// SPDX-License-Identifier: CC0-1.0 //! Bitcoin base58 encoding and decoding. //! //! This crate can be used in a no-std environment but requires an allocator. #![no_std] // Experimental features we need. #![cfg_attr(docsrs, feature(doc_auto_cfg))] #![cfg_attr(bench, feature(test))] // Coding conventions. #![warn(missing_docs)] // Instead of littering the codebase for non-fuzzing code just globally allow. #![cfg_attr(fuzzing, allow(dead_code, unused_imports))] // Exclude lints we don't think are valuable. #![allow(clippy::needless_question_mark)] // https://github.com/rust-bitcoin/rust-bitcoin/pull/2134 #![allow(clippy::manual_range_contains)] // More readable than clippy's format. #[macro_use] extern crate alloc; #[cfg(feature = "std")] extern crate std; static BASE58_CHARS: &[u8] = b"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; pub mod error; #[cfg(not(feature = "std"))] pub use alloc::{string::String, vec::Vec}; use core::{fmt, iter, slice, str}; #[cfg(feature = "std")] pub use std::{string::String, vec::Vec}; use hashes::{sha256d, Hash}; #[rustfmt::skip] // Keep public re-exports separate. #[doc(inline)] pub use self::error::Error; #[rustfmt::skip] static BASE58_DIGITS: [Option<u8>; 128] = [ None, None, None, None, None, None, None, None, // 0-7 None, None, None, None, None, None, None, None, // 8-15 None, None, None, None, None, None, None, None, // 16-23 None, None, None, None, None, None, None, None, // 24-31 None, None, None, None, None, None, None, None, // 32-39 None, None, None, None, None, None, None, None, // 40-47 None, Some(0), Some(1), Some(2), Some(3), Some(4), Some(5), Some(6), // 48-55 Some(7), Some(8), None, None, None, None, None, None, // 56-63 None, Some(9), Some(10), Some(11), Some(12), Some(13), Some(14), Some(15), // 64-71 Some(16), None, Some(17), Some(18), Some(19), Some(20), Some(21), None, // 72-79 Some(22), Some(23), Some(24), Some(25), Some(26), Some(27), Some(28), Some(29), // 80-87 Some(30), Some(31), Some(32), None, None, None, None, None, // 88-95 None, Some(33), Some(34), Some(35), Some(36), Some(37), Some(38), Some(39), // 96-103 Some(40), Some(41), Some(42), Some(43), None, Some(44), Some(45), Some(46), // 104-111 Some(47), Some(48), Some(49), Some(50), Some(51), Some(52), Some(53), Some(54), // 112-119 Some(55), Some(56), Some(57), None, None, None, None, None, // 120-127 ]; /// Decodes a base58-encoded string into a byte vector. pub fn decode(data: &str) -> Result<Vec<u8>, Error> { // 11/15 is just over log_256(58) let mut scratch = vec![0u8; 1 + data.len() * 11 / 15]; // Build in base 256 for d58 in data.bytes() { // Compute "X = X * 58 + next_digit" in base 256 if d58 as usize >= BASE58_DIGITS.len() { return Err(Error::BadByte(d58)); } let mut carry = match BASE58_DIGITS[d58 as usize] { Some(d58) => d58 as u32, None => { return Err(Error::BadByte(d58)); } }; for d256 in scratch.iter_mut().rev() { carry += *d256 as u32 * 58; *d256 = carry as u8; carry /= 256; } assert_eq!(carry, 0); } // Copy leading zeroes directly let mut ret: Vec<u8> = data.bytes().take_while(|&x| x == BASE58_CHARS[0]).map(|_| 0).collect(); // Copy rest of string ret.extend(scratch.into_iter().skip_while(|&x| x == 0)); Ok(ret) } /// Decodes a base58check-encoded string into a byte vector verifying the checksum. pub fn decode_check(data: &str) -> Result<Vec<u8>, Error> { let mut ret: Vec<u8> = decode(data)?; if ret.len() < 4 { return Err(Error::TooShort(ret.len())); } let check_start = ret.len() - 4; let hash_check = sha256d::Hash::hash(&ret[..check_start])[..4].try_into().expect("4 byte slice"); let data_check = ret[check_start..].try_into().expect("4 byte slice"); let expected = u32::from_le_bytes(hash_check); let actual = u32::from_le_bytes(data_check); if expected != actual { return Err(Error::BadChecksum(expected, actual)); } ret.truncate(check_start); Ok(ret) } /// Encodes `data` as a base58 string (see also `base58::encode_check()`). pub fn encode(data: &[u8]) -> String { encode_iter(data.iter().cloned()) } /// Encodes `data` as a base58 string including the checksum. /// /// The checksum is the first four bytes of the sha256d of the data, concatenated onto the end. pub fn encode_check(data: &[u8]) -> String { let checksum = sha256d::Hash::hash(data); encode_iter(data.iter().cloned().chain(checksum[0..4].iter().cloned())) } /// Encodes a slice as base58, including the checksum, into a formatter. /// /// The checksum is the first four bytes of the sha256d of the data, concatenated onto the end. pub fn encode_check_to_fmt(fmt: &mut fmt::Formatter, data: &[u8]) -> fmt::Result { let checksum = sha256d::Hash::hash(data); let iter = data.iter().cloned().chain(checksum[0..4].iter().cloned()); format_iter(fmt, iter) } fn encode_iter<I>(data: I) -> String where I: Iterator<Item = u8> + Clone, { let mut ret = String::new(); format_iter(&mut ret, data).expect("writing into string shouldn't fail"); ret } fn format_iter<I, W>(writer: &mut W, data: I) -> Result<(), fmt::Error> where I: Iterator<Item = u8> + Clone, W: fmt::Write, { let mut ret = SmallVec::new(); let mut leading_zero_count = 0; let mut leading_zeroes = true; // Build string in little endian with 0-58 in place of characters... for d256 in data { let mut carry = d256 as usize; if leading_zeroes && carry == 0 { leading_zero_count += 1; } else { leading_zeroes = false; } for ch in ret.iter_mut() { let new_ch = *ch as usize * 256 + carry; *ch = (new_ch % 58) as u8; carry = new_ch / 58; } while carry > 0 { ret.push((carry % 58) as u8); carry /= 58; } } // ... then reverse it and convert to chars for _ in 0..leading_zero_count { ret.push(0); } for ch in ret.iter().rev() { writer.write_char(BASE58_CHARS[*ch as usize] as char)?; } Ok(()) } /// Vector-like object that holds the first 100 elements on the stack. If more space is needed it /// will be allocated on the heap. struct SmallVec<T> { len: usize, stack: [T; 100], heap: Vec<T>, } impl<T: Default + Copy> SmallVec<T> { fn new() -> SmallVec<T> { SmallVec { len: 0, stack: [T::default(); 100], heap: Vec::new() } } fn push(&mut self, val: T) { if self.len < 100 { self.stack[self.len] = val; self.len += 1; } else { self.heap.push(val); } } fn iter(&self) -> iter::Chain<slice::Iter<T>, slice::Iter<T>> { // If len<100 then we just append an empty vec self.stack[0..self.len].iter().chain(self.heap.iter()) } fn iter_mut(&mut self) -> iter::Chain<slice::IterMut<T>, slice::IterMut<T>> { // If len<100 then we just append an empty vec self.stack[0..self.len].iter_mut().chain(self.heap.iter_mut()) } } #[cfg(test)] mod tests { use hex::test_hex_unwrap as hex; use super::*; #[test] fn test_base58_encode() { // Basics assert_eq!(&encode(&[0][..]), "1"); assert_eq!(&encode(&[1][..]), "2"); assert_eq!(&encode(&[58][..]), "21"); assert_eq!(&encode(&[13, 36][..]), "211"); // Leading zeroes assert_eq!(&encode(&[0, 13, 36][..]), "1211"); assert_eq!(&encode(&[0, 0, 0, 0, 13, 36][..]), "1111211"); // Long input (>100 bytes => has to use heap) let res = encode( "BitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBit\ coinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoin" .as_bytes(), ); let exp = "ZqC5ZdfpZRi7fjA8hbhX5pEE96MdH9hEaC1YouxscPtbJF16qVWksHWR4wwvx7MotFcs2ChbJqK8KJ9X\ wZznwWn1JFDhhTmGo9v6GjAVikzCsBWZehu7bm22xL8b5zBR5AsBygYRwbFJsNwNkjpyFuDKwmsUTKvkULCvucPJrN5\ QUdxpGakhqkZFL7RU4yT"; assert_eq!(&res, exp); // Addresses let addr = hex!("00f8917303bfa8ef24f292e8fa1419b20460ba064d"); assert_eq!(&encode_check(&addr[..]), "1PfJpZsjreyVrqeoAfabrRwwjQyoSQMmHH"); } #[test] fn test_base58_decode() { // Basics assert_eq!(decode("1").ok(), Some(vec![0u8])); assert_eq!(decode("2").ok(), Some(vec![1u8])); assert_eq!(decode("21").ok(), Some(vec![58u8])); assert_eq!(decode("211").ok(), Some(vec![13u8, 36])); // Leading zeroes assert_eq!(decode("1211").ok(), Some(vec![0u8, 13, 36])); assert_eq!(decode("111211").ok(), Some(vec![0u8, 0, 0, 13, 36])); // Addresses assert_eq!( decode_check("1PfJpZsjreyVrqeoAfabrRwwjQyoSQMmHH").ok(), Some(hex!("00f8917303bfa8ef24f292e8fa1419b20460ba064d")) ); // Non Base58 char. assert_eq!(decode("ยข").unwrap_err(), Error::BadByte(194)); } #[test] fn test_base58_roundtrip() { let s = "xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs"; let v: Vec<u8> = decode_check(s).unwrap(); assert_eq!(encode_check(&v[..]), s); assert_eq!(decode_check(&encode_check(&v[..])).ok(), Some(v)); // Check that empty slice passes roundtrip. assert_eq!(decode_check(&encode_check(&[])), Ok(vec![])); // Check that `len > 4` is enforced. assert_eq!(decode_check(&encode(&[1, 2, 3])), Err(Error::TooShort(3))); } }