// Rust Bitcoin Library // Written in 2018 by // Andrew Poelstra // To the extent possible under law, the author(s) have dedicated all // copyright and related and neighboring rights to this software to // the public domain worldwide. This software is distributed without // any warranty. // // You should have received a copy of the CC0 Public Domain Dedication // along with this software. // If not, see . // //! BIP143 Implementation //! //! Implementation of BIP143 Segwit-style signatures. Should be sufficient //! to create signatures for Segwit transactions (which should be pushed into //! the appropriate place in the `Transaction::witness` array) or bcash //! signatures, which are placed in the scriptSig. //! use hashes::{Hash, sha256d}; use hash_types::SigHash; use blockdata::script::Script; use blockdata::transaction::{Transaction, TxIn, SigHashType}; use consensus::{encode, Encodable}; use std::io; use std::ops::{Deref, DerefMut}; /// Parts of a sighash which are common across inputs or signatures, and which are /// sufficient (in conjunction with a private key) to sign the transaction #[derive(Clone, PartialEq, Eq, Debug)] #[deprecated(since="0.24.0", note="please use `SigHashCache` instead")] pub struct SighashComponents { tx_version: i32, tx_locktime: u32, /// Hash of all the previous outputs pub hash_prevouts: SigHash, /// Hash of all the input sequence nos pub hash_sequence: SigHash, /// Hash of all the outputs in this transaction pub hash_outputs: SigHash, } #[allow(deprecated)] impl SighashComponents { /// Compute the sighash components from an unsigned transaction and auxiliary /// information about its inputs. /// For the generated sighashes to be valid, no fields in the transaction may change except for /// script_sig and witnesses. pub fn new(tx: &Transaction) -> SighashComponents { let hash_prevouts = { let mut enc = SigHash::engine(); for txin in &tx.input { txin.previous_output.consensus_encode(&mut enc).unwrap(); } SigHash::from_engine(enc) }; let hash_sequence = { let mut enc = SigHash::engine(); for txin in &tx.input { txin.sequence.consensus_encode(&mut enc).unwrap(); } SigHash::from_engine(enc) }; let hash_outputs = { let mut enc = SigHash::engine(); for txout in &tx.output { txout.consensus_encode(&mut enc).unwrap(); } SigHash::from_engine(enc) }; SighashComponents { tx_version: tx.version, tx_locktime: tx.lock_time, hash_prevouts: hash_prevouts, hash_sequence: hash_sequence, hash_outputs: hash_outputs, } } /// Compute the BIP143 sighash for a `SIGHASH_ALL` signature for the given /// input. pub fn sighash_all(&self, txin: &TxIn, script_code: &Script, value: u64) -> SigHash { let mut enc = SigHash::engine(); self.tx_version.consensus_encode(&mut enc).unwrap(); self.hash_prevouts.consensus_encode(&mut enc).unwrap(); self.hash_sequence.consensus_encode(&mut enc).unwrap(); txin .previous_output .consensus_encode(&mut enc) .unwrap(); script_code.consensus_encode(&mut enc).unwrap(); value.consensus_encode(&mut enc).unwrap(); txin.sequence.consensus_encode(&mut enc).unwrap(); self.hash_outputs.consensus_encode(&mut enc).unwrap(); self.tx_locktime.consensus_encode(&mut enc).unwrap(); 1u32.consensus_encode(&mut enc).unwrap(); // hashtype SigHash::from_engine(enc) } } /// A replacement for SigHashComponents which supports all sighash modes pub struct SigHashCache> { /// Access to transaction required for various introspection tx: R, /// Hash of all the previous outputs, computed as required hash_prevouts: Option, /// Hash of all the input sequence nos, computed as required hash_sequence: Option, /// Hash of all the outputs in this transaction, computed as required hash_outputs: Option, } impl> SigHashCache { /// Compute the sighash components from an unsigned transaction and auxiliary /// in a lazy manner when required. /// For the generated sighashes to be valid, no fields in the transaction may change except for /// script_sig and witnesses. pub fn new(tx: R) -> Self { SigHashCache { tx: tx, hash_prevouts: None, hash_sequence: None, hash_outputs: None, } } /// Calculate hash for prevouts pub fn hash_prevouts(&mut self) -> sha256d::Hash { let hash_prevout = &mut self.hash_prevouts; let input = &self.tx.input; *hash_prevout.get_or_insert_with(|| { let mut enc = sha256d::Hash::engine(); for txin in input { txin.previous_output.consensus_encode(&mut enc).unwrap(); } sha256d::Hash::from_engine(enc) }) } /// Calculate hash for input sequence values pub fn hash_sequence(&mut self) -> sha256d::Hash { let hash_sequence = &mut self.hash_sequence; let input = &self.tx.input; *hash_sequence.get_or_insert_with(|| { let mut enc = sha256d::Hash::engine(); for txin in input { txin.sequence.consensus_encode(&mut enc).unwrap(); } sha256d::Hash::from_engine(enc) }) } /// Calculate hash for outputs pub fn hash_outputs(&mut self) -> sha256d::Hash { let hash_output = &mut self.hash_outputs; let output = &self.tx.output; *hash_output.get_or_insert_with(|| { let mut enc = sha256d::Hash::engine(); for txout in output { txout.consensus_encode(&mut enc).unwrap(); } sha256d::Hash::from_engine(enc) }) } /// Encode the BIP143 signing data for any flag type into a given object implementing a /// std::io::Write trait. pub fn encode_signing_data_to( &mut self, mut writer: Write, input_index: usize, script_code: &Script, value: u64, sighash_type: SigHashType, ) -> Result<(), encode::Error> { let zero_hash = sha256d::Hash::default(); let (sighash, anyone_can_pay) = sighash_type.split_anyonecanpay_flag(); self.tx.version.consensus_encode(&mut writer)?; if !anyone_can_pay { self.hash_prevouts().consensus_encode(&mut writer)?; } else { zero_hash.consensus_encode(&mut writer)?; } if !anyone_can_pay && sighash != SigHashType::Single && sighash != SigHashType::None { self.hash_sequence().consensus_encode(&mut writer)?; } else { zero_hash.consensus_encode(&mut writer)?; } { let txin = &self.tx.input[input_index]; txin .previous_output .consensus_encode(&mut writer)?; script_code.consensus_encode(&mut writer)?; value.consensus_encode(&mut writer)?; txin.sequence.consensus_encode(&mut writer)?; } if sighash != SigHashType::Single && sighash != SigHashType::None { self.hash_outputs().consensus_encode(&mut writer)?; } else if sighash == SigHashType::Single && input_index < self.tx.output.len() { let mut single_enc = SigHash::engine(); self.tx.output[input_index].consensus_encode(&mut single_enc)?; SigHash::from_engine(single_enc).consensus_encode(&mut writer)?; } else { zero_hash.consensus_encode(&mut writer)?; } self.tx.lock_time.consensus_encode(&mut writer)?; sighash_type.as_u32().consensus_encode(&mut writer)?; Ok(()) } /// Compute the BIP143 sighash for any flag type. See SighashComponents::sighash_all simpler /// API for the most common case pub fn signature_hash( &mut self, input_index: usize, script_code: &Script, value: u64, sighash_type: SigHashType ) -> SigHash { let mut enc = SigHash::engine(); self.encode_signing_data_to(&mut enc, input_index, script_code, value, sighash_type) .expect("engines don't error"); SigHash::from_engine(enc) } } impl> SigHashCache { /// When the SigHashCache is initialized with a mutable reference to a transaction instead of a /// regular reference, this method is available to allow modification to the witnesses. /// /// This allows in-line signing such as /// ``` /// use bitcoin::blockdata::transaction::{Transaction, SigHashType}; /// use bitcoin::util::bip143::SigHashCache; /// use bitcoin::Script; /// /// let mut tx_to_sign = Transaction { version: 2, lock_time: 0, input: Vec::new(), output: Vec::new() }; /// let input_count = tx_to_sign.input.len(); /// /// let mut sig_hasher = SigHashCache::new(&mut tx_to_sign); /// for inp in 0..input_count { /// let prevout_script = Script::new(); /// let _sighash = sig_hasher.signature_hash(inp, &prevout_script, 42, SigHashType::All); /// // ... sign the sighash /// sig_hasher.access_witness(inp).push(Vec::new()); /// } /// ``` pub fn access_witness(&mut self, input_index: usize) -> &mut Vec> { &mut self.tx.input[input_index].witness } } #[cfg(test)] #[allow(deprecated)] mod tests { use hash_types::SigHash; use blockdata::script::Script; use blockdata::transaction::Transaction; use consensus::encode::deserialize; use network::constants::Network; use util::address::Address; use util::key::PublicKey; use hashes::hex::FromHex; use super::*; fn p2pkh_hex(pk: &str) -> Script { let pk = Vec::from_hex(pk).unwrap(); let pk = PublicKey::from_slice(pk.as_slice()).unwrap(); let witness_script = Address::p2pkh(&pk, Network::Bitcoin).script_pubkey(); witness_script } fn run_test_sighash_bip143(tx: &str, script: &str, input_index: usize, value: u64, hash_type: u32, expected_result: &str) { let tx: Transaction = deserialize(&Vec::::from_hex(tx).unwrap()[..]).unwrap(); let script = Script::from(Vec::::from_hex(script).unwrap()); let raw_expected = SigHash::from_hex(expected_result).unwrap(); let expected_result = SigHash::from_slice(&raw_expected[..]).unwrap(); let mut cache = SigHashCache::new(&tx); let sighash_type = SigHashType::from_u32(hash_type); let actual_result = cache.signature_hash(input_index, &script, value, sighash_type); assert_eq!(actual_result, expected_result); } #[test] fn bip143_p2wpkh() { let tx = deserialize::( &Vec::from_hex( "0100000002fff7f7881a8099afa6940d42d1e7f6362bec38171ea3edf433541db4e4ad969f000000\ 0000eeffffffef51e1b804cc89d182d279655c3aa89e815b1b309fe287d9b2b55d57b90ec68a01000000\ 00ffffffff02202cb206000000001976a9148280b37df378db99f66f85c95a783a76ac7a6d5988ac9093\ 510d000000001976a9143bde42dbee7e4dbe6a21b2d50ce2f0167faa815988ac11000000", ).unwrap()[..], ).unwrap(); let witness_script = p2pkh_hex("025476c2e83188368da1ff3e292e7acafcdb3566bb0ad253f62fc70f07aeee6357"); let value = 600_000_000; let comp = SighashComponents::new(&tx); assert_eq!( comp, SighashComponents { tx_version: 1, tx_locktime: 17, hash_prevouts: hex_hash!( SigHash, "96b827c8483d4e9b96712b6713a7b68d6e8003a781feba36c31143470b4efd37" ), hash_sequence: hex_hash!( SigHash, "52b0a642eea2fb7ae638c36f6252b6750293dbe574a806984b8e4d8548339a3b" ), hash_outputs: hex_hash!( SigHash, "863ef3e1a92afbfdb97f31ad0fc7683ee943e9abcf2501590ff8f6551f47e5e5" ), } ); assert_eq!( comp.sighash_all(&tx.input[1], &witness_script, value), hex_hash!(SigHash, "c37af31116d1b27caf68aae9e3ac82f1477929014d5b917657d0eb49478cb670") ); } #[test] fn bip143_p2wpkh_nested_in_p2sh() { let tx = deserialize::( &Vec::from_hex( "0100000001db6b1b20aa0fd7b23880be2ecbd4a98130974cf4748fb66092ac4d3ceb1a5477010000\ 0000feffffff02b8b4eb0b000000001976a914a457b684d7f0d539a46a45bbc043f35b59d0d96388ac00\ 08af2f000000001976a914fd270b1ee6abcaea97fea7ad0402e8bd8ad6d77c88ac92040000", ).unwrap()[..], ).unwrap(); let witness_script = p2pkh_hex("03ad1d8e89212f0b92c74d23bb710c00662ad1470198ac48c43f7d6f93a2a26873"); let value = 1_000_000_000; let comp = SighashComponents::new(&tx); assert_eq!( comp, SighashComponents { tx_version: 1, tx_locktime: 1170, hash_prevouts: hex_hash!( SigHash, "b0287b4a252ac05af83d2dcef00ba313af78a3e9c329afa216eb3aa2a7b4613a" ), hash_sequence: hex_hash!( SigHash, "18606b350cd8bf565266bc352f0caddcf01e8fa789dd8a15386327cf8cabe198" ), hash_outputs: hex_hash!( SigHash, "de984f44532e2173ca0d64314fcefe6d30da6f8cf27bafa706da61df8a226c83" ), } ); assert_eq!( comp.sighash_all(&tx.input[0], &witness_script, value), hex_hash!(SigHash, "64f3b0f4dd2bb3aa1ce8566d220cc74dda9df97d8490cc81d89d735c92e59fb6") ); } #[test] fn bip143_p2wsh_nested_in_p2sh() { let tx = deserialize::( &Vec::from_hex( "010000000136641869ca081e70f394c6948e8af409e18b619df2ed74aa106c1ca29787b96e0100000000\ ffffffff0200e9a435000000001976a914389ffce9cd9ae88dcc0631e88a821ffdbe9bfe2688acc0832f\ 05000000001976a9147480a33f950689af511e6e84c138dbbd3c3ee41588ac00000000").unwrap()[..], ).unwrap(); let witness_script = hex_script!( "56210307b8ae49ac90a048e9b53357a2354b3334e9c8bee813ecb98e99a7e07e8c3ba32103b28f0c28\ bfab54554ae8c658ac5c3e0ce6e79ad336331f78c428dd43eea8449b21034b8113d703413d57761b8b\ 9781957b8c0ac1dfe69f492580ca4195f50376ba4a21033400f6afecb833092a9a21cfdf1ed1376e58\ c5d1f47de74683123987e967a8f42103a6d48b1131e94ba04d9737d61acdaa1322008af9602b3b1486\ 2c07a1789aac162102d8b661b0b3302ee2f162b09e07a55ad5dfbe673a9f01d9f0c19617681024306b\ 56ae" ); let value = 987654321; let comp = SighashComponents::new(&tx); assert_eq!( comp, SighashComponents { tx_version: 1, tx_locktime: 0, hash_prevouts: hex_hash!( SigHash, "74afdc312af5183c4198a40ca3c1a275b485496dd3929bca388c4b5e31f7aaa0" ), hash_sequence: hex_hash!( SigHash, "3bb13029ce7b1f559ef5e747fcac439f1455a2ec7c5f09b72290795e70665044" ), hash_outputs: hex_hash!( SigHash, "bc4d309071414bed932f98832b27b4d76dad7e6c1346f487a8fdbb8eb90307cc" ), } ); assert_eq!( comp.sighash_all(&tx.input[0], &witness_script, value), hex_hash!(SigHash, "185c0be5263dce5b4bb50a047973c1b6272bfbd0103a89444597dc40b248ee7c") ); } #[test] fn bip143_sighash_flags() { // All examples generated via Bitcoin Core RPC using signrawtransactionwithwallet // with additional debug printing run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x01, "0a1bc2758dbb5b3a56646f8cafbf63f410cc62b77a482f8b87552683300a7711"); run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x02, "3e275ac8b084f79f756dcd535bffb615cc94a685eefa244d9031eaf22e4cec12"); run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x03, "191a08165ffacc3ea55753b225f323c35fd00d9cc0268081a4a501921fc6ec14"); run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x81, "4b6b612530f94470bbbdef18f57f2990d56b239f41b8728b9a49dc8121de4559"); run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x82, "a7e916d3acd4bb97a21e6793828279aeab02162adf8099ea4f309af81f3d5adb"); run_test_sighash_bip143("0200000001cf309ee0839b8aaa3fbc84f8bd32e9c6357e99b49bf6a3af90308c68e762f1d70100000000feffffff0288528c61000000001600146e8d9e07c543a309dcdeba8b50a14a991a658c5be0aebb0000000000160014698d8419804a5d5994704d47947889ff7620c004db000000", "76a91462744660c6b5133ddeaacbc57d2dc2d7b14d0b0688ac", 0, 1648888940, 0x83, "d9276e2a48648ddb53a4aaa58314fc2b8067c13013e1913ffb67e0988ce82c78"); } }