// SPDX-License-Identifier: CC0-1.0 //! Internal macros. //! //! Macros meant to be used inside the Rust Bitcoin library. macro_rules! impl_consensus_encoding { ($thing:ident, $($field:ident),+) => ( impl $crate::consensus::Encodable for $thing { #[inline] fn consensus_encode( &self, w: &mut W, ) -> core::result::Result { let mut len = 0; $(len += self.$field.consensus_encode(w)?;)+ Ok(len) } } impl $crate::consensus::Decodable for $thing { #[inline] fn consensus_decode_from_finite_reader( r: &mut R, ) -> core::result::Result<$thing, $crate::consensus::encode::Error> { Ok($thing { $($field: $crate::consensus::Decodable::consensus_decode_from_finite_reader(r)?),+ }) } #[inline] fn consensus_decode( r: &mut R, ) -> core::result::Result<$thing, $crate::consensus::encode::Error> { let mut r = r.take(internals::ToU64::to_u64($crate::consensus::encode::MAX_VEC_SIZE)); Ok($thing { $($field: $crate::consensus::Decodable::consensus_decode(&mut r)?),+ }) } } ); } pub(crate) use impl_consensus_encoding; /// Implements several string-ish traits for byte-based newtypes. /// /// - `fmt::Display` and `str::FromStr` (using lowercase hex) /// - `fmt::LowerHex` and `UpperHex` /// - `fmt::Debug` (using `LowerHex`) /// - `serde::Serialize` and `Deserialize` (using lowercase hex) /// /// As well as an inherent `from_hex` method. macro_rules! impl_array_newtype_stringify { ($t:ident, $len:literal) => { impl $t { /// Constructs a new `Self` from a hex string. pub fn from_hex(s: &str) -> Result { Ok($t($crate::hex::FromHex::from_hex(s)?)) } } impl core::fmt::LowerHex for $t { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { use $crate::hex::{display, Case}; display::fmt_hex_exact!(f, $len, &self.0, Case::Lower) } } impl core::fmt::UpperHex for $t { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { use $crate::hex::{display, Case}; display::fmt_hex_exact!(f, $len, &self.0, Case::Upper) } } impl core::fmt::Display for $t { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { core::fmt::LowerHex::fmt(self, f) } } impl core::fmt::Debug for $t { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { core::fmt::LowerHex::fmt(self, f) } } impl core::str::FromStr for $t { type Err = $crate::hex::HexToArrayError; fn from_str(s: &str) -> core::result::Result { Self::from_hex(s) } } #[cfg(feature = "serde")] impl $crate::serde::Serialize for $t { fn serialize( &self, s: S, ) -> core::result::Result { if s.is_human_readable() { s.collect_str(self) } else { s.serialize_bytes(&self[..]) } } } #[cfg(feature = "serde")] impl<'de> $crate::serde::Deserialize<'de> for $t { fn deserialize>( d: D, ) -> core::result::Result<$t, D::Error> { if d.is_human_readable() { struct HexVisitor; impl<'de> $crate::serde::de::Visitor<'de> for HexVisitor { type Value = $t; fn expecting(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { f.write_str("an ASCII hex string") } fn visit_bytes(self, v: &[u8]) -> core::result::Result where E: $crate::serde::de::Error, { use $crate::serde::de::Unexpected; if let Ok(hex) = core::str::from_utf8(v) { core::str::FromStr::from_str(hex).map_err(E::custom) } else { return Err(E::invalid_value(Unexpected::Bytes(v), &self)); } } fn visit_str(self, hex: &str) -> core::result::Result where E: $crate::serde::de::Error, { core::str::FromStr::from_str(hex).map_err(E::custom) } } d.deserialize_str(HexVisitor) } else { struct BytesVisitor; impl<'de> $crate::serde::de::Visitor<'de> for BytesVisitor { type Value = $t; fn expecting(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { f.write_str("a bytestring") } fn visit_bytes(self, v: &[u8]) -> core::result::Result where E: $crate::serde::de::Error, { if v.len() != $len { Err(E::invalid_length(v.len(), &stringify!($len))) } else { let mut ret = [0; $len]; ret.copy_from_slice(v); Ok($t(ret)) } } } d.deserialize_bytes(BytesVisitor) } } } }; } pub(crate) use impl_array_newtype_stringify; #[rustfmt::skip] macro_rules! impl_hashencode { ($hashtype:ident) => { impl $crate::consensus::Encodable for $hashtype { fn consensus_encode(&self, w: &mut W) -> core::result::Result { self.as_byte_array().consensus_encode(w) } } impl $crate::consensus::Decodable for $hashtype { fn consensus_decode(r: &mut R) -> core::result::Result { Ok(Self::from_byte_array(<<$hashtype as $crate::hashes::Hash>::Bytes>::consensus_decode(r)?)) } } }; } pub(crate) use impl_hashencode; #[rustfmt::skip] macro_rules! impl_asref_push_bytes { ($($hashtype:ident),*) => { $( impl AsRef<$crate::script::PushBytes> for $hashtype { fn as_ref(&self) -> &$crate::script::PushBytes { self.as_byte_array().into() } } impl From<$hashtype> for $crate::script::PushBytesBuf { fn from(hash: $hashtype) -> Self { hash.as_byte_array().into() } } )* }; } pub(crate) use impl_asref_push_bytes; macro_rules! only_doc_attrs { ({}, {$($fun:tt)*}) => { $($fun)* }; ({#[doc = $($doc:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc = $($doc)*] $($fun)* }); }; ({#[doc($($doc:tt)*)] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc($($doc)*)] $($fun)* }); }; ({#[$($other:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { $($fun)* }); }; } pub(crate) use only_doc_attrs; macro_rules! only_non_doc_attrs { ({}, {$($fun:tt)*}) => { $($fun)* }; ({#[doc = $($doc:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[doc = $($doc)*] $($fun)* }); }; ({#[doc($($doc:tt)*)] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { $($fun)* }); }; ({#[$($other:tt)*] $($all_attrs:tt)*}, {$($fun:tt)*}) => { $crate::internal_macros::only_doc_attrs!({ $($all_attrs)* }, { #[$(other)*] $($fun)* }); }; } pub(crate) use only_non_doc_attrs; /// Defines an trait `$trait_name` and implements it for `ty`, used to define extension traits. macro_rules! define_extension_trait { ($(#[$($trait_attrs:tt)*])* $trait_vis:vis trait $trait_name:ident impl for $ty:ident { $( $(#[$($fn_attrs:tt)*])* fn $fn:ident$(<$($gen:ident: $gent:path),*>)?($($params:tt)*) $( -> $ret:ty )? $body:block )* }) => { #[cfg_attr(docsrs, doc(notable_trait))] $(#[$($trait_attrs)*])* $trait_vis trait $trait_name: sealed::Sealed { $( $crate::internal_macros::only_doc_attrs! { { $(#[$($fn_attrs)*])* }, { fn $fn$(<$($gen: $gent),*>)?($($params)*) $( -> $ret )?; } } )* } impl $trait_name for $ty { $( $crate::internal_macros::only_non_doc_attrs! { { $(#[$($fn_attrs)*])* }, { fn $fn$(<$($gen: $gent),*>)?($($params)*) $( -> $ret )? $body } } )* } }; } pub(crate) use define_extension_trait; /// Implements standard array methods for a given wrapper type. macro_rules! impl_array_newtype { ($thing:ident, $ty:ty, $len:literal) => { impl $thing { /// Constructs a new `Self` by wrapping `bytes`. #[inline] pub fn from_byte_array(bytes: [u8; $len]) -> Self { Self(bytes) } /// Returns a reference the underlying byte array. #[inline] pub fn as_byte_array(&self) -> &[u8; $len] { &self.0 } /// Returns the underlying byte array. #[inline] pub fn to_byte_array(self) -> [u8; $len] { // We rely on `Copy` being implemented for $thing so conversion // methods use the correct Rust naming conventions. fn check_copy() {} check_copy::<$thing>(); self.0 } /// Copies the underlying bytes into a new `Vec`. #[inline] pub fn to_vec(self) -> alloc::vec::Vec { self.0.to_vec() } /// Returns a slice of the underlying bytes. #[inline] pub fn as_bytes(&self) -> &[u8] { &self.0 } /// Copies the underlying bytes into a new `Vec`. #[inline] #[deprecated(since = "TBD", note = "use to_vec instead")] pub fn to_bytes(self) -> alloc::vec::Vec { self.to_vec() } /// Converts the object to a raw pointer. #[inline] pub fn as_ptr(&self) -> *const $ty { let &$thing(ref dat) = self; dat.as_ptr() } /// Converts the object to a mutable raw pointer. #[inline] pub fn as_mut_ptr(&mut self) -> *mut $ty { let &mut $thing(ref mut dat) = self; dat.as_mut_ptr() } /// Returns the length of the object as an array. #[inline] pub fn len(&self) -> usize { $len } /// Returns whether the object, as an array, is empty. Always false. #[inline] pub fn is_empty(&self) -> bool { false } } impl<'a> core::convert::From<[$ty; $len]> for $thing { fn from(data: [$ty; $len]) -> Self { $thing(data) } } impl<'a> core::convert::From<&'a [$ty; $len]> for $thing { fn from(data: &'a [$ty; $len]) -> Self { $thing(*data) } } impl<'a> core::convert::TryFrom<&'a [$ty]> for $thing { type Error = core::array::TryFromSliceError; fn try_from(data: &'a [$ty]) -> core::result::Result { use core::convert::TryInto; Ok($thing(data.try_into()?)) } } impl AsRef<[$ty; $len]> for $thing { fn as_ref(&self) -> &[$ty; $len] { &self.0 } } impl AsMut<[$ty; $len]> for $thing { fn as_mut(&mut self) -> &mut [$ty; $len] { &mut self.0 } } impl AsRef<[$ty]> for $thing { fn as_ref(&self) -> &[$ty] { &self.0 } } impl AsMut<[$ty]> for $thing { fn as_mut(&mut self) -> &mut [$ty] { &mut self.0 } } impl core::borrow::Borrow<[$ty; $len]> for $thing { fn borrow(&self) -> &[$ty; $len] { &self.0 } } impl core::borrow::BorrowMut<[$ty; $len]> for $thing { fn borrow_mut(&mut self) -> &mut [$ty; $len] { &mut self.0 } } // The following two are valid because `[T; N]: Borrow<[T]>` impl core::borrow::Borrow<[$ty]> for $thing { fn borrow(&self) -> &[$ty] { &self.0 } } impl core::borrow::BorrowMut<[$ty]> for $thing { fn borrow_mut(&mut self) -> &mut [$ty] { &mut self.0 } } impl core::ops::Index for $thing where [$ty]: core::ops::Index, { type Output = <[$ty] as core::ops::Index>::Output; #[inline] fn index(&self, index: I) -> &Self::Output { &self.0[index] } } }; } pub(crate) use impl_array_newtype;