// SPDX-License-Identifier: CC0-1.0 //! BIP32 implementation. //! //! Implementation of BIP32 hierarchical deterministic wallets, as defined //! at . //! use core::convert::TryInto; use core::default::Default; use core::ops::Index; use core::str::FromStr; use core::{fmt, slice}; use hashes::{sha512, Hash, HashEngine, Hmac, HmacEngine}; use internals::{impl_array_newtype, write_err}; use secp256k1::{self, Secp256k1, XOnlyPublicKey}; #[cfg(feature = "serde")] use serde; use crate::base58; use crate::crypto::key::{self, KeyPair, PrivateKey, PublicKey}; use crate::hash_types::XpubIdentifier; use crate::internal_macros::impl_bytes_newtype; use crate::io::Write; use crate::network::Network; use crate::prelude::*; /// A chain code #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct ChainCode([u8; 32]); impl_array_newtype!(ChainCode, u8, 32); impl_bytes_newtype!(ChainCode, 32); impl ChainCode { fn from_hmac(hmac: Hmac) -> Self { hmac[32..].try_into().expect("half of hmac is guaranteed to be 32 bytes") } } /// A fingerprint #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] pub struct Fingerprint([u8; 4]); impl_array_newtype!(Fingerprint, u8, 4); impl_bytes_newtype!(Fingerprint, 4); /// Extended private key #[derive(Copy, Clone, PartialEq, Eq)] #[cfg_attr(feature = "std", derive(Debug))] pub struct ExtendedPrivKey { /// The network this key is to be used on pub network: Network, /// How many derivations this key is from the master (which is 0) pub depth: u8, /// Fingerprint of the parent key (0 for master) pub parent_fingerprint: Fingerprint, /// Child number of the key used to derive from parent (0 for master) pub child_number: ChildNumber, /// Private key pub private_key: secp256k1::SecretKey, /// Chain code pub chain_code: ChainCode, } #[cfg(feature = "serde")] crate::serde_utils::serde_string_impl!(ExtendedPrivKey, "a BIP-32 extended private key"); #[cfg(not(feature = "std"))] impl fmt::Debug for ExtendedPrivKey { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("ExtendedPrivKey") .field("network", &self.network) .field("depth", &self.depth) .field("parent_fingerprint", &self.parent_fingerprint) .field("child_number", &self.child_number) .field("chain_code", &self.chain_code) .field("private_key", &"[SecretKey]") .finish() } } /// Extended public key #[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)] pub struct ExtendedPubKey { /// The network this key is to be used on pub network: Network, /// How many derivations this key is from the master (which is 0) pub depth: u8, /// Fingerprint of the parent key pub parent_fingerprint: Fingerprint, /// Child number of the key used to derive from parent (0 for master) pub child_number: ChildNumber, /// Public key pub public_key: secp256k1::PublicKey, /// Chain code pub chain_code: ChainCode, } #[cfg(feature = "serde")] crate::serde_utils::serde_string_impl!(ExtendedPubKey, "a BIP-32 extended public key"); /// A child number for a derived key #[derive(Copy, Clone, PartialEq, Eq, Debug, PartialOrd, Ord, Hash)] pub enum ChildNumber { /// Non-hardened key Normal { /// Key index, within [0, 2^31 - 1] index: u32, }, /// Hardened key Hardened { /// Key index, within [0, 2^31 - 1] index: u32, }, } impl ChildNumber { /// Create a [`Normal`] from an index, returns an error if the index is not within /// [0, 2^31 - 1]. /// /// [`Normal`]: #variant.Normal pub fn from_normal_idx(index: u32) -> Result { if index & (1 << 31) == 0 { Ok(ChildNumber::Normal { index }) } else { Err(Error::InvalidChildNumber(index)) } } /// Create a [`Hardened`] from an index, returns an error if the index is not within /// [0, 2^31 - 1]. /// /// [`Hardened`]: #variant.Hardened pub fn from_hardened_idx(index: u32) -> Result { if index & (1 << 31) == 0 { Ok(ChildNumber::Hardened { index }) } else { Err(Error::InvalidChildNumber(index)) } } /// Returns `true` if the child number is a [`Normal`] value. /// /// [`Normal`]: #variant.Normal pub fn is_normal(&self) -> bool { !self.is_hardened() } /// Returns `true` if the child number is a [`Hardened`] value. /// /// [`Hardened`]: #variant.Hardened pub fn is_hardened(&self) -> bool { match self { ChildNumber::Hardened { .. } => true, ChildNumber::Normal { .. } => false, } } /// Returns the child number that is a single increment from this one. pub fn increment(self) -> Result { match self { ChildNumber::Normal { index: idx } => ChildNumber::from_normal_idx(idx + 1), ChildNumber::Hardened { index: idx } => ChildNumber::from_hardened_idx(idx + 1), } } } impl From for ChildNumber { fn from(number: u32) -> Self { if number & (1 << 31) != 0 { ChildNumber::Hardened { index: number ^ (1 << 31) } } else { ChildNumber::Normal { index: number } } } } impl From for u32 { fn from(cnum: ChildNumber) -> Self { match cnum { ChildNumber::Normal { index } => index, ChildNumber::Hardened { index } => index | (1 << 31), } } } impl fmt::Display for ChildNumber { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { ChildNumber::Hardened { index } => { fmt::Display::fmt(&index, f)?; let alt = f.alternate(); f.write_str(if alt { "h" } else { "'" }) } ChildNumber::Normal { index } => fmt::Display::fmt(&index, f), } } } impl FromStr for ChildNumber { type Err = Error; fn from_str(inp: &str) -> Result { let is_hardened = inp.chars().last().map_or(false, |l| l == '\'' || l == 'h'); Ok(if is_hardened { ChildNumber::from_hardened_idx( inp[0..inp.len() - 1].parse().map_err(|_| Error::InvalidChildNumberFormat)?, )? } else { ChildNumber::from_normal_idx(inp.parse().map_err(|_| Error::InvalidChildNumberFormat)?)? }) } } impl AsRef<[ChildNumber]> for ChildNumber { fn as_ref(&self) -> &[ChildNumber] { slice::from_ref(self) } } #[cfg(feature = "serde")] impl<'de> serde::Deserialize<'de> for ChildNumber { fn deserialize(deserializer: D) -> Result where D: serde::Deserializer<'de>, { u32::deserialize(deserializer).map(ChildNumber::from) } } #[cfg(feature = "serde")] impl serde::Serialize for ChildNumber { fn serialize(&self, serializer: S) -> Result where S: serde::Serializer, { u32::from(*self).serialize(serializer) } } /// Trait that allows possibly failable conversion from a type into a /// derivation path pub trait IntoDerivationPath { /// Convers a given type into a [`DerivationPath`] with possible error fn into_derivation_path(self) -> Result; } /// A BIP-32 derivation path. #[derive(Clone, PartialEq, Eq, Ord, PartialOrd, Hash)] pub struct DerivationPath(Vec); #[cfg(feature = "serde")] crate::serde_utils::serde_string_impl!(DerivationPath, "a BIP-32 derivation path"); impl Index for DerivationPath where Vec: Index, { type Output = as Index>::Output; #[inline] fn index(&self, index: I) -> &Self::Output { &self.0[index] } } impl Default for DerivationPath { fn default() -> DerivationPath { DerivationPath::master() } } impl IntoDerivationPath for T where T: Into, { fn into_derivation_path(self) -> Result { Ok(self.into()) } } impl IntoDerivationPath for String { fn into_derivation_path(self) -> Result { self.parse() } } impl<'a> IntoDerivationPath for &'a str { fn into_derivation_path(self) -> Result { self.parse() } } impl From> for DerivationPath { fn from(numbers: Vec) -> Self { DerivationPath(numbers) } } impl From for Vec { fn from(path: DerivationPath) -> Self { path.0 } } impl<'a> From<&'a [ChildNumber]> for DerivationPath { fn from(numbers: &'a [ChildNumber]) -> Self { DerivationPath(numbers.to_vec()) } } impl core::iter::FromIterator for DerivationPath { fn from_iter(iter: T) -> Self where T: IntoIterator, { DerivationPath(Vec::from_iter(iter)) } } impl<'a> core::iter::IntoIterator for &'a DerivationPath { type Item = &'a ChildNumber; type IntoIter = slice::Iter<'a, ChildNumber>; fn into_iter(self) -> Self::IntoIter { self.0.iter() } } impl AsRef<[ChildNumber]> for DerivationPath { fn as_ref(&self) -> &[ChildNumber] { &self.0 } } impl FromStr for DerivationPath { type Err = Error; fn from_str(path: &str) -> Result { let mut parts = path.split('/'); // First parts must be `m`. if parts.next().unwrap() != "m" { return Err(Error::InvalidDerivationPathFormat); } let ret: Result, Error> = parts.map(str::parse).collect(); Ok(DerivationPath(ret?)) } } /// An iterator over children of a [DerivationPath]. /// /// It is returned by the methods [DerivationPath::children_from], /// [DerivationPath::normal_children] and [DerivationPath::hardened_children]. pub struct DerivationPathIterator<'a> { base: &'a DerivationPath, next_child: Option, } impl<'a> DerivationPathIterator<'a> { /// Start a new [DerivationPathIterator] at the given child. pub fn start_from(path: &'a DerivationPath, start: ChildNumber) -> DerivationPathIterator<'a> { DerivationPathIterator { base: path, next_child: Some(start) } } } impl<'a> Iterator for DerivationPathIterator<'a> { type Item = DerivationPath; fn next(&mut self) -> Option { let ret = self.next_child?; self.next_child = ret.increment().ok(); Some(self.base.child(ret)) } } impl DerivationPath { /// Returns length of the derivation path pub fn len(&self) -> usize { self.0.len() } /// Returns `true` if the derivation path is empty pub fn is_empty(&self) -> bool { self.0.is_empty() } /// Returns derivation path for a master key (i.e. empty derivation path) pub fn master() -> DerivationPath { DerivationPath(vec![]) } /// Returns whether derivation path represents master key (i.e. it's length /// is empty). True for `m` path. pub fn is_master(&self) -> bool { self.0.is_empty() } /// Create a new [DerivationPath] that is a child of this one. pub fn child(&self, cn: ChildNumber) -> DerivationPath { let mut path = self.0.clone(); path.push(cn); DerivationPath(path) } /// Convert into a [DerivationPath] that is a child of this one. pub fn into_child(self, cn: ChildNumber) -> DerivationPath { let mut path = self.0; path.push(cn); DerivationPath(path) } /// Get an [Iterator] over the children of this [DerivationPath] /// starting with the given [ChildNumber]. pub fn children_from(&self, cn: ChildNumber) -> DerivationPathIterator { DerivationPathIterator::start_from(self, cn) } /// Get an [Iterator] over the unhardened children of this [DerivationPath]. pub fn normal_children(&self) -> DerivationPathIterator { DerivationPathIterator::start_from(self, ChildNumber::Normal { index: 0 }) } /// Get an [Iterator] over the hardened children of this [DerivationPath]. pub fn hardened_children(&self) -> DerivationPathIterator { DerivationPathIterator::start_from(self, ChildNumber::Hardened { index: 0 }) } /// Concatenate `self` with `path` and return the resulting new path. /// /// ``` /// use bitcoin::bip32::{DerivationPath, ChildNumber}; /// use std::str::FromStr; /// /// let base = DerivationPath::from_str("m/42").unwrap(); /// /// let deriv_1 = base.extend(DerivationPath::from_str("m/0/1").unwrap()); /// let deriv_2 = base.extend(&[ /// ChildNumber::from_normal_idx(0).unwrap(), /// ChildNumber::from_normal_idx(1).unwrap() /// ]); /// /// assert_eq!(deriv_1, deriv_2); /// ``` pub fn extend>(&self, path: T) -> DerivationPath { let mut new_path = self.clone(); new_path.0.extend_from_slice(path.as_ref()); new_path } /// Returns the derivation path as a vector of u32 integers. /// Unhardened elements are copied as is. /// 0x80000000 is added to the hardened elements. /// /// ``` /// use bitcoin::bip32::DerivationPath; /// use std::str::FromStr; /// /// let path = DerivationPath::from_str("m/84'/0'/0'/0/1").unwrap(); /// const HARDENED: u32 = 0x80000000; /// assert_eq!(path.to_u32_vec(), vec![84 + HARDENED, HARDENED, HARDENED, 0, 1]); /// ``` pub fn to_u32_vec(&self) -> Vec { self.into_iter().map(|&el| el.into()).collect() } } impl fmt::Display for DerivationPath { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str("m")?; for cn in self.0.iter() { f.write_str("/")?; fmt::Display::fmt(cn, f)?; } Ok(()) } } impl fmt::Debug for DerivationPath { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self, f) } } /// Full information on the used extended public key: fingerprint of the /// master extended public key and a derivation path from it. pub type KeySource = (Fingerprint, DerivationPath); /// A BIP32 error #[derive(Debug, Clone, PartialEq, Eq)] #[non_exhaustive] pub enum Error { /// A pk->pk derivation was attempted on a hardened key CannotDeriveFromHardenedKey, /// A secp256k1 error occurred Secp256k1(secp256k1::Error), /// A child number was provided that was out of range InvalidChildNumber(u32), /// Invalid childnumber format. InvalidChildNumberFormat, /// Invalid derivation path format. InvalidDerivationPathFormat, /// Unknown version magic bytes UnknownVersion([u8; 4]), /// Encoded extended key data has wrong length WrongExtendedKeyLength(usize), /// Base58 encoding error Base58(base58::Error), /// Hexadecimal decoding error Hex(hex::HexToArrayError), /// `PublicKey` hex should be 66 or 130 digits long. InvalidPublicKeyHexLength(usize), } impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { match *self { Error::CannotDeriveFromHardenedKey => f.write_str("cannot derive hardened key from public key"), Error::Secp256k1(ref e) => write_err!(f, "secp256k1 error"; e), Error::InvalidChildNumber(ref n) => write!(f, "child number {} is invalid (not within [0, 2^31 - 1])", n), Error::InvalidChildNumberFormat => f.write_str("invalid child number format"), Error::InvalidDerivationPathFormat => f.write_str("invalid derivation path format"), Error::UnknownVersion(ref bytes) => write!(f, "unknown version magic bytes: {:?}", bytes), Error::WrongExtendedKeyLength(ref len) => write!(f, "encoded extended key data has wrong length {}", len), Error::Base58(ref e) => write_err!(f, "base58 encoding error"; e), Error::Hex(ref e) => write_err!(f, "Hexadecimal decoding error"; e), Error::InvalidPublicKeyHexLength(got) => write!(f, "PublicKey hex should be 66 or 130 digits long, got: {}", got), } } } #[cfg(feature = "std")] impl std::error::Error for Error { fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { use self::Error::*; match self { Secp256k1(e) => Some(e), Base58(e) => Some(e), Hex(e) => Some(e), CannotDeriveFromHardenedKey | InvalidChildNumber(_) | InvalidChildNumberFormat | InvalidDerivationPathFormat | UnknownVersion(_) | WrongExtendedKeyLength(_) | InvalidPublicKeyHexLength(_) => None, } } } impl From for Error { fn from(err: key::Error) -> Self { match err { key::Error::Base58(e) => Error::Base58(e), key::Error::Secp256k1(e) => Error::Secp256k1(e), key::Error::InvalidKeyPrefix(_) => Error::Secp256k1(secp256k1::Error::InvalidPublicKey), key::Error::Hex(e) => Error::Hex(e), key::Error::InvalidHexLength(got) => Error::InvalidPublicKeyHexLength(got), } } } impl From for Error { fn from(e: secp256k1::Error) -> Error { Error::Secp256k1(e) } } impl From for Error { fn from(err: base58::Error) -> Self { Error::Base58(err) } } impl ExtendedPrivKey { /// Construct a new master key from a seed value pub fn new_master(network: Network, seed: &[u8]) -> Result { let mut hmac_engine: HmacEngine = HmacEngine::new(b"Bitcoin seed"); hmac_engine.input(seed); let hmac_result: Hmac = Hmac::from_engine(hmac_engine); Ok(ExtendedPrivKey { network, depth: 0, parent_fingerprint: Default::default(), child_number: ChildNumber::from_normal_idx(0)?, private_key: secp256k1::SecretKey::from_slice(&hmac_result[..32])?, chain_code: ChainCode::from_hmac(hmac_result), }) } /// Constructs ECDSA compressed private key matching internal secret key representation. pub fn to_priv(self) -> PrivateKey { PrivateKey { compressed: true, network: self.network, inner: self.private_key } } /// Constructs BIP340 keypair for Schnorr signatures and Taproot use matching the internal /// secret key representation. pub fn to_keypair(self, secp: &Secp256k1) -> KeyPair { KeyPair::from_seckey_slice(secp, &self.private_key[..]) .expect("BIP32 internal private key representation is broken") } /// Attempts to derive an extended private key from a path. /// /// The `path` argument can be both of type `DerivationPath` or `Vec`. pub fn derive_priv>( &self, secp: &Secp256k1, path: &P, ) -> Result { let mut sk: ExtendedPrivKey = *self; for cnum in path.as_ref() { sk = sk.ckd_priv(secp, *cnum)?; } Ok(sk) } /// Private->Private child key derivation fn ckd_priv( &self, secp: &Secp256k1, i: ChildNumber, ) -> Result { let mut hmac_engine: HmacEngine = HmacEngine::new(&self.chain_code[..]); match i { ChildNumber::Normal { .. } => { // Non-hardened key: compute public data and use that hmac_engine.input( &secp256k1::PublicKey::from_secret_key(secp, &self.private_key).serialize()[..], ); } ChildNumber::Hardened { .. } => { // Hardened key: use only secret data to prevent public derivation hmac_engine.input(&[0u8]); hmac_engine.input(&self.private_key[..]); } } hmac_engine.input(&u32::from(i).to_be_bytes()); let hmac_result: Hmac = Hmac::from_engine(hmac_engine); let sk = secp256k1::SecretKey::from_slice(&hmac_result[..32]) .expect("statistically impossible to hit"); let tweaked = sk.add_tweak(&self.private_key.into()).expect("statistically impossible to hit"); Ok(ExtendedPrivKey { network: self.network, depth: self.depth + 1, parent_fingerprint: self.fingerprint(secp), child_number: i, private_key: tweaked, chain_code: ChainCode::from_hmac(hmac_result), }) } /// Decoding extended private key from binary data according to BIP 32 pub fn decode(data: &[u8]) -> Result { if data.len() != 78 { return Err(Error::WrongExtendedKeyLength(data.len())); } let network = match data { [0x04u8, 0x88, 0xAD, 0xE4, ..] => Network::Bitcoin, [0x04u8, 0x35, 0x83, 0x94, ..] => Network::Testnet, [b0, b1, b2, b3, ..] => return Err(Error::UnknownVersion([*b0, *b1, *b2, *b3])), _ => unreachable!("length checked above"), }; Ok(ExtendedPrivKey { network, depth: data[4], parent_fingerprint: data[5..9] .try_into() .expect("9 - 5 == 4, which is the Fingerprint length"), child_number: u32::from_be_bytes(data[9..13].try_into().expect("4 byte slice")).into(), chain_code: data[13..45] .try_into() .expect("45 - 13 == 32, which is the ChainCode length"), private_key: secp256k1::SecretKey::from_slice(&data[46..78])?, }) } /// Extended private key binary encoding according to BIP 32 pub fn encode(&self) -> [u8; 78] { let mut ret = [0; 78]; ret[0..4].copy_from_slice( &match self.network { Network::Bitcoin => [0x04, 0x88, 0xAD, 0xE4], Network::Testnet | Network::Signet | Network::Regtest => [0x04, 0x35, 0x83, 0x94], }[..], ); ret[4] = self.depth; ret[5..9].copy_from_slice(&self.parent_fingerprint[..]); ret[9..13].copy_from_slice(&u32::from(self.child_number).to_be_bytes()); ret[13..45].copy_from_slice(&self.chain_code[..]); ret[45] = 0; ret[46..78].copy_from_slice(&self.private_key[..]); ret } /// Returns the HASH160 of the public key belonging to the xpriv pub fn identifier(&self, secp: &Secp256k1) -> XpubIdentifier { ExtendedPubKey::from_priv(secp, self).identifier() } /// Returns the first four bytes of the identifier pub fn fingerprint(&self, secp: &Secp256k1) -> Fingerprint { self.identifier(secp)[0..4].try_into().expect("4 is the fingerprint length") } } impl ExtendedPubKey { /// Derives a public key from a private key pub fn from_priv( secp: &Secp256k1, sk: &ExtendedPrivKey, ) -> ExtendedPubKey { ExtendedPubKey { network: sk.network, depth: sk.depth, parent_fingerprint: sk.parent_fingerprint, child_number: sk.child_number, public_key: secp256k1::PublicKey::from_secret_key(secp, &sk.private_key), chain_code: sk.chain_code, } } /// Constructs ECDSA compressed public key matching internal public key representation. pub fn to_pub(self) -> PublicKey { PublicKey { compressed: true, inner: self.public_key } } /// Constructs BIP340 x-only public key for BIP-340 signatures and Taproot use matching /// the internal public key representation. pub fn to_x_only_pub(self) -> XOnlyPublicKey { XOnlyPublicKey::from(self.public_key) } /// Attempts to derive an extended public key from a path. /// /// The `path` argument can be any type implementing `AsRef`, such as `DerivationPath`, for instance. pub fn derive_pub>( &self, secp: &Secp256k1, path: &P, ) -> Result { let mut pk: ExtendedPubKey = *self; for cnum in path.as_ref() { pk = pk.ckd_pub(secp, *cnum)? } Ok(pk) } /// Compute the scalar tweak added to this key to get a child key pub fn ckd_pub_tweak( &self, i: ChildNumber, ) -> Result<(secp256k1::SecretKey, ChainCode), Error> { match i { ChildNumber::Hardened { .. } => Err(Error::CannotDeriveFromHardenedKey), ChildNumber::Normal { index: n } => { let mut hmac_engine: HmacEngine = HmacEngine::new(&self.chain_code[..]); hmac_engine.input(&self.public_key.serialize()[..]); hmac_engine.input(&n.to_be_bytes()); let hmac_result: Hmac = Hmac::from_engine(hmac_engine); let private_key = secp256k1::SecretKey::from_slice(&hmac_result[..32])?; let chain_code = ChainCode::from_hmac(hmac_result); Ok((private_key, chain_code)) } } } /// Public->Public child key derivation pub fn ckd_pub( &self, secp: &Secp256k1, i: ChildNumber, ) -> Result { let (sk, chain_code) = self.ckd_pub_tweak(i)?; let tweaked = self.public_key.add_exp_tweak(secp, &sk.into())?; Ok(ExtendedPubKey { network: self.network, depth: self.depth + 1, parent_fingerprint: self.fingerprint(), child_number: i, public_key: tweaked, chain_code, }) } /// Decoding extended public key from binary data according to BIP 32 pub fn decode(data: &[u8]) -> Result { if data.len() != 78 { return Err(Error::WrongExtendedKeyLength(data.len())); } let network = match data { [0x04u8, 0x88, 0xB2, 0x1E, ..] => Network::Bitcoin, [0x04u8, 0x35, 0x87, 0xCF, ..] => Network::Testnet, [b0, b1, b2, b3, ..] => return Err(Error::UnknownVersion([*b0, *b1, *b2, *b3])), _ => unreachable!("length checked above"), }; Ok(ExtendedPubKey { network, depth: data[4], parent_fingerprint: data[5..9] .try_into() .expect("9 - 5 == 4, which is the Fingerprint length"), child_number: u32::from_be_bytes(data[9..13].try_into().expect("4 byte slice")).into(), chain_code: data[13..45] .try_into() .expect("45 - 13 == 32, which is the ChainCode length"), public_key: secp256k1::PublicKey::from_slice(&data[45..78])?, }) } /// Extended public key binary encoding according to BIP 32 pub fn encode(&self) -> [u8; 78] { let mut ret = [0; 78]; ret[0..4].copy_from_slice( &match self.network { Network::Bitcoin => [0x04u8, 0x88, 0xB2, 0x1E], Network::Testnet | Network::Signet | Network::Regtest => [0x04u8, 0x35, 0x87, 0xCF], }[..], ); ret[4] = self.depth; ret[5..9].copy_from_slice(&self.parent_fingerprint[..]); ret[9..13].copy_from_slice(&u32::from(self.child_number).to_be_bytes()); ret[13..45].copy_from_slice(&self.chain_code[..]); ret[45..78].copy_from_slice(&self.public_key.serialize()[..]); ret } /// Returns the HASH160 of the chaincode pub fn identifier(&self) -> XpubIdentifier { let mut engine = XpubIdentifier::engine(); engine.write_all(&self.public_key.serialize()).expect("engines don't error"); XpubIdentifier::from_engine(engine) } /// Returns the first four bytes of the identifier pub fn fingerprint(&self) -> Fingerprint { self.identifier()[0..4].try_into().expect("4 is the fingerprint length") } } impl fmt::Display for ExtendedPrivKey { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { base58::encode_check_to_fmt(fmt, &self.encode()[..]) } } impl FromStr for ExtendedPrivKey { type Err = Error; fn from_str(inp: &str) -> Result { let data = base58::decode_check(inp)?; if data.len() != 78 { return Err(base58::Error::InvalidLength(data.len()).into()); } ExtendedPrivKey::decode(&data) } } impl fmt::Display for ExtendedPubKey { fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { base58::encode_check_to_fmt(fmt, &self.encode()[..]) } } impl FromStr for ExtendedPubKey { type Err = Error; fn from_str(inp: &str) -> Result { let data = base58::decode_check(inp)?; if data.len() != 78 { return Err(base58::Error::InvalidLength(data.len()).into()); } ExtendedPubKey::decode(&data) } } impl From for XpubIdentifier { fn from(key: ExtendedPubKey) -> XpubIdentifier { key.identifier() } } impl From<&ExtendedPubKey> for XpubIdentifier { fn from(key: &ExtendedPubKey) -> XpubIdentifier { key.identifier() } } #[cfg(test)] mod tests { use core::str::FromStr; use secp256k1::{self, Secp256k1}; use super::ChildNumber::{Hardened, Normal}; use super::*; use crate::internal_macros::hex; use crate::network::Network::{self, Bitcoin}; #[test] fn test_parse_derivation_path() { assert_eq!(DerivationPath::from_str("42"), Err(Error::InvalidDerivationPathFormat)); assert_eq!(DerivationPath::from_str("n/0'/0"), Err(Error::InvalidDerivationPathFormat)); assert_eq!(DerivationPath::from_str("4/m/5"), Err(Error::InvalidDerivationPathFormat)); assert_eq!(DerivationPath::from_str("m//3/0'"), Err(Error::InvalidChildNumberFormat)); assert_eq!(DerivationPath::from_str("m/0h/0x"), Err(Error::InvalidChildNumberFormat)); assert_eq!( DerivationPath::from_str("m/2147483648"), Err(Error::InvalidChildNumber(2147483648)) ); assert_eq!(DerivationPath::master(), DerivationPath::from_str("m").unwrap()); assert_eq!(DerivationPath::master(), DerivationPath::default()); assert_eq!(DerivationPath::from_str("m"), Ok(vec![].into())); assert_eq!( DerivationPath::from_str("m/0'"), Ok(vec![ChildNumber::from_hardened_idx(0).unwrap()].into()) ); assert_eq!( DerivationPath::from_str("m/0'/1"), Ok(vec![ ChildNumber::from_hardened_idx(0).unwrap(), ChildNumber::from_normal_idx(1).unwrap() ] .into()) ); assert_eq!( DerivationPath::from_str("m/0h/1/2'"), Ok(vec![ ChildNumber::from_hardened_idx(0).unwrap(), ChildNumber::from_normal_idx(1).unwrap(), ChildNumber::from_hardened_idx(2).unwrap(), ] .into()) ); assert_eq!( DerivationPath::from_str("m/0'/1/2h/2"), Ok(vec![ ChildNumber::from_hardened_idx(0).unwrap(), ChildNumber::from_normal_idx(1).unwrap(), ChildNumber::from_hardened_idx(2).unwrap(), ChildNumber::from_normal_idx(2).unwrap(), ] .into()) ); assert_eq!( DerivationPath::from_str("m/0'/1/2'/2/1000000000"), Ok(vec![ ChildNumber::from_hardened_idx(0).unwrap(), ChildNumber::from_normal_idx(1).unwrap(), ChildNumber::from_hardened_idx(2).unwrap(), ChildNumber::from_normal_idx(2).unwrap(), ChildNumber::from_normal_idx(1000000000).unwrap(), ] .into()) ); let s = "m/0'/50/3'/5/545456"; assert_eq!(DerivationPath::from_str(s), s.into_derivation_path()); assert_eq!(DerivationPath::from_str(s), s.to_string().into_derivation_path()); } #[test] fn test_derivation_path_conversion_index() { let path = DerivationPath::from_str("m/0h/1/2'").unwrap(); let numbers: Vec = path.clone().into(); let path2: DerivationPath = numbers.into(); assert_eq!(path, path2); assert_eq!( &path[..2], &[ChildNumber::from_hardened_idx(0).unwrap(), ChildNumber::from_normal_idx(1).unwrap()] ); let indexed: DerivationPath = path[..2].into(); assert_eq!(indexed, DerivationPath::from_str("m/0h/1").unwrap()); assert_eq!(indexed.child(ChildNumber::from_hardened_idx(2).unwrap()), path); } fn test_path( secp: &Secp256k1, network: Network, seed: &[u8], path: DerivationPath, expected_sk: &str, expected_pk: &str, ) { let mut sk = ExtendedPrivKey::new_master(network, seed).unwrap(); let mut pk = ExtendedPubKey::from_priv(secp, &sk); // Check derivation convenience method for ExtendedPrivKey assert_eq!(&sk.derive_priv(secp, &path).unwrap().to_string()[..], expected_sk); // Check derivation convenience method for ExtendedPubKey, should error // appropriately if any ChildNumber is hardened if path.0.iter().any(|cnum| cnum.is_hardened()) { assert_eq!(pk.derive_pub(secp, &path), Err(Error::CannotDeriveFromHardenedKey)); } else { assert_eq!(&pk.derive_pub(secp, &path).unwrap().to_string()[..], expected_pk); } // Derive keys, checking hardened and non-hardened derivation one-by-one for &num in path.0.iter() { sk = sk.ckd_priv(secp, num).unwrap(); match num { Normal { .. } => { let pk2 = pk.ckd_pub(secp, num).unwrap(); pk = ExtendedPubKey::from_priv(secp, &sk); assert_eq!(pk, pk2); } Hardened { .. } => { assert_eq!(pk.ckd_pub(secp, num), Err(Error::CannotDeriveFromHardenedKey)); pk = ExtendedPubKey::from_priv(secp, &sk); } } } // Check result against expected base58 assert_eq!(&sk.to_string()[..], expected_sk); assert_eq!(&pk.to_string()[..], expected_pk); // Check decoded base58 against result let decoded_sk = ExtendedPrivKey::from_str(expected_sk); let decoded_pk = ExtendedPubKey::from_str(expected_pk); assert_eq!(Ok(sk), decoded_sk); assert_eq!(Ok(pk), decoded_pk); } #[test] fn test_increment() { let idx = 9345497; // randomly generated, I promise let cn = ChildNumber::from_normal_idx(idx).unwrap(); assert_eq!(cn.increment().ok(), Some(ChildNumber::from_normal_idx(idx + 1).unwrap())); let cn = ChildNumber::from_hardened_idx(idx).unwrap(); assert_eq!(cn.increment().ok(), Some(ChildNumber::from_hardened_idx(idx + 1).unwrap())); let max = (1 << 31) - 1; let cn = ChildNumber::from_normal_idx(max).unwrap(); assert_eq!(cn.increment().err(), Some(Error::InvalidChildNumber(1 << 31))); let cn = ChildNumber::from_hardened_idx(max).unwrap(); assert_eq!(cn.increment().err(), Some(Error::InvalidChildNumber(1 << 31))); let cn = ChildNumber::from_normal_idx(350).unwrap(); let path = DerivationPath::from_str("m/42'").unwrap(); let mut iter = path.children_from(cn); assert_eq!(iter.next(), Some("m/42'/350".parse().unwrap())); assert_eq!(iter.next(), Some("m/42'/351".parse().unwrap())); let path = DerivationPath::from_str("m/42'/350'").unwrap(); let mut iter = path.normal_children(); assert_eq!(iter.next(), Some("m/42'/350'/0".parse().unwrap())); assert_eq!(iter.next(), Some("m/42'/350'/1".parse().unwrap())); let path = DerivationPath::from_str("m/42'/350'").unwrap(); let mut iter = path.hardened_children(); assert_eq!(iter.next(), Some("m/42'/350'/0'".parse().unwrap())); assert_eq!(iter.next(), Some("m/42'/350'/1'".parse().unwrap())); let cn = ChildNumber::from_hardened_idx(42350).unwrap(); let path = DerivationPath::from_str("m/42'").unwrap(); let mut iter = path.children_from(cn); assert_eq!(iter.next(), Some("m/42'/42350'".parse().unwrap())); assert_eq!(iter.next(), Some("m/42'/42351'".parse().unwrap())); let cn = ChildNumber::from_hardened_idx(max).unwrap(); let path = DerivationPath::from_str("m/42'").unwrap(); let mut iter = path.children_from(cn); assert!(iter.next().is_some()); assert!(iter.next().is_none()); } #[test] fn test_vector_1() { let secp = Secp256k1::new(); let seed = hex!("000102030405060708090a0b0c0d0e0f"); // m test_path(&secp, Bitcoin, &seed, "m".parse().unwrap(), "xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi", "xpub661MyMwAqRbcFtXgS5sYJABqqG9YLmC4Q1Rdap9gSE8NqtwybGhePY2gZ29ESFjqJoCu1Rupje8YtGqsefD265TMg7usUDFdp6W1EGMcet8"); // m/0h test_path(&secp, Bitcoin, &seed, "m/0h".parse().unwrap(), "xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7", "xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw"); // m/0h/1 test_path(&secp, Bitcoin, &seed, "m/0h/1".parse().unwrap(), "xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs", "xpub6ASuArnXKPbfEwhqN6e3mwBcDTgzisQN1wXN9BJcM47sSikHjJf3UFHKkNAWbWMiGj7Wf5uMash7SyYq527Hqck2AxYysAA7xmALppuCkwQ"); // m/0h/1/2h test_path(&secp, Bitcoin, &seed, "m/0h/1/2h".parse().unwrap(), "xprv9z4pot5VBttmtdRTWfWQmoH1taj2axGVzFqSb8C9xaxKymcFzXBDptWmT7FwuEzG3ryjH4ktypQSAewRiNMjANTtpgP4mLTj34bhnZX7UiM", "xpub6D4BDPcP2GT577Vvch3R8wDkScZWzQzMMUm3PWbmWvVJrZwQY4VUNgqFJPMM3No2dFDFGTsxxpG5uJh7n7epu4trkrX7x7DogT5Uv6fcLW5"); // m/0h/1/2h/2 test_path(&secp, Bitcoin, &seed, "m/0h/1/2h/2".parse().unwrap(), "xprvA2JDeKCSNNZky6uBCviVfJSKyQ1mDYahRjijr5idH2WwLsEd4Hsb2Tyh8RfQMuPh7f7RtyzTtdrbdqqsunu5Mm3wDvUAKRHSC34sJ7in334", "xpub6FHa3pjLCk84BayeJxFW2SP4XRrFd1JYnxeLeU8EqN3vDfZmbqBqaGJAyiLjTAwm6ZLRQUMv1ZACTj37sR62cfN7fe5JnJ7dh8zL4fiyLHV"); // m/0h/1/2h/2/1000000000 test_path(&secp, Bitcoin, &seed, "m/0h/1/2h/2/1000000000".parse().unwrap(), "xprvA41z7zogVVwxVSgdKUHDy1SKmdb533PjDz7J6N6mV6uS3ze1ai8FHa8kmHScGpWmj4WggLyQjgPie1rFSruoUihUZREPSL39UNdE3BBDu76", "xpub6H1LXWLaKsWFhvm6RVpEL9P4KfRZSW7abD2ttkWP3SSQvnyA8FSVqNTEcYFgJS2UaFcxupHiYkro49S8yGasTvXEYBVPamhGW6cFJodrTHy"); } #[test] fn test_vector_2() { let secp = Secp256k1::new(); let seed = hex!("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542"); // m test_path(&secp, Bitcoin, &seed, "m".parse().unwrap(), "xprv9s21ZrQH143K31xYSDQpPDxsXRTUcvj2iNHm5NUtrGiGG5e2DtALGdso3pGz6ssrdK4PFmM8NSpSBHNqPqm55Qn3LqFtT2emdEXVYsCzC2U", "xpub661MyMwAqRbcFW31YEwpkMuc5THy2PSt5bDMsktWQcFF8syAmRUapSCGu8ED9W6oDMSgv6Zz8idoc4a6mr8BDzTJY47LJhkJ8UB7WEGuduB"); // m/0 test_path(&secp, Bitcoin, &seed, "m/0".parse().unwrap(), "xprv9vHkqa6EV4sPZHYqZznhT2NPtPCjKuDKGY38FBWLvgaDx45zo9WQRUT3dKYnjwih2yJD9mkrocEZXo1ex8G81dwSM1fwqWpWkeS3v86pgKt", "xpub69H7F5d8KSRgmmdJg2KhpAK8SR3DjMwAdkxj3ZuxV27CprR9LgpeyGmXUbC6wb7ERfvrnKZjXoUmmDznezpbZb7ap6r1D3tgFxHmwMkQTPH"); // m/0/2147483647h test_path(&secp, Bitcoin, &seed, "m/0/2147483647h".parse().unwrap(), "xprv9wSp6B7kry3Vj9m1zSnLvN3xH8RdsPP1Mh7fAaR7aRLcQMKTR2vidYEeEg2mUCTAwCd6vnxVrcjfy2kRgVsFawNzmjuHc2YmYRmagcEPdU9", "xpub6ASAVgeehLbnwdqV6UKMHVzgqAG8Gr6riv3Fxxpj8ksbH9ebxaEyBLZ85ySDhKiLDBrQSARLq1uNRts8RuJiHjaDMBU4Zn9h8LZNnBC5y4a"); // m/0/2147483647h/1 test_path(&secp, Bitcoin, &seed, "m/0/2147483647h/1".parse().unwrap(), "xprv9zFnWC6h2cLgpmSA46vutJzBcfJ8yaJGg8cX1e5StJh45BBciYTRXSd25UEPVuesF9yog62tGAQtHjXajPPdbRCHuWS6T8XA2ECKADdw4Ef", "xpub6DF8uhdarytz3FWdA8TvFSvvAh8dP3283MY7p2V4SeE2wyWmG5mg5EwVvmdMVCQcoNJxGoWaU9DCWh89LojfZ537wTfunKau47EL2dhHKon"); // m/0/2147483647h/1/2147483646h test_path(&secp, Bitcoin, &seed, "m/0/2147483647h/1/2147483646h".parse().unwrap(), "xprvA1RpRA33e1JQ7ifknakTFpgNXPmW2YvmhqLQYMmrj4xJXXWYpDPS3xz7iAxn8L39njGVyuoseXzU6rcxFLJ8HFsTjSyQbLYnMpCqE2VbFWc", "xpub6ERApfZwUNrhLCkDtcHTcxd75RbzS1ed54G1LkBUHQVHQKqhMkhgbmJbZRkrgZw4koxb5JaHWkY4ALHY2grBGRjaDMzQLcgJvLJuZZvRcEL"); // m/0/2147483647h/1/2147483646h/2 test_path(&secp, Bitcoin, &seed, "m/0/2147483647h/1/2147483646h/2".parse().unwrap(), "xprvA2nrNbFZABcdryreWet9Ea4LvTJcGsqrMzxHx98MMrotbir7yrKCEXw7nadnHM8Dq38EGfSh6dqA9QWTyefMLEcBYJUuekgW4BYPJcr9E7j", "xpub6FnCn6nSzZAw5Tw7cgR9bi15UV96gLZhjDstkXXxvCLsUXBGXPdSnLFbdpq8p9HmGsApME5hQTZ3emM2rnY5agb9rXpVGyy3bdW6EEgAtqt"); } #[test] fn test_vector_3() { let secp = Secp256k1::new(); let seed = hex!("4b381541583be4423346c643850da4b320e46a87ae3d2a4e6da11eba819cd4acba45d239319ac14f863b8d5ab5a0d0c64d2e8a1e7d1457df2e5a3c51c73235be"); // m test_path(&secp, Bitcoin, &seed, "m".parse().unwrap(), "xprv9s21ZrQH143K25QhxbucbDDuQ4naNntJRi4KUfWT7xo4EKsHt2QJDu7KXp1A3u7Bi1j8ph3EGsZ9Xvz9dGuVrtHHs7pXeTzjuxBrCmmhgC6", "xpub661MyMwAqRbcEZVB4dScxMAdx6d4nFc9nvyvH3v4gJL378CSRZiYmhRoP7mBy6gSPSCYk6SzXPTf3ND1cZAceL7SfJ1Z3GC8vBgp2epUt13"); // m/0h test_path(&secp, Bitcoin, &seed, "m/0h".parse().unwrap(), "xprv9uPDJpEQgRQfDcW7BkF7eTya6RPxXeJCqCJGHuCJ4GiRVLzkTXBAJMu2qaMWPrS7AANYqdq6vcBcBUdJCVVFceUvJFjaPdGZ2y9WACViL4L", "xpub68NZiKmJWnxxS6aaHmn81bvJeTESw724CRDs6HbuccFQN9Ku14VQrADWgqbhhTHBaohPX4CjNLf9fq9MYo6oDaPPLPxSb7gwQN3ih19Zm4Y"); } #[test] #[cfg(feature = "serde")] pub fn encode_decode_childnumber() { serde_round_trip!(ChildNumber::from_normal_idx(0).unwrap()); serde_round_trip!(ChildNumber::from_normal_idx(1).unwrap()); serde_round_trip!(ChildNumber::from_normal_idx((1 << 31) - 1).unwrap()); serde_round_trip!(ChildNumber::from_hardened_idx(0).unwrap()); serde_round_trip!(ChildNumber::from_hardened_idx(1).unwrap()); serde_round_trip!(ChildNumber::from_hardened_idx((1 << 31) - 1).unwrap()); } #[test] #[cfg(feature = "serde")] pub fn encode_fingerprint_chaincode() { use serde_json; let fp = Fingerprint::from([1u8, 2, 3, 42]); #[rustfmt::skip] let cc = ChainCode::from( [1u8,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2] ); serde_round_trip!(fp); serde_round_trip!(cc); assert_eq!("\"0102032a\"", serde_json::to_string(&fp).unwrap()); assert_eq!( "\"0102030405060708090001020304050607080900010203040506070809000102\"", serde_json::to_string(&cc).unwrap() ); assert_eq!("0102032a", fp.to_string()); assert_eq!( "0102030405060708090001020304050607080900010203040506070809000102", cc.to_string() ); } #[test] fn fmt_child_number() { assert_eq!("000005h", &format!("{:#06}", ChildNumber::from_hardened_idx(5).unwrap())); assert_eq!("5h", &format!("{:#}", ChildNumber::from_hardened_idx(5).unwrap())); assert_eq!("000005'", &format!("{:06}", ChildNumber::from_hardened_idx(5).unwrap())); assert_eq!("5'", &format!("{}", ChildNumber::from_hardened_idx(5).unwrap())); assert_eq!("42", &format!("{}", ChildNumber::from_normal_idx(42).unwrap())); assert_eq!("000042", &format!("{:06}", ChildNumber::from_normal_idx(42).unwrap())); } #[test] #[should_panic(expected = "Secp256k1(InvalidSecretKey)")] fn schnorr_broken_privkey_zeros() { /* this is how we generate key: let mut sk = secp256k1::key::ONE_KEY; let zeros = [0u8; 32]; unsafe { sk.as_mut_ptr().copy_from(zeros.as_ptr(), 32); } let xpriv = ExtendedPrivKey { network: Network::Bitcoin, depth: 0, parent_fingerprint: Default::default(), child_number: ChildNumber::Normal { index: 0 }, private_key: sk, chain_code: ChainCode::from([0u8; 32]) }; println!("{}", xpriv); */ // Xpriv having secret key set to all zeros let xpriv_str = "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzF93Y5wvzdUayhgkkFoicQZcP3y52uPPxFnfoLZB21Teqt1VvEHx"; ExtendedPrivKey::from_str(xpriv_str).unwrap(); } #[test] #[should_panic(expected = "Secp256k1(InvalidSecretKey)")] fn schnorr_broken_privkey_ffs() { // Xpriv having secret key set to all 0xFF's let xpriv_str = "xprv9s21ZrQH143K24Mfq5zL5MhWK9hUhhGbd45hLXo2Pq2oqzMMo63oStZzFAzHGBP2UuGCqWLTAPLcMtD9y5gkZ6Eq3Rjuahrv17fENZ3QzxW"; ExtendedPrivKey::from_str(xpriv_str).unwrap(); } }