e836000000004a4930460\ 22100dab24889213caf43ae6adc41cf1c9396c08240c199f5225acf45416330fd7dbd022100fe37900e0644\ bf574493a07fc5edba06dbc07c311b947520c2d514bc5725dcb401ffffffff0100f2052a010000001976a91\ 4f15d1921f52e4007b146dfa60f369ed2fc393ce288ac000000000100000001fb766c1288458c2bafcfec81\ e48b24d98ec706de6b8af7c4e3c29419bfacb56d000000008c493046022100f268ba165ce0ad2e6d93f089c\ fcd3785de5c963bb5ea6b8c1b23f1ce3e517b9f022100da7c0f21adc6c401887f2bfd1922f11d76159cbc59\ 7fbd756a23dcbb00f4d7290141042b4e8625a96127826915a5b109852636ad0da753c9e1d5606a50480cd0c\ 40f1f8b8d898235e571fe9357d9ec842bc4bba1827daaf4de06d71844d0057707966affffffff0280969800\ 000000001976a9146963907531db72d0ed1a0cfb471ccb63923446f388ac80d6e34c000000001976a914f06\ 88ba1c0d1ce182c7af6741e02658c7d4dfcd388ac000000000100000002c40297f730dd7b5a99567eb8d27b\ 78758f607507c52292d02d4031895b52f2ff010000008b483045022100f7edfd4b0aac404e5bab4fd3889e0\ c6c41aa8d0e6fa122316f68eddd0a65013902205b09cc8b2d56e1cd1f7f2fafd60a129ed94504c4ac7bdc67\ b56fe67512658b3e014104732012cb962afa90d31b25d8fb0e32c94e513ab7a17805c14ca4c3423e18b4fb5\ d0e676841733cb83abaf975845c9f6f2a8097b7d04f4908b18368d6fc2d68ecffffffffca5065ff9617cbcb\ a45eb23726df6498a9b9cafed4f54cbab9d227b0035ddefb000000008a473044022068010362a13c7f9919f\ a832b2dee4e788f61f6f5d344a7c2a0da6ae740605658022006d1af525b9a14a35c003b78b72bd59738cd67\ 6f845d1ff3fc25049e01003614014104732012cb962afa90d31b25d8fb0e32c94e513ab7a17805c14ca4c34\ 23e18b4fb5d0e676841733cb83abaf975845c9f6f2a8097b7d04f4908b18368d6fc2d68ecffffffff01001e\ c4110200000043410469ab4181eceb28985b9b4e895c13fa5e68d85761b7eee311db5addef76fa862186513\ 4a221bd01f28ec9999ee3e021e60766e9d1f3458c115fb28650605f11c9ac000000000100000001cdaf2f75\ 8e91c514655e2dc50633d1e4c84989f8aa90a0dbc883f0d23ed5c2fa010000008b48304502207ab51be6f12\ a1962ba0aaaf24a20e0b69b27a94fac5adf45aa7d2d18ffd9236102210086ae728b370e5329eead9accd880\ d0cb070aea0c96255fae6c4f1ddcce1fd56e014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf3\ 3d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffff\ ffff02404b4c00000000001976a9142b6ba7c9d796b75eef7942fc9288edd37c32f5c388ac002d310100000\ 0001976a9141befba0cdc1ad56529371864d9f6cb042faa06b588ac000000000100000001b4a47603e71b61\ bc3326efd90111bf02d2f549b067f4c4a8fa183b57a0f800cb010000008a4730440220177c37f9a505c3f1a\ 1f0ce2da777c339bd8339ffa02c7cb41f0a5804f473c9230220585b25a2ee80eb59292e52b987dad92acb0c\ 64eced92ed9ee105ad153cdb12d001410443bd44f683467e549dae7d20d1d79cbdb6df985c6e9c029c8d0c6\ cb46cc1a4d3cf7923c5021b27f7a0b562ada113bc85d5fda5a1b41e87fe6e8802817cf69996ffffffff0280\ 651406000000001976a9145505614859643ab7b547cd7f1f5e7e2a12322d3788ac00aa0271000000001976a\ 914ea4720a7a52fc166c55ff2298e07baf70ae67e1b88ac00000000010000000586c62cd602d219bb60edb1\ 4a3e204de0705176f9022fe49a538054fb14abb49e010000008c493046022100f2bc2aba2534becbdf062eb\ 993853a42bbbc282083d0daf9b4b585bd401aa8c9022100b1d7fd7ee0b95600db8535bbf331b19eed8d961f\ 7a8e54159c53675d5f69df8c014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf33d789904f07d\ 0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffffffff03ad0e58\ ccdac3df9dc28a218bcf6f1997b0a93306faaa4b3a28ae83447b2179010000008b483045022100be12b2937\ 179da88599e27bb31c3525097a07cdb52422d165b3ca2f2020ffcf702200971b51f853a53d644ebae9ec8f3\ 512e442b1bcb6c315a5b491d119d10624c83014104462e76fd4067b3a0aa42070082dcb0bf2f388b6495cf3\ 3d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8ebbb12dcd4ffff\ ffff2acfcab629bbc8685792603762c921580030ba144af553d271716a95089e107b010000008b483045022\ 100fa579a840ac258871365dd48cd7552f96c8eea69bd00d84f05b283a0dab311e102207e3c0ee9234814cf\ bb1b659b83671618f45abc1326b9edcc77d552a4f2a805c0014104462e76fd4067b3a0aa42070082dcb0bf2\ f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15312ef1c0e8eb\ bb12dcd4ffffffffdcdc6023bbc9944a658ddc588e61eacb737ddf0a3cd24f113b5a8634c517fcd20000000\ 08b4830450221008d6df731df5d32267954bd7d2dda2302b74c6c2a6aa5c0ca64ecbabc1af03c75022010e5\ 5c571d65da7701ae2da1956c442df81bbf076cdbac25133f99d98a9ed34c014104462e76fd4067b3a0aa420\ 70082dcb0bf2f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812b1d5fbcade15\ 312ef1c0e8ebbb12dcd4ffffffffe15557cd5ce258f479dfd6dc6514edf6d7ed5b21fcfa4a038fd69f06b83\ ac76e010000008b483045022023b3e0ab071eb11de2eb1cc3a67261b866f86bf6867d4558165f7c8c8aca2d\ 86022100dc6e1f53a91de3efe8f63512850811f26284b62f850c70ca73ed5de8771fb451014104462e76fd4\ 067b3a0aa42070082dcb0bf2f388b6495cf33d789904f07d0f55c40fbd4b82963c69b3dc31895d0c772c812\ b1d5fbcade15312ef1c0e8ebbb12dcd4ffffffff01404b4c00000000001976a9142b6ba7c9d796b75eef794\ 2fc9288edd37c32f5c388ac00000000010000000166d7577163c932b4f9690ca6a80b6e4eb001f0a2fa9023\ df5595602aae96ed8d000000008a4730440220262b42546302dfb654a229cefc86432b89628ff259dc87edd\ 1154535b16a67e102207b4634c020a97c3e7bbd0d4d19da6aa2269ad9dded4026e896b213d73ca4b63f0141\ 04979b82d02226b3a4597523845754d44f13639e3bf2df5e82c6aab2bdc79687368b01b1ab8b19875ae3c90\ d661a3d0a33161dab29934edeb36aa01976be3baf8affffffff02404b4c00000000001976a9144854e695a0\ 2af0aeacb823ccbc272134561e0a1688ac40420f00000000001976a914abee93376d6b37b5c2940655a6fca\ f1c8e74237988ac0000000001000000014e3f8ef2e91349a9059cb4f01e54ab2597c1387161d3da89919f7e\ a6acdbb371010000008c49304602210081f3183471a5ca22307c0800226f3ef9c353069e0773ac76bb58065\ 4d56aa523022100d4c56465bdc069060846f4fbf2f6b20520b2a80b08b168b31e66ddb9c694e24001410497\ 6c79848e18251612f8940875b2b08d06e6dc73b9840e8860c066b7e87432c477e9a59a453e71e6d76d5fe34\ 058b800a098fc1740ce3012e8fc8a00c96af966ffffffff02c0e1e400000000001976a9144134e75a6fcb60\ 42034aab5e18570cf1f844f54788ac404b4c00000000001976a9142b6ba7c9d796b75eef7942fc9288edd37\ c32f5c388ac00000000"; deserialize(&hex::decode(block_hex).unwrap()).unwrap() } }