// SPDX-License-Identifier: CC0-1.0 //! An unsigned bitcoin amount. #[cfg(feature = "alloc")] use alloc::string::{String, ToString}; use core::str::FromStr; use core::{default, fmt, ops}; #[cfg(feature = "arbitrary")] use arbitrary::{Arbitrary, Unstructured}; use super::error::{ParseAmountErrorInner, ParseErrorInner}; use super::{ parse_signed_to_satoshi, split_amount_and_denomination, Denomination, Display, DisplayStyle, OutOfRangeError, ParseAmountError, ParseError, SignedAmount, }; #[cfg(feature = "alloc")] use crate::{FeeRate, Weight}; /// An amount. /// /// The [`Amount`] type can be used to express Bitcoin amounts that support arithmetic and /// conversion to various denominations. The [`Amount`] type does not implement [`serde`] traits /// but we do provide modules for serializing as satoshis or bitcoin. /// /// Warning! /// /// This type implements several arithmetic operations from [`core::ops`]. /// To prevent errors due to overflow or underflow when using these operations, /// it is advised to instead use the checked arithmetic methods whose names /// start with `checked_`. The operations from [`core::ops`] that [`Amount`] /// implements will panic when overflow or underflow occurs. Also note that /// since the internal representation of amounts is unsigned, subtracting below /// zero is considered an underflow and will cause a panic if you're not using /// the checked arithmetic methods. /// /// # Examples /// /// ``` /// # #[cfg(feature = "serde")] { /// use serde::{Serialize, Deserialize}; /// use bitcoin_units::Amount; /// /// #[derive(Serialize, Deserialize)] /// struct Foo { /// // If you are using `rust-bitcoin` then `bitcoin::amount::serde::as_sat` also works. /// #[serde(with = "bitcoin_units::amount::serde::as_sat")] // Also `serde::as_btc`. /// amount: Amount, /// } /// # } /// ``` #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct Amount(u64); impl Amount { /// The zero amount. pub const ZERO: Self = Amount(0); /// Exactly one satoshi. pub const ONE_SAT: Self = Amount(1); /// Exactly one bitcoin. pub const ONE_BTC: Self = Self::from_int_btc_const(1); /// The maximum value allowed as an amount. Useful for sanity checking. pub const MAX_MONEY: Self = Self::from_int_btc_const(21_000_000); /// The minimum value of an amount. pub const MIN: Self = Amount::ZERO; /// The maximum value of an amount. pub const MAX: Self = Amount::MAX_MONEY; /// The number of bytes that an amount contributes to the size of a transaction. pub const SIZE: usize = 8; // Serialized length of a u64. /// Constructs a new [`Amount`] with satoshi precision and the given number of satoshis. /// /// # Examples /// /// ``` /// # use bitcoin_units::Amount; /// let amount = Amount::from_sat(100_000); /// assert_eq!(amount.to_sat(), 100_000); /// ``` pub const fn from_sat(satoshi: u64) -> Amount { Amount(satoshi) } /// Gets the number of satoshis in this [`Amount`]. /// /// # Examples /// /// ``` /// # use bitcoin_units::Amount; /// assert_eq!(Amount::ONE_BTC.to_sat(), 100_000_000); /// ``` pub const fn to_sat(self) -> u64 { self.0 } /// Converts from a value expressing a decimal number of bitcoin to an [`Amount`]. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// Please be aware of the risk of using floating-point numbers. /// /// # Examples /// /// ``` /// # use bitcoin_units::Amount; /// let amount = Amount::from_btc(0.01).expect("we know 0.01 is valid"); /// assert_eq!(amount.to_sat(), 1_000_000); /// ``` #[cfg(feature = "alloc")] pub fn from_btc(btc: f64) -> Result { Amount::from_float_in(btc, Denomination::Bitcoin) } /// Converts from a value expressing a whole number of bitcoin to an [`Amount`]. /// /// # Errors /// /// The function errors if the argument multiplied by the number of sats /// per bitcoin overflows a `u64` type. pub fn from_int_btc>(whole_bitcoin: T) -> Result { match whole_bitcoin.into().checked_mul(100_000_000) { Some(amount) => Ok(Amount::from_sat(amount)), None => Err(OutOfRangeError { is_signed: false, is_greater_than_max: true }), } } /// Converts from a value expressing a whole number of bitcoin to an [`Amount`] /// in const context. /// /// # Panics /// /// The function panics if the argument multiplied by the number of sats /// per bitcoin overflows a `u64` type. pub const fn from_int_btc_const(whole_bitcoin: u32) -> Amount { let btc = whole_bitcoin as u64; // Can't call u64::from in const context. match btc.checked_mul(100_000_000) { Some(amount) => Amount::from_sat(amount), None => panic!("checked_mul overflowed"), } } /// Parses a decimal string as a value in the given [`Denomination`]. /// /// Note: This only parses the value string. If you want to parse a string /// containing the value with denomination, use [`FromStr`]. /// /// # Errors /// /// If the amount is too big, too precise or negative. pub fn from_str_in(s: &str, denom: Denomination) -> Result { let (negative, satoshi) = parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(false))?; if negative { return Err(ParseAmountError(ParseAmountErrorInner::OutOfRange( OutOfRangeError::negative(), ))); } if satoshi > Self::MAX.0 { return Err(ParseAmountError(ParseAmountErrorInner::OutOfRange( OutOfRangeError::too_big(false), ))); } Ok(Amount::from_sat(satoshi)) } /// Parses amounts with denomination suffix as produced by [`Self::to_string_with_denomination`] /// or with [`fmt::Display`]. /// /// If you want to parse only the amount without the denomination, use [`Self::from_str_in`]. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// # Examples /// /// ``` /// # use bitcoin_units::{amount, Amount}; /// let amount = Amount::from_str_with_denomination("0.1 BTC")?; /// assert_eq!(amount, Amount::from_sat(10_000_000)); /// # Ok::<_, amount::ParseError>(()) /// ``` pub fn from_str_with_denomination(s: &str) -> Result { let (amt, denom) = split_amount_and_denomination(s)?; Amount::from_str_in(amt, denom).map_err(Into::into) } /// Expresses this [`Amount`] as a floating-point value in the given [`Denomination`]. /// /// Please be aware of the risk of using floating-point numbers. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// let amount = Amount::from_sat(100_000); /// assert_eq!(amount.to_float_in(Denomination::Bitcoin), 0.001) /// ``` #[cfg(feature = "alloc")] pub fn to_float_in(self, denom: Denomination) -> f64 { self.to_string_in(denom).parse::().unwrap() } /// Expresses this [`Amount`] as a floating-point value in Bitcoin. /// /// Please be aware of the risk of using floating-point numbers. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// let amount = Amount::from_sat(100_000); /// assert_eq!(amount.to_btc(), amount.to_float_in(Denomination::Bitcoin)) /// ``` #[cfg(feature = "alloc")] pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) } /// Converts this [`Amount`] in floating-point notation in the given [`Denomination`]. /// /// # Errors /// /// If the amount is too big, too precise or negative. /// /// Please be aware of the risk of using floating-point numbers. #[cfg(feature = "alloc")] pub fn from_float_in(value: f64, denom: Denomination) -> Result { if value < 0.0 { return Err(OutOfRangeError::negative().into()); } // This is inefficient, but the safest way to deal with this. The parsing logic is safe. // Any performance-critical application should not be dealing with floats. Amount::from_str_in(&value.to_string(), denom) } /// Constructs a new object that implements [`fmt::Display`] in the given [`Denomination`]. /// /// This function is useful if you do not wish to allocate. See also [`Self::to_string_in`]. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// # use std::fmt::Write; /// let amount = Amount::from_sat(10_000_000); /// let mut output = String::new(); /// write!(&mut output, "{}", amount.display_in(Denomination::Bitcoin))?; /// assert_eq!(output, "0.1"); /// # Ok::<(), std::fmt::Error>(()) /// ``` #[must_use] pub fn display_in(self, denomination: Denomination) -> Display { Display { sats_abs: self.to_sat(), is_negative: false, style: DisplayStyle::FixedDenomination { denomination, show_denomination: false }, } } /// Constructs a new object that implements [`fmt::Display`] dynamically selecting /// [`Denomination`]. /// /// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To /// avoid confusion the denomination is always shown. #[must_use] pub fn display_dynamic(self) -> Display { Display { sats_abs: self.to_sat(), is_negative: false, style: DisplayStyle::DynamicDenomination, } } /// Returns a formatted string representing this [`Amount`] in the given [`Denomination`]. /// /// Returned string does not include the denomination. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// let amount = Amount::from_sat(10_000_000); /// assert_eq!(amount.to_string_in(Denomination::Bitcoin), "0.1") /// ``` #[cfg(feature = "alloc")] pub fn to_string_in(self, denom: Denomination) -> String { self.display_in(denom).to_string() } /// Returns a formatted string representing this [`Amount`] in the given [`Denomination`], /// suffixed with the abbreviation for the denomination. /// /// # Examples /// /// ``` /// # use bitcoin_units::amount::{Amount, Denomination}; /// let amount = Amount::from_sat(10_000_000); /// assert_eq!(amount.to_string_with_denomination(Denomination::Bitcoin), "0.1 BTC") /// ``` #[cfg(feature = "alloc")] pub fn to_string_with_denomination(self, denom: Denomination) -> String { self.display_in(denom).show_denomination().to_string() } /// Checked addition. /// /// Returns [`None`] if the sum is larger than [`Amount::MAX`]. #[must_use] pub const fn checked_add(self, rhs: Amount) -> Option { // No `map()` in const context. match self.0.checked_add(rhs.0) { Some(res) => Amount(res).check_max(), None => None, } } /// Checked subtraction. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_sub(self, rhs: Amount) -> Option { // No `map()` in const context. match self.0.checked_sub(rhs.0) { Some(res) => Some(Amount(res)), None => None, } } /// Checked multiplication. /// /// Returns [`None`] if the product is larger than [`Amount::MAX`]. #[must_use] pub const fn checked_mul(self, rhs: u64) -> Option { // No `map()` in const context. match self.0.checked_mul(rhs) { Some(res) => Amount(res).check_max(), None => None, } } /// Checked integer division. /// /// Be aware that integer division loses the remainder if no exact division can be made. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_div(self, rhs: u64) -> Option { // No `map()` in const context. match self.0.checked_div(rhs) { Some(res) => Some(Amount(res)), None => None, } } /// Checked weight ceiling division. /// /// Be aware that integer division loses the remainder if no exact division /// can be made. This method rounds up ensuring the transaction fee-rate is /// sufficient. See also [`Self::checked_div_by_weight_floor`]. /// /// Returns [`None`] if overflow occurred. /// /// # Examples /// /// ``` /// # use bitcoin_units::{Amount, FeeRate, Weight}; /// let amount = Amount::from_sat(10); /// let weight = Weight::from_wu(300); /// let fee_rate = amount.checked_div_by_weight_ceil(weight).expect("Division by weight failed"); /// assert_eq!(fee_rate, FeeRate::from_sat_per_kwu(34)); /// ``` #[cfg(feature = "alloc")] #[must_use] pub const fn checked_div_by_weight_ceil(self, weight: Weight) -> Option { let wu = weight.to_wu(); // No `?` operator in const context. if let Some(sats) = self.0.checked_mul(1_000) { if let Some(wu_minus_one) = wu.checked_sub(1) { if let Some(sats_plus_wu_minus_one) = sats.checked_add(wu_minus_one) { if let Some(fee_rate) = sats_plus_wu_minus_one.checked_div(wu) { return Some(FeeRate::from_sat_per_kwu(fee_rate)); } } } } None } /// Checked weight floor division. /// /// Be aware that integer division loses the remainder if no exact division /// can be made. See also [`Self::checked_div_by_weight_ceil`]. /// /// Returns [`None`] if overflow occurred. #[cfg(feature = "alloc")] #[must_use] pub const fn checked_div_by_weight_floor(self, weight: Weight) -> Option { // No `?` operator in const context. match self.0.checked_mul(1_000) { Some(res) => match res.checked_div(weight.to_wu()) { Some(fee_rate) => Some(FeeRate::from_sat_per_kwu(fee_rate)), None => None, }, None => None, } } /// Checked remainder. /// /// Returns [`None`] if overflow occurred. #[must_use] pub const fn checked_rem(self, rhs: u64) -> Option { // No `map()` in const context. match self.0.checked_rem(rhs) { Some(res) => Some(Amount(res)), None => None, } } /// Unchecked addition. /// /// Computes `self + rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. #[must_use] #[deprecated(since = "TBD", note = "consider converting to u64 using `to_sat`")] pub fn unchecked_add(self, rhs: Amount) -> Amount { Self(self.0 + rhs.0) } /// Unchecked subtraction. /// /// Computes `self - rhs`. /// /// # Panics /// /// On overflow, panics in debug mode, wraps in release mode. #[must_use] #[deprecated(since = "TBD", note = "consider converting to u64 using `to_sat`")] pub fn unchecked_sub(self, rhs: Amount) -> Amount { Self(self.0 - rhs.0) } /// Converts to a signed amount. #[rustfmt::skip] // Moves code comments to the wrong line. pub fn to_signed(self) -> SignedAmount { SignedAmount::from_sat_unchecked(self.to_sat() as i64) // Cast ok, signed amount and amount share positive range. } /// Checks if the amount is below the maximum value. Returns `None` if it is above. const fn check_max(self) -> Option { if self.0 > Self::MAX.0 { None } else { Some(self) } } } impl default::Default for Amount { fn default() -> Self { Amount::ZERO } } impl fmt::Debug for Amount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "Amount({} SAT)", self.to_sat()) } } // No one should depend on a binding contract for Display for this type. // Just using Bitcoin denominated string. impl fmt::Display for Amount { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.display_in(Denomination::Bitcoin).show_denomination(), f) } } impl ops::Add for Amount { type Output = Amount; fn add(self, rhs: Amount) -> Self::Output { self.checked_add(rhs).expect("Amount addition error") } } crate::internal_macros::impl_add_for_references!(Amount); crate::internal_macros::impl_add_assign!(Amount); impl ops::Sub for Amount { type Output = Amount; fn sub(self, rhs: Amount) -> Self::Output { self.checked_sub(rhs).expect("Amount subtraction error") } } crate::internal_macros::impl_sub_for_references!(Amount); crate::internal_macros::impl_sub_assign!(Amount); impl ops::Rem for Amount { type Output = Amount; fn rem(self, modulus: u64) -> Self { self.checked_rem(modulus).expect("Amount remainder error") } } impl ops::RemAssign for Amount { fn rem_assign(&mut self, modulus: u64) { *self = *self % modulus } } impl ops::Mul for Amount { type Output = Amount; fn mul(self, rhs: u64) -> Self::Output { self.checked_mul(rhs).expect("Amount multiplication error") } } impl ops::MulAssign for Amount { fn mul_assign(&mut self, rhs: u64) { *self = *self * rhs } } impl ops::Div for Amount { type Output = Amount; fn div(self, rhs: u64) -> Self::Output { self.checked_div(rhs).expect("Amount division error") } } impl ops::DivAssign for Amount { fn div_assign(&mut self, rhs: u64) { *self = *self / rhs } } impl FromStr for Amount { type Err = ParseError; /// Parses a string slice where the slice includes a denomination. /// /// If the returned value would be zero or negative zero, then no denomination is required. fn from_str(s: &str) -> Result { let result = Amount::from_str_with_denomination(s); match result { Err(ParseError(ParseErrorInner::MissingDenomination(_))) => { let d = Amount::from_str_in(s, Denomination::Satoshi); if d == Ok(Amount::ZERO) { Ok(Amount::ZERO) } else { result } } _ => result, } } } impl TryFrom for Amount { type Error = OutOfRangeError; fn try_from(value: SignedAmount) -> Result { value.to_unsigned() } } impl core::iter::Sum for Amount { fn sum>(iter: I) -> Self { let sats: u64 = iter.map(|amt| amt.0).sum(); Amount::from_sat(sats) } } impl<'a> core::iter::Sum<&'a Amount> for Amount { fn sum(iter: I) -> Self where I: Iterator, { let sats: u64 = iter.map(|amt| amt.0).sum(); Amount::from_sat(sats) } } #[cfg(feature = "arbitrary")] impl<'a> Arbitrary<'a> for Amount { fn arbitrary(u: &mut Unstructured<'a>) -> arbitrary::Result { let a = u64::arbitrary(u)?; Ok(Amount(a)) } }