// SPDX-License-Identifier: CC0-1.0 //! Bitcoin network constants. //! //! This module provides various constants relating to the Bitcoin network //! protocol, such as protocol versioning and magic header bytes. //! //! The [`Network`][1] type implements the [`Decodable`][2] and //! [`Encodable`][3] traits and encodes the magic bytes of the given //! network. //! //! [1]: enum.Network.html //! [2]: ../../consensus/encode/trait.Decodable.html //! [3]: ../../consensus/encode/trait.Encodable.html //! //! # Example: encoding a network's magic bytes //! //! ```rust //! use bitcoin::network::constants::Network; //! use bitcoin::consensus::encode::serialize; //! //! let network = Network::Bitcoin; //! let bytes = serialize(&network.magic()); //! //! assert_eq!(&bytes[..], &[0xF9, 0xBE, 0xB4, 0xD9]); //! ``` use core::borrow::{Borrow, BorrowMut}; use core::convert::TryFrom; use core::fmt::Display; use core::str::FromStr; use core::{fmt, ops}; use hashes::hex::{Error, FromHex}; use internals::{debug_from_display, write_err}; #[cfg(feature = "serde")] use serde::{Deserialize, Serialize}; use crate::consensus::encode::{self, Decodable, Encodable}; use crate::constants::ChainHash; use crate::error::impl_std_error; use crate::io; use crate::prelude::{String, ToOwned}; /// Version of the protocol as appearing in network message headers /// This constant is used to signal to other peers which features you support. /// Increasing it implies that your software also supports every feature prior to this version. /// Doing so without support may lead to you incorrectly banning other peers or other peers banning you. /// These are the features required for each version: /// 70016 - Support receiving `wtxidrelay` message between `version` and `verack` message /// 70015 - Support receiving invalid compact blocks from a peer without banning them /// 70014 - Support compact block messages `sendcmpct`, `cmpctblock`, `getblocktxn` and `blocktxn` /// 70013 - Support `feefilter` message /// 70012 - Support `sendheaders` message and announce new blocks via headers rather than inv /// 70011 - Support NODE_BLOOM service flag and don't support bloom filter messages if it is not set /// 70002 - Support `reject` message /// 70001 - Support bloom filter messages `filterload`, `filterclear` `filteradd`, `merkleblock` and FILTERED_BLOCK inventory type /// 60002 - Support `mempool` message /// 60001 - Support `pong` message and nonce in `ping` message pub const PROTOCOL_VERSION: u32 = 70001; /// The cryptocurrency network to act on. #[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Clone, Hash, Debug)] #[cfg_attr(feature = "serde", derive(Serialize, Deserialize))] #[cfg_attr(feature = "serde", serde(crate = "actual_serde"))] #[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))] #[non_exhaustive] pub enum Network { /// Mainnet Bitcoin. Bitcoin, /// Bitcoin's testnet network. Testnet, /// Bitcoin's signet network. Signet, /// Bitcoin's regtest network. Regtest, } impl Network { /// Creates a `Network` from the magic bytes. /// /// # Examples /// /// ```rust /// use bitcoin::network::constants::{Network, Magic}; /// use std::convert::TryFrom; /// /// assert_eq!(Ok(Network::Bitcoin), Network::try_from(Magic::from_bytes([0xF9, 0xBE, 0xB4, 0xD9]))); /// assert_eq!(None, Network::from_magic(Magic::from_bytes([0xFF, 0xFF, 0xFF, 0xFF]))); /// ``` pub fn from_magic(magic: Magic) -> Option { Network::try_from(magic).ok() } /// Return the network magic bytes, which should be encoded little-endian /// at the start of every message /// /// # Examples /// /// ```rust /// use bitcoin::network::constants::{Network, Magic}; /// /// let network = Network::Bitcoin; /// assert_eq!(network.magic(), Magic::from_bytes([0xF9, 0xBE, 0xB4, 0xD9])); /// ``` pub fn magic(self) -> Magic { Magic::from(self) } /// Converts a `Network` to its equivalent `bitcoind -chain` argument name. /// /// ```bash /// $ bitcoin-23.0/bin/bitcoind --help | grep -C 3 '\-chain=' /// Chain selection options: /// /// -chain= /// Use the chain (default: main). Allowed values: main, test, signet, regtest /// ``` pub fn to_core_arg(self) -> &'static str { match self { Network::Bitcoin => "main", Network::Testnet => "test", Network::Signet => "signet", Network::Regtest => "regtest", } } /// Converts a `bitcoind -chain` argument name to its equivalent `Network`. /// /// ```bash /// $ bitcoin-23.0/bin/bitcoind --help | grep -C 3 '\-chain=' /// Chain selection options: /// /// -chain= /// Use the chain (default: main). Allowed values: main, test, signet, regtest /// ``` pub fn from_core_arg(core_arg: &str) -> Result { use Network::*; let network = match core_arg { "main" => Bitcoin, "test" => Testnet, "signet" => Signet, "regtest" => Regtest, _ => return Err(ParseNetworkError(core_arg.to_owned())), }; Ok(network) } /// Return the network's chain hash (genesis block hash). /// /// # Examples /// /// ```rust /// use bitcoin::network::constants::Network; /// use bitcoin::blockdata::constants::ChainHash; /// /// let network = Network::Bitcoin; /// assert_eq!(network.chain_hash(), ChainHash::BITCOIN); /// ``` pub fn chain_hash(self) -> ChainHash { ChainHash::using_genesis_block(self) } /// Creates a `Network` from the chain hash (genesis block hash). /// /// # Examples /// /// ```rust /// use bitcoin::network::constants::Network; /// use bitcoin::blockdata::constants::ChainHash; /// use std::convert::TryFrom; /// /// assert_eq!(Ok(Network::Bitcoin), Network::try_from(ChainHash::BITCOIN)); /// ``` pub fn from_chain_hash(chain_hash: ChainHash) -> Option { Network::try_from(chain_hash).ok() } } #[cfg(feature = "serde")] pub mod as_core_arg { //! Module for serialization/deserialization of network variants into/from Bitcoin Core values #![allow(missing_docs)] use serde; use crate::Network; pub fn serialize(network: &Network, serializer: S) -> Result where S: serde::Serializer, { serializer.serialize_str(network.to_core_arg()) } pub fn deserialize<'de, D>(deserializer: D) -> Result where D: serde::Deserializer<'de>, { struct NetworkVisitor; impl<'de> serde::de::Visitor<'de> for NetworkVisitor { type Value = Network; fn visit_str(self, s: &str) -> Result { Network::from_core_arg(s).map_err(|_| { E::invalid_value( serde::de::Unexpected::Str(s), &"bitcoin network encoded as a string (either main, test, signet or regtest)", ) }) } fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { write!( formatter, "bitcoin network encoded as a string (either main, test, signet or regtest)" ) } } deserializer.deserialize_str(NetworkVisitor) } } /// An error in parsing network string. #[derive(Debug, Clone, PartialEq, Eq)] pub struct ParseNetworkError(String); impl fmt::Display for ParseNetworkError { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write_err!(f, "failed to parse {} as network", self.0; self) } } impl_std_error!(ParseNetworkError); impl FromStr for Network { type Err = ParseNetworkError; #[inline] fn from_str(s: &str) -> Result { use Network::*; let network = match s { "bitcoin" => Bitcoin, "testnet" => Testnet, "signet" => Signet, "regtest" => Regtest, _ => return Err(ParseNetworkError(s.to_owned())), }; Ok(network) } } impl fmt::Display for Network { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { use Network::*; let s = match *self { Bitcoin => "bitcoin", Testnet => "testnet", Signet => "signet", Regtest => "regtest", }; write!(f, "{}", s) } } /// Error in parsing network from chain hash. #[derive(Debug, Clone, PartialEq, Eq)] pub struct UnknownChainHash(ChainHash); impl Display for UnknownChainHash { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "unknown chain hash: {}", self.0) } } impl_std_error!(UnknownChainHash); impl TryFrom for Network { type Error = UnknownChainHash; fn try_from(chain_hash: ChainHash) -> Result { match chain_hash { // Note: any new network entries must be matched against here. ChainHash::BITCOIN => Ok(Network::Bitcoin), ChainHash::TESTNET => Ok(Network::Testnet), ChainHash::SIGNET => Ok(Network::Signet), ChainHash::REGTEST => Ok(Network::Regtest), _ => Err(UnknownChainHash(chain_hash)), } } } /// Network magic bytes to identify the cryptocurrency network the message was intended for. #[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Clone, Hash)] pub struct Magic([u8; 4]); impl Magic { /// Bitcoin mainnet network magic bytes. pub const BITCOIN: Self = Self([0xF9, 0xBE, 0xB4, 0xD9]); /// Bitcoin testnet network magic bytes. pub const TESTNET: Self = Self([0x0B, 0x11, 0x09, 0x07]); /// Bitcoin signet network magic bytes. pub const SIGNET: Self = Self([0x0A, 0x03, 0xCF, 0x40]); /// Bitcoin regtest network magic bytes. pub const REGTEST: Self = Self([0xFA, 0xBF, 0xB5, 0xDA]); /// Create network magic from bytes. pub fn from_bytes(bytes: [u8; 4]) -> Magic { Magic(bytes) } /// Get network magic bytes. pub fn to_bytes(self) -> [u8; 4] { self.0 } } /// An error in parsing magic bytes. #[derive(Debug, PartialEq, Eq, Clone)] pub struct ParseMagicError { /// The error that occurred when parsing the string. error: Error, /// The byte string that failed to parse. magic: String, } impl FromStr for Magic { type Err = ParseMagicError; fn from_str(s: &str) -> Result { match <[u8; 4]>::from_hex(s) { Ok(magic) => Ok(Magic::from_bytes(magic)), Err(e) => Err(ParseMagicError { error: e, magic: s.to_owned() }), } } } impl From for Magic { fn from(network: Network) -> Magic { match network { // Note: new network entries must explicitly be matched in `try_from` below. Network::Bitcoin => Magic::BITCOIN, Network::Testnet => Magic::TESTNET, Network::Signet => Magic::SIGNET, Network::Regtest => Magic::REGTEST, } } } /// Error in creating a Network from Magic bytes. #[derive(Debug, Clone, PartialEq, Eq)] pub struct UnknownMagic(Magic); impl TryFrom for Network { type Error = UnknownMagic; fn try_from(magic: Magic) -> Result { match magic { // Note: any new network entries must be matched against here. Magic::BITCOIN => Ok(Network::Bitcoin), Magic::TESTNET => Ok(Network::Testnet), Magic::SIGNET => Ok(Network::Signet), Magic::REGTEST => Ok(Network::Regtest), _ => Err(UnknownMagic(magic)), } } } impl fmt::Display for Magic { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { internals::fmt_hex_exact!(f, 4, &self.0, internals::hex::Case::Lower)?; Ok(()) } } debug_from_display!(Magic); impl fmt::LowerHex for Magic { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { internals::fmt_hex_exact!(f, 4, &self.0, internals::hex::Case::Lower)?; Ok(()) } } impl fmt::UpperHex for Magic { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { internals::fmt_hex_exact!(f, 4, &self.0, internals::hex::Case::Upper)?; Ok(()) } } impl Encodable for Magic { fn consensus_encode(&self, writer: &mut W) -> Result { self.0.consensus_encode(writer) } } impl Decodable for Magic { fn consensus_decode(reader: &mut R) -> Result { Ok(Magic(Decodable::consensus_decode(reader)?)) } } impl AsRef<[u8]> for Magic { fn as_ref(&self) -> &[u8] { &self.0 } } impl AsRef<[u8; 4]> for Magic { fn as_ref(&self) -> &[u8; 4] { &self.0 } } impl AsMut<[u8]> for Magic { fn as_mut(&mut self) -> &mut [u8] { &mut self.0 } } impl AsMut<[u8; 4]> for Magic { fn as_mut(&mut self) -> &mut [u8; 4] { &mut self.0 } } impl Borrow<[u8]> for Magic { fn borrow(&self) -> &[u8] { &self.0 } } impl Borrow<[u8; 4]> for Magic { fn borrow(&self) -> &[u8; 4] { &self.0 } } impl BorrowMut<[u8]> for Magic { fn borrow_mut(&mut self) -> &mut [u8] { &mut self.0 } } impl BorrowMut<[u8; 4]> for Magic { fn borrow_mut(&mut self) -> &mut [u8; 4] { &mut self.0 } } impl fmt::Display for ParseMagicError { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write_err!(f, "failed to parse {} as network magic", self.magic; self.error) } } impl_std_error!(ParseMagicError, error); impl fmt::Display for UnknownMagic { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { write!(f, "unknown network magic {}", self.0) } } impl_std_error!(UnknownMagic); /// Flags to indicate which network services a node supports. #[derive(Debug, Clone, Copy, Default, PartialEq, Eq, PartialOrd, Ord, Hash)] pub struct ServiceFlags(u64); impl ServiceFlags { /// NONE means no services supported. pub const NONE: ServiceFlags = ServiceFlags(0); /// NETWORK means that the node is capable of serving the complete block chain. It is currently /// set by all Bitcoin Core non pruned nodes, and is unset by SPV clients or other light /// clients. pub const NETWORK: ServiceFlags = ServiceFlags(1 << 0); /// GETUTXO means the node is capable of responding to the getutxo protocol request. Bitcoin /// Core does not support this but a patch set called Bitcoin XT does. /// See BIP 64 for details on how this is implemented. pub const GETUTXO: ServiceFlags = ServiceFlags(1 << 1); /// BLOOM means the node is capable and willing to handle bloom-filtered connections. Bitcoin /// Core nodes used to support this by default, without advertising this bit, but no longer do /// as of protocol version 70011 (= NO_BLOOM_VERSION) pub const BLOOM: ServiceFlags = ServiceFlags(1 << 2); /// WITNESS indicates that a node can be asked for blocks and transactions including witness /// data. pub const WITNESS: ServiceFlags = ServiceFlags(1 << 3); /// COMPACT_FILTERS means the node will service basic block filter requests. /// See BIP157 and BIP158 for details on how this is implemented. pub const COMPACT_FILTERS: ServiceFlags = ServiceFlags(1 << 6); /// NETWORK_LIMITED means the same as NODE_NETWORK with the limitation of only serving the last /// 288 (2 day) blocks. /// See BIP159 for details on how this is implemented. pub const NETWORK_LIMITED: ServiceFlags = ServiceFlags(1 << 10); // NOTE: When adding new flags, remember to update the Display impl accordingly. /// Add [ServiceFlags] together. /// /// Returns itself. pub fn add(&mut self, other: ServiceFlags) -> ServiceFlags { self.0 |= other.0; *self } /// Remove [ServiceFlags] from this. /// /// Returns itself. pub fn remove(&mut self, other: ServiceFlags) -> ServiceFlags { self.0 ^= other.0; *self } /// Check whether [ServiceFlags] are included in this one. pub fn has(self, flags: ServiceFlags) -> bool { (self.0 | flags.0) == self.0 } /// Gets the integer representation of this [`ServiceFlags`]. pub fn to_u64(self) -> u64 { self.0 } } impl fmt::LowerHex for ServiceFlags { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(&self.0, f) } } impl fmt::UpperHex for ServiceFlags { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(&self.0, f) } } impl fmt::Display for ServiceFlags { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { let mut flags = *self; if flags == ServiceFlags::NONE { return write!(f, "ServiceFlags(NONE)"); } let mut first = true; macro_rules! write_flag { ($f:ident) => { if flags.has(ServiceFlags::$f) { if !first { write!(f, "|")?; } first = false; write!(f, stringify!($f))?; flags.remove(ServiceFlags::$f); } }; } write!(f, "ServiceFlags(")?; write_flag!(NETWORK); write_flag!(GETUTXO); write_flag!(BLOOM); write_flag!(WITNESS); write_flag!(COMPACT_FILTERS); write_flag!(NETWORK_LIMITED); // If there are unknown flags left, we append them in hex. if flags != ServiceFlags::NONE { if !first { write!(f, "|")?; } write!(f, "0x{:x}", flags)?; } write!(f, ")") } } impl From for ServiceFlags { fn from(f: u64) -> Self { ServiceFlags(f) } } impl From for u64 { fn from(flags: ServiceFlags) -> Self { flags.0 } } impl ops::BitOr for ServiceFlags { type Output = Self; fn bitor(mut self, rhs: Self) -> Self { self.add(rhs) } } impl ops::BitOrAssign for ServiceFlags { fn bitor_assign(&mut self, rhs: Self) { self.add(rhs); } } impl ops::BitXor for ServiceFlags { type Output = Self; fn bitxor(mut self, rhs: Self) -> Self { self.remove(rhs) } } impl ops::BitXorAssign for ServiceFlags { fn bitxor_assign(&mut self, rhs: Self) { self.remove(rhs); } } impl Encodable for ServiceFlags { #[inline] fn consensus_encode(&self, w: &mut W) -> Result { self.0.consensus_encode(w) } } impl Decodable for ServiceFlags { #[inline] fn consensus_decode(r: &mut R) -> Result { Ok(ServiceFlags(Decodable::consensus_decode(r)?)) } } #[cfg(test)] mod tests { use std::convert::TryFrom; use std::str::FromStr; use super::{Magic, Network, ServiceFlags}; use crate::consensus::encode::{deserialize, serialize}; #[test] fn serialize_test() { assert_eq!(serialize(&Network::Bitcoin.magic()), &[0xf9, 0xbe, 0xb4, 0xd9]); assert_eq!(serialize(&Network::Testnet.magic()), &[0x0b, 0x11, 0x09, 0x07]); assert_eq!(serialize(&Network::Signet.magic()), &[0x0a, 0x03, 0xcf, 0x40]); assert_eq!(serialize(&Network::Regtest.magic()), &[0xfa, 0xbf, 0xb5, 0xda]); assert_eq!(deserialize(&[0xf9, 0xbe, 0xb4, 0xd9]).ok(), Some(Network::Bitcoin.magic())); assert_eq!(deserialize(&[0x0b, 0x11, 0x09, 0x07]).ok(), Some(Network::Testnet.magic())); assert_eq!(deserialize(&[0x0a, 0x03, 0xcf, 0x40]).ok(), Some(Network::Signet.magic())); assert_eq!(deserialize(&[0xfa, 0xbf, 0xb5, 0xda]).ok(), Some(Network::Regtest.magic())); } #[test] fn string_test() { assert_eq!(Network::Bitcoin.to_string(), "bitcoin"); assert_eq!(Network::Testnet.to_string(), "testnet"); assert_eq!(Network::Regtest.to_string(), "regtest"); assert_eq!(Network::Signet.to_string(), "signet"); assert_eq!("bitcoin".parse::().unwrap(), Network::Bitcoin); assert_eq!("testnet".parse::().unwrap(), Network::Testnet); assert_eq!("regtest".parse::().unwrap(), Network::Regtest); assert_eq!("signet".parse::().unwrap(), Network::Signet); assert!("fakenet".parse::().is_err()); } #[test] fn service_flags_test() { let all = [ ServiceFlags::NETWORK, ServiceFlags::GETUTXO, ServiceFlags::BLOOM, ServiceFlags::WITNESS, ServiceFlags::COMPACT_FILTERS, ServiceFlags::NETWORK_LIMITED, ]; let mut flags = ServiceFlags::NONE; for f in all.iter() { assert!(!flags.has(*f)); } flags |= ServiceFlags::WITNESS; assert_eq!(flags, ServiceFlags::WITNESS); let mut flags2 = flags | ServiceFlags::GETUTXO; for f in all.iter() { assert_eq!(flags2.has(*f), *f == ServiceFlags::WITNESS || *f == ServiceFlags::GETUTXO); } flags2 ^= ServiceFlags::WITNESS; assert_eq!(flags2, ServiceFlags::GETUTXO); flags2 |= ServiceFlags::COMPACT_FILTERS; flags2 ^= ServiceFlags::GETUTXO; assert_eq!(flags2, ServiceFlags::COMPACT_FILTERS); // Test formatting. assert_eq!("ServiceFlags(NONE)", ServiceFlags::NONE.to_string()); assert_eq!("ServiceFlags(WITNESS)", ServiceFlags::WITNESS.to_string()); let flag = ServiceFlags::WITNESS | ServiceFlags::BLOOM | ServiceFlags::NETWORK; assert_eq!("ServiceFlags(NETWORK|BLOOM|WITNESS)", flag.to_string()); let flag = ServiceFlags::WITNESS | 0xf0.into(); assert_eq!("ServiceFlags(WITNESS|COMPACT_FILTERS|0xb0)", flag.to_string()); } #[test] #[cfg(feature = "serde")] fn serde_roundtrip() { use Network::*; let tests = vec![ (Bitcoin, "bitcoin"), (Testnet, "testnet"), (Signet, "signet"), (Regtest, "regtest"), ]; for tc in tests { let network = tc.0; let want = format!("\"{}\"", tc.1); let got = serde_json::to_string(&tc.0).expect("failed to serialize network"); assert_eq!(got, want); let back: Network = serde_json::from_str(&got).expect("failed to deserialize network"); assert_eq!(back, network); } } #[test] fn magic_from_str() { let known_network_magic_strs = [ ("f9beb4d9", Network::Bitcoin), ("0b110907", Network::Testnet), ("fabfb5da", Network::Regtest), ("0a03cf40", Network::Signet), ]; for (magic_str, network) in &known_network_magic_strs { let magic: Magic = Magic::from_str(magic_str).unwrap(); assert_eq!(Network::try_from(magic).unwrap(), *network); assert_eq!(&magic.to_string(), magic_str); } } #[test] fn from_to_core_arg() { let expected_pairs = [ (Network::Bitcoin, "main"), (Network::Testnet, "test"), (Network::Regtest, "regtest"), (Network::Signet, "signet"), ]; for (net, core_arg) in &expected_pairs { assert_eq!(Network::from_core_arg(core_arg), Ok(*net)); assert_eq!(net.to_core_arg(), *core_arg); } } #[cfg(feature = "serde")] #[test] fn serde_as_core_arg() { #[derive(Serialize, Deserialize, PartialEq, Debug)] #[serde(crate = "actual_serde")] struct T { #[serde(with = "crate::network::constants::as_core_arg")] pub network: Network, } serde_test::assert_tokens( &T { network: Network::Bitcoin }, &[ serde_test::Token::Struct { name: "T", len: 1 }, serde_test::Token::Str("network"), serde_test::Token::Str("main"), serde_test::Token::StructEnd, ], ); } }