// Rust Bitcoin Library // Written in 2014 by // Andrew Poelstra // // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! Big unsigned integer types //! //! Implementation of a various large-but-fixed sized unsigned integer types. //! The functions here are designed to be fast. //! macro_rules! construct_uint { ($name:ident, $n_words:expr) => ( /// Little-endian large integer type #[derive(Copy, Clone, PartialEq, Eq, Hash, Default)] pub struct $name(pub [u64; $n_words]); impl_array_newtype!($name, u64, $n_words); impl $name { /// Conversion to u32 #[inline] pub fn low_u32(&self) -> u32 { let &$name(ref arr) = self; arr[0] as u32 } /// Conversion to u64 #[inline] pub fn low_u64(&self) -> u64 { let &$name(ref arr) = self; arr[0] as u64 } /// Return the least number of bits needed to represent the number #[inline] pub fn bits(&self) -> usize { let &$name(ref arr) = self; for i in 1..$n_words { if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; } } 0x40 - arr[0].leading_zeros() as usize } /// Multiplication by u32 pub fn mul_u32(self, other: u32) -> $name { let $name(ref arr) = self; let mut carry = [0u64; $n_words]; let mut ret = [0u64; $n_words]; for i in 0..$n_words { let not_last_word = i < $n_words - 1; let upper = other as u64 * (arr[i] >> 32); let lower = other as u64 * (arr[i] & 0xFFFFFFFF); if not_last_word { carry[i + 1] += upper >> 32; } let (sum, overflow) = lower.overflowing_add(upper << 32); ret[i] = sum; if overflow && not_last_word { carry[i + 1] += 1; } } $name(ret) + $name(carry) } /// Create an object from a given unsigned 64-bit integer #[inline] pub fn from_u64(init: u64) -> Option<$name> { let mut ret = [0; $n_words]; ret[0] = init; Some($name(ret)) } /// Create an object from a given signed 64-bit integer #[inline] pub fn from_i64(init: i64) -> Option<$name> { if init >= 0 { $name::from_u64(init as u64) } else { None } } /// Creates big integer value from a byte array using /// big-endian encoding pub fn from_be_bytes(bytes: [u8; $n_words * 8]) -> $name { Self::_from_be_slice(&bytes) } /// Creates big integer value from a byte slice using /// big-endian encoding pub fn from_be_slice(bytes: &[u8]) -> Result<$name, ParseLengthError> { if bytes.len() != $n_words * 8 { Err(ParseLengthError { actual: bytes.len(), expected: $n_words*8 }) } else { Ok(Self::_from_be_slice(bytes)) } } fn _from_be_slice(bytes: &[u8]) -> $name { use super::endian::slice_to_u64_be; let mut slice = [0u64; $n_words]; slice.iter_mut() .rev() .zip(bytes.chunks(8)) .for_each(|(word, bytes)| *word = slice_to_u64_be(bytes)); $name(slice) } /// Convert a big integer into a byte array using big-endian encoding pub fn to_be_bytes(&self) -> [u8; $n_words * 8] { use super::endian::u64_to_array_be; let mut res = [0; $n_words * 8]; for i in 0..$n_words { let start = i * 8; res[start..start+8].copy_from_slice(&u64_to_array_be(self.0[$n_words - (i+1)])); } res } // divmod like operation, returns (quotient, remainder) #[inline] fn div_rem(self, other: Self) -> (Self, Self) { let mut sub_copy = self; let mut shift_copy = other; let mut ret = [0u64; $n_words]; let my_bits = self.bits(); let your_bits = other.bits(); // Check for division by 0 assert!(your_bits != 0); // Early return in case we are dividing by a larger number than us if my_bits < your_bits { return ($name(ret), sub_copy); } // Bitwise long division let mut shift = my_bits - your_bits; shift_copy = shift_copy << shift; loop { if sub_copy >= shift_copy { ret[shift / 64] |= 1 << (shift % 64); sub_copy = sub_copy - shift_copy; } shift_copy = shift_copy >> 1; if shift == 0 { break; } shift -= 1; } ($name(ret), sub_copy) } } impl PartialOrd for $name { #[inline] fn partial_cmp(&self, other: &$name) -> Option<::std::cmp::Ordering> { Some(self.cmp(&other)) } } impl Ord for $name { #[inline] fn cmp(&self, other: &$name) -> ::std::cmp::Ordering { // We need to manually implement ordering because we use little-endian // and the auto derive is a lexicographic ordering(i.e. memcmp) // which with numbers is equivilant to big-endian for i in 0..$n_words { if self[$n_words - 1 - i] < other[$n_words - 1 - i] { return ::std::cmp::Ordering::Less; } if self[$n_words - 1 - i] > other[$n_words - 1 - i] { return ::std::cmp::Ordering::Greater; } } ::std::cmp::Ordering::Equal } } impl ::std::ops::Add<$name> for $name { type Output = $name; fn add(self, other: $name) -> $name { let $name(ref me) = self; let $name(ref you) = other; let mut ret = [0u64; $n_words]; let mut carry = [0u64; $n_words]; let mut b_carry = false; for i in 0..$n_words { ret[i] = me[i].wrapping_add(you[i]); if i < $n_words - 1 && ret[i] < me[i] { carry[i + 1] = 1; b_carry = true; } } if b_carry { $name(ret) + $name(carry) } else { $name(ret) } } } impl ::std::ops::Sub<$name> for $name { type Output = $name; #[inline] fn sub(self, other: $name) -> $name { self + !other + $crate::util::BitArray::one() } } impl ::std::ops::Mul<$name> for $name { type Output = $name; fn mul(self, other: $name) -> $name { use $crate::util::BitArray; let mut me = $name::zero(); // TODO: be more efficient about this for i in 0..(2 * $n_words) { let to_mul = (other >> (32 * i)).low_u32(); me = me + (self.mul_u32(to_mul) << (32 * i)); } me } } impl ::std::ops::Div<$name> for $name { type Output = $name; fn div(self, other: $name) -> $name { self.div_rem(other).0 } } impl ::std::ops::Rem<$name> for $name { type Output = $name; fn rem(self, other: $name) -> $name { self.div_rem(other).1 } } impl $crate::util::BitArray for $name { #[inline] fn bit(&self, index: usize) -> bool { let &$name(ref arr) = self; arr[index / 64] & (1 << (index % 64)) != 0 } #[inline] fn bit_slice(&self, start: usize, end: usize) -> $name { (*self >> start).mask(end - start) } #[inline] fn mask(&self, n: usize) -> $name { let &$name(ref arr) = self; let mut ret = [0; $n_words]; for i in 0..$n_words { if n >= 0x40 * (i + 1) { ret[i] = arr[i]; } else { ret[i] = arr[i] & ((1 << (n - 0x40 * i)) - 1); break; } } $name(ret) } #[inline] fn trailing_zeros(&self) -> usize { let &$name(ref arr) = self; for i in 0..($n_words - 1) { if arr[i] > 0 { return (0x40 * i) + arr[i].trailing_zeros() as usize; } } (0x40 * ($n_words - 1)) + arr[$n_words - 1].trailing_zeros() as usize } fn zero() -> $name { Default::default() } fn one() -> $name { $name({ let mut ret = [0; $n_words]; ret[0] = 1; ret }) } } impl ::std::ops::BitAnd<$name> for $name { type Output = $name; #[inline] fn bitand(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] & arr2[i]; } $name(ret) } } impl ::std::ops::BitXor<$name> for $name { type Output = $name; #[inline] fn bitxor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] ^ arr2[i]; } $name(ret) } } impl ::std::ops::BitOr<$name> for $name { type Output = $name; #[inline] fn bitor(self, other: $name) -> $name { let $name(ref arr1) = self; let $name(ref arr2) = other; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = arr1[i] | arr2[i]; } $name(ret) } } impl ::std::ops::Not for $name { type Output = $name; #[inline] fn not(self) -> $name { let $name(ref arr) = self; let mut ret = [0u64; $n_words]; for i in 0..$n_words { ret[i] = !arr[i]; } $name(ret) } } impl ::std::ops::Shl for $name { type Output = $name; fn shl(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in 0..$n_words { // Shift if bit_shift < 64 && i + word_shift < $n_words { ret[i + word_shift] += original[i] << bit_shift; } // Carry if bit_shift > 0 && i + word_shift + 1 < $n_words { ret[i + word_shift + 1] += original[i] >> (64 - bit_shift); } } $name(ret) } } impl ::std::ops::Shr for $name { type Output = $name; fn shr(self, shift: usize) -> $name { let $name(ref original) = self; let mut ret = [0u64; $n_words]; let word_shift = shift / 64; let bit_shift = shift % 64; for i in word_shift..$n_words { // Shift ret[i - word_shift] += original[i] >> bit_shift; // Carry if bit_shift > 0 && i < $n_words - 1 { ret[i - word_shift] += original[i + 1] << (64 - bit_shift); } } $name(ret) } } impl ::std::fmt::Debug for $name { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { let &$name(ref data) = self; write!(f, "0x")?; for ch in data.iter().rev() { write!(f, "{:016x}", ch)?; } Ok(()) } } display_from_debug!($name); impl $crate::consensus::Encodable for $name { #[inline] fn consensus_encode( &self, mut s: S, ) -> Result { let &$name(ref data) = self; let mut len = 0; for word in data.iter() { len += word.consensus_encode(&mut s)?; } Ok(len) } } impl $crate::consensus::Decodable for $name { fn consensus_decode( mut d: D, ) -> Result<$name, $crate::consensus::encode::Error> { use $crate::consensus::Decodable; let mut ret: [u64; $n_words] = [0; $n_words]; for i in 0..$n_words { ret[i] = Decodable::consensus_decode(&mut d)?; } Ok($name(ret)) } } #[cfg(feature = "serde")] impl $crate::serde::Serialize for $name { fn serialize(&self, serializer: S) -> Result where S: $crate::serde::Serializer, { use $crate::hashes::hex::ToHex; let bytes = self.to_be_bytes(); if serializer.is_human_readable() { serializer.serialize_str(&bytes.to_hex()) } else { serializer.serialize_bytes(&bytes) } } } #[cfg(feature = "serde")] impl<'de> $crate::serde::Deserialize<'de> for $name { fn deserialize>( deserializer: D, ) -> Result { use ::std::fmt; use $crate::hashes::hex::FromHex; use $crate::serde::de; struct Visitor; impl<'de> de::Visitor<'de> for Visitor { type Value = $name; fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} bytes or a hex string with {} characters", $n_words * 8, $n_words * 8 * 2) } fn visit_str(self, s: &str) -> Result where E: de::Error, { let bytes = Vec::from_hex(s) .map_err(|_| de::Error::invalid_value(de::Unexpected::Str(s), &self))?; $name::from_be_slice(&bytes) .map_err(|_| de::Error::invalid_length(bytes.len() * 2, &self)) } fn visit_bytes(self, bytes: &[u8]) -> Result where E: de::Error, { $name::from_be_slice(bytes) .map_err(|_| de::Error::invalid_length(bytes.len(), &self)) } } if deserializer.is_human_readable() { deserializer.deserialize_str(Visitor) } else { deserializer.deserialize_bytes(Visitor) } } } ); } construct_uint!(Uint256, 4); construct_uint!(Uint128, 2); /// Invalid slice length #[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)] /// Invalid slice length pub struct ParseLengthError { /// The length of the slice de-facto pub actual: usize, /// The required length of the slice pub expected: usize, } impl ::std::fmt::Display for ParseLengthError { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { write!(f, "Invalid length: got {}, expected {}", self.actual, self.expected) } } impl ::std::error::Error for ParseLengthError {} impl Uint256 { /// Increment by 1 #[inline] pub fn increment(&mut self) { let &mut Uint256(ref mut arr) = self; arr[0] += 1; if arr[0] == 0 { arr[1] += 1; if arr[1] == 0 { arr[2] += 1; if arr[2] == 0 { arr[3] += 1; } } } } /// Decay to a uint128 #[inline] pub fn low_128(&self) -> Uint128 { let &Uint256(data) = self; Uint128([data[0], data[1]]) } } #[cfg(test)] mod tests { use consensus::{deserialize, serialize}; use util::uint::{Uint256, Uint128}; use util::BitArray; #[test] pub fn uint256_bits_test() { assert_eq!(Uint256::from_u64(255).unwrap().bits(), 8); assert_eq!(Uint256::from_u64(256).unwrap().bits(), 9); assert_eq!(Uint256::from_u64(300).unwrap().bits(), 9); assert_eq!(Uint256::from_u64(60000).unwrap().bits(), 16); assert_eq!(Uint256::from_u64(70000).unwrap().bits(), 17); // Try to read the following lines out loud quickly let mut shl = Uint256::from_u64(70000).unwrap(); shl = shl << 100; assert_eq!(shl.bits(), 117); shl = shl << 100; assert_eq!(shl.bits(), 217); shl = shl << 100; assert_eq!(shl.bits(), 0); // Bit set check assert!(!Uint256::from_u64(10).unwrap().bit(0)); assert!(Uint256::from_u64(10).unwrap().bit(1)); assert!(!Uint256::from_u64(10).unwrap().bit(2)); assert!(Uint256::from_u64(10).unwrap().bit(3)); assert!(!Uint256::from_u64(10).unwrap().bit(4)); } #[test] pub fn uint256_display_test() { assert_eq!(format!("{}", Uint256::from_u64(0xDEADBEEF).unwrap()), "0x00000000000000000000000000000000000000000000000000000000deadbeef"); assert_eq!(format!("{}", Uint256::from_u64(u64::max_value()).unwrap()), "0x000000000000000000000000000000000000000000000000ffffffffffffffff"); let max_val = Uint256([0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF]); assert_eq!(format!("{}", max_val), "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"); } #[test] pub fn uint256_comp_test() { let small = Uint256([10u64, 0, 0, 0]); let big = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let bigger = Uint256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let biggest = Uint256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]); assert!(small < big); assert!(big < bigger); assert!(bigger < biggest); assert!(bigger <= biggest); assert!(biggest <= biggest); assert!(bigger >= big); assert!(bigger >= small); assert!(small <= small); } #[test] pub fn uint_from_be_bytes() { assert_eq!(Uint128::from_be_bytes([0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed]), Uint128([0xdeafbabe2bedfeed, 0x1badcafedeadbeef])); assert_eq!(Uint256::from_be_bytes([0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed, 0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0]), Uint256([0x11fed2bad1c0ffe0, 0xbaadf00ddefaceda, 0xdeafbabe2bedfeed, 0x1badcafedeadbeef])); } #[test] pub fn uint_to_be_bytes() { assert_eq!(Uint128([0xdeafbabe2bedfeed, 0x1badcafedeadbeef]).to_be_bytes(), [0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed]); assert_eq!(Uint256([0x11fed2bad1c0ffe0, 0xbaadf00ddefaceda, 0xdeafbabe2bedfeed, 0x1badcafedeadbeef]).to_be_bytes(), [0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed, 0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0]); } #[test] pub fn uint256_arithmetic_test() { let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap(); let copy = init; let add = init + copy; assert_eq!(add, Uint256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0])); // Bitshifts let shl = add << 88; assert_eq!(shl, Uint256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0])); let shr = shl >> 40; assert_eq!(shr, Uint256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Increment let mut incr = shr; incr.increment(); assert_eq!(incr, Uint256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0])); // Subtraction let sub = incr - init; assert_eq!(sub, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); // Multiplication let mult = sub.mul_u32(300); assert_eq!(mult, Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0])); // Division assert_eq!(Uint256::from_u64(105).unwrap() / Uint256::from_u64(5).unwrap(), Uint256::from_u64(21).unwrap()); let div = mult / Uint256::from_u64(300).unwrap(); assert_eq!(div, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0])); assert_eq!(Uint256::from_u64(105).unwrap() % Uint256::from_u64(5).unwrap(), Uint256::from_u64(0).unwrap()); assert_eq!(Uint256::from_u64(35498456).unwrap() % Uint256::from_u64(3435).unwrap(), Uint256::from_u64(1166).unwrap()); let rem_src = mult * Uint256::from_u64(39842).unwrap() + Uint256::from_u64(9054).unwrap(); assert_eq!(rem_src % Uint256::from_u64(39842).unwrap(), Uint256::from_u64(9054).unwrap()); // TODO: bit inversion } #[test] pub fn mul_u32_test() { let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap(); let u96_res = u64_val.mul_u32(0xFFFFFFFF); let u128_res = u96_res.mul_u32(0xFFFFFFFF); let u160_res = u128_res.mul_u32(0xFFFFFFFF); let u192_res = u160_res.mul_u32(0xFFFFFFFF); let u224_res = u192_res.mul_u32(0xFFFFFFFF); let u256_res = u224_res.mul_u32(0xFFFFFFFF); assert_eq!(u96_res, Uint256([0xffffffff21524111u64, 0xDEADBEEE, 0, 0])); assert_eq!(u128_res, Uint256([0x21524111DEADBEEFu64, 0xDEADBEEE21524110, 0, 0])); assert_eq!(u160_res, Uint256([0xBD5B7DDD21524111u64, 0x42A4822200000001, 0xDEADBEED, 0])); assert_eq!(u192_res, Uint256([0x63F6C333DEADBEEFu64, 0xBD5B7DDFBD5B7DDB, 0xDEADBEEC63F6C334, 0])); assert_eq!(u224_res, Uint256([0x7AB6FBBB21524111u64, 0xFFFFFFFBA69B4558, 0x854904485964BAAA, 0xDEADBEEB])); assert_eq!(u256_res, Uint256([0xA69B4555DEADBEEFu64, 0xA69B455CD41BB662, 0xD41BB662A69B4550, 0xDEADBEEAA69B455C])); } #[test] pub fn multiplication_test() { let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap(); let u128_res = u64_val * u64_val; assert_eq!(u128_res, Uint256([0x048D1354216DA321u64, 0xC1B1CD13A4D13D46, 0, 0])); let u256_res = u128_res * u128_res; assert_eq!(u256_res, Uint256([0xF4E166AAD40D0A41u64, 0xF5CF7F3618C2C886u64, 0x4AFCFF6F0375C608u64, 0x928D92B4D7F5DF33u64])); } #[test] pub fn uint256_bitslice_test() { let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap(); let add = init + (init << 64); assert_eq!(add.bit_slice(64, 128), init); assert_eq!(add.mask(64), init); } #[test] pub fn uint256_extreme_bitshift_test() { // Shifting a u64 by 64 bits gives an undefined value, so make sure that // we're doing the Right Thing here let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap(); assert_eq!(init << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0, 0])); let add = (init << 64) + init; assert_eq!(add, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add << 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0])); assert_eq!(add >> 64, Uint256([0xDEADBEEFDEADBEEF, 0, 0, 0])); assert_eq!(add << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0])); } #[test] pub fn uint256_serialize_test() { let start1 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]); let start2 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0xABCD, 0xFFFF]); let serial1 = serialize(&start1); let serial2 = serialize(&start2); let end1: Result = deserialize(&serial1); let end2: Result = deserialize(&serial2); assert_eq!(end1.ok(), Some(start1)); assert_eq!(end2.ok(), Some(start2)); } #[cfg(feature = "serde")] #[test] pub fn uint256_serde_test() { let check = |uint, hex| { let json = format!("\"{}\"", hex); assert_eq!(::serde_json::to_string(&uint).unwrap(), json); assert_eq!(::serde_json::from_str::(&json).unwrap(), uint); let bin_encoded = ::bincode::serialize(&uint).unwrap(); let bin_decoded: Uint256 = ::bincode::deserialize(&bin_encoded).unwrap(); assert_eq!(bin_decoded, uint); }; check( Uint256::from_u64(0).unwrap(), "0000000000000000000000000000000000000000000000000000000000000000", ); check( Uint256::from_u64(0xDEADBEEF).unwrap(), "00000000000000000000000000000000000000000000000000000000deadbeef", ); check( Uint256([0xaa11, 0xbb22, 0xcc33, 0xdd44]), "000000000000dd44000000000000cc33000000000000bb22000000000000aa11", ); check( Uint256([u64::max_value(), u64::max_value(), u64::max_value(), u64::max_value()]), "ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff", ); check( Uint256([ 0xA69B4555DEADBEEF, 0xA69B455CD41BB662, 0xD41BB662A69B4550, 0xDEADBEEAA69B455C ]), "deadbeeaa69b455cd41bb662a69b4550a69b455cd41bb662a69b4555deadbeef", ); assert!(::serde_json::from_str::("\"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffg\"").is_err()); // invalid char assert!(::serde_json::from_str::("\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"").is_err()); // invalid length assert!(::serde_json::from_str::("\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"").is_err()); // invalid length } }