// SPDX-License-Identifier: CC0-1.0 //! SHA256 implementation. //! #[cfg(all(feature = "std", target_arch = "x86"))] use core::arch::x86::*; #[cfg(all(feature = "std", target_arch = "x86_64"))] use core::arch::x86_64::*; use core::ops::Index; use core::slice::SliceIndex; use core::{cmp, str}; use crate::{sha256d, FromSliceError, HashEngine as _}; crate::internal_macros::hash_type! { 256, false, "Output of the SHA256 hash function." } #[cfg(not(hashes_fuzz))] fn from_engine(mut e: HashEngine) -> Hash { // pad buffer with a single 1-bit then all 0s, until there are exactly 8 bytes remaining let data_len = e.length as u64; let zeroes = [0; BLOCK_SIZE - 8]; e.input(&[0x80]); if e.length % BLOCK_SIZE > zeroes.len() { e.input(&zeroes); } let pad_length = zeroes.len() - (e.length % BLOCK_SIZE); e.input(&zeroes[..pad_length]); debug_assert_eq!(e.length % BLOCK_SIZE, zeroes.len()); e.input(&(8 * data_len).to_be_bytes()); debug_assert_eq!(e.length % BLOCK_SIZE, 0); Hash(e.midstate().to_byte_array()) } #[cfg(hashes_fuzz)] fn from_engine(e: HashEngine) -> Hash { let mut hash = e.midstate().to_byte_array(); if hash == [0; 32] { // Assume sha256 is secure and never generate 0-hashes (which represent invalid // secp256k1 secret keys, causing downstream application breakage). hash[0] = 1; } Hash(hash) } const BLOCK_SIZE: usize = 64; /// Engine to compute SHA256 hash function. #[derive(Clone)] pub struct HashEngine { buffer: [u8; BLOCK_SIZE], h: [u32; 8], length: usize, } impl Default for HashEngine { fn default() -> Self { HashEngine { h: [ 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ], length: 0, buffer: [0; BLOCK_SIZE], } } } impl crate::HashEngine for HashEngine { type MidState = Midstate; #[cfg(not(hashes_fuzz))] fn midstate(&self) -> Midstate { let mut ret = [0; 32]; for (val, ret_bytes) in self.h.iter().zip(ret.chunks_exact_mut(4)) { ret_bytes.copy_from_slice(&val.to_be_bytes()); } Midstate(ret) } #[cfg(hashes_fuzz)] fn midstate(&self) -> Midstate { let mut ret = [0; 32]; ret.copy_from_slice(&self.buffer[..32]); Midstate(ret) } const BLOCK_SIZE: usize = 64; fn n_bytes_hashed(&self) -> usize { self.length } engine_input_impl!(); } impl Hash { /// Iterate the sha256 algorithm to turn a sha256 hash into a sha256d hash pub fn hash_again(&self) -> sha256d::Hash { crate::Hash::from_byte_array(::hash(&self.0).0) } /// Computes hash from `bytes` in `const` context. /// /// Warning: this function is inefficient. It should be only used in `const` context. pub const fn const_hash(bytes: &[u8]) -> Self { Hash(Midstate::const_hash(bytes, true).0) } } /// Output of the SHA256 hash function. #[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)] pub struct Midstate(pub [u8; 32]); crate::internal_macros::arr_newtype_fmt_impl!(Midstate, 32); serde_impl!(Midstate, 32); borrow_slice_impl!(Midstate); impl> Index for Midstate { type Output = I::Output; #[inline] fn index(&self, index: I) -> &Self::Output { &self.0[index] } } impl str::FromStr for Midstate { type Err = hex::HexToArrayError; fn from_str(s: &str) -> Result { hex::FromHex::from_hex(s) } } impl Midstate { /// Length of the midstate, in bytes. const LEN: usize = 32; /// Flag indicating whether user-visible serializations of this hash /// should be backward. For some reason Satoshi decided this should be /// true for `Sha256dHash`, so here we are. const DISPLAY_BACKWARD: bool = true; /// Construct a new [`Midstate`] from the inner value. pub const fn from_byte_array(inner: [u8; 32]) -> Self { Midstate(inner) } /// Copies a byte slice into the [`Midstate`] object. pub fn from_slice(sl: &[u8]) -> Result { if sl.len() != Self::LEN { Err(FromSliceError { expected: Self::LEN, got: sl.len() }) } else { let mut ret = [0; 32]; ret.copy_from_slice(sl); Ok(Midstate(ret)) } } /// Unwraps the [`Midstate`] and returns the underlying byte array. pub fn to_byte_array(self) -> [u8; 32] { self.0 } /// Creates midstate for tagged hashes. /// /// Warning: this function is inefficient. It should be only used in `const` context. /// /// Computes non-finalized hash of `sha256(tag) || sha256(tag)` for use in /// [`sha256t`](super::sha256t). It's provided for use with [`sha256t`](crate::sha256t). pub const fn hash_tag(tag: &[u8]) -> Self { let hash = Hash::const_hash(tag); let mut buf = [0u8; 64]; let mut i = 0usize; while i < buf.len() { buf[i] = hash.0[i % hash.0.len()]; i += 1; } Self::const_hash(&buf, false) } } impl hex::FromHex for Midstate { type Err = hex::HexToArrayError; fn from_byte_iter(iter: I) -> Result where I: Iterator> + ExactSizeIterator + DoubleEndedIterator, { // DISPLAY_BACKWARD is true Ok(Midstate::from_byte_array(hex::FromHex::from_byte_iter(iter.rev())?)) } } #[allow(non_snake_case)] const fn Ch(x: u32, y: u32, z: u32) -> u32 { z ^ (x & (y ^ z)) } #[allow(non_snake_case)] const fn Maj(x: u32, y: u32, z: u32) -> u32 { (x & y) | (z & (x | y)) } #[allow(non_snake_case)] const fn Sigma0(x: u32) -> u32 { x.rotate_left(30) ^ x.rotate_left(19) ^ x.rotate_left(10) } #[allow(non_snake_case)] const fn Sigma1(x: u32) -> u32 { x.rotate_left(26) ^ x.rotate_left(21) ^ x.rotate_left(7) } const fn sigma0(x: u32) -> u32 { x.rotate_left(25) ^ x.rotate_left(14) ^ (x >> 3) } const fn sigma1(x: u32) -> u32 { x.rotate_left(15) ^ x.rotate_left(13) ^ (x >> 10) } #[cfg(feature = "small-hash")] #[macro_use] mod small_hash { use super::*; #[rustfmt::skip] pub(super) const fn round(a: u32, b: u32, c: u32, d: u32, e: u32, f: u32, g: u32, h: u32, k: u32, w: u32) -> (u32, u32) { let t1 = h.wrapping_add(Sigma1(e)).wrapping_add(Ch(e, f, g)).wrapping_add(k).wrapping_add(w); let t2 = Sigma0(a).wrapping_add(Maj(a, b, c)); (d.wrapping_add(t1), t1.wrapping_add(t2)) } #[rustfmt::skip] pub(super) const fn later_round(a: u32, b: u32, c: u32, d: u32, e: u32, f: u32, g: u32, h: u32, k: u32, w: u32, w1: u32, w2: u32, w3: u32, ) -> (u32, u32, u32) { let w = w.wrapping_add(sigma1(w1)).wrapping_add(w2).wrapping_add(sigma0(w3)); let (d, h) = round(a, b, c, d, e, f, g, h, k, w); (d, h, w) } macro_rules! round( // first round ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr) => ( let updates = small_hash::round($a, $b, $c, $d, $e, $f, $g, $h, $k, $w); $d = updates.0; $h = updates.1; ); // later rounds we reassign $w before doing the first-round computation ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr, $w1:expr, $w2:expr, $w3:expr) => ( let updates = small_hash::later_round($a, $b, $c, $d, $e, $f, $g, $h, $k, $w, $w1, $w2, $w3); $d = updates.0; $h = updates.1; $w = updates.2; ) ); } #[cfg(not(feature = "small-hash"))] #[macro_use] mod fast_hash { macro_rules! round( // first round ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr) => ( let t1 = $h.wrapping_add(Sigma1($e)).wrapping_add(Ch($e, $f, $g)).wrapping_add($k).wrapping_add($w); let t2 = Sigma0($a).wrapping_add(Maj($a, $b, $c)); $d = $d.wrapping_add(t1); $h = t1.wrapping_add(t2); ); // later rounds we reassign $w before doing the first-round computation ($a:expr, $b:expr, $c:expr, $d:expr, $e:expr, $f:expr, $g:expr, $h:expr, $k:expr, $w:expr, $w1:expr, $w2:expr, $w3:expr) => ( $w = $w.wrapping_add(sigma1($w1)).wrapping_add($w2).wrapping_add(sigma0($w3)); round!($a, $b, $c, $d, $e, $f, $g, $h, $k, $w); ) ); } impl Midstate { #[allow(clippy::identity_op)] // more readble const fn read_u32(bytes: &[u8], index: usize) -> u32 { ((bytes[index + 0] as u32) << 24) | ((bytes[index + 1] as u32) << 16) | ((bytes[index + 2] as u32) << 8) | ((bytes[index + 3] as u32) << 0) } const fn copy_w(bytes: &[u8], index: usize) -> [u32; 16] { let mut w = [0u32; 16]; let mut i = 0; while i < 16 { w[i] = Self::read_u32(bytes, index + i * 4); i += 1; } w } const fn const_hash(bytes: &[u8], finalize: bool) -> Self { let mut state = [ 0x6a09e667u32, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19, ]; let num_chunks = (bytes.len() + 9 + 63) / 64; let mut chunk = 0; #[allow(clippy::precedence)] while chunk < num_chunks { if !finalize && chunk + 1 == num_chunks { break; } let mut w = if chunk * 64 + 64 <= bytes.len() { Self::copy_w(bytes, chunk * 64) } else { let mut buf = [0; 64]; let mut i = 0; let offset = chunk * 64; while offset + i < bytes.len() { buf[i] = bytes[offset + i]; i += 1; } if (bytes.len() % 64 <= 64 - 9) || (chunk + 2 == num_chunks) { buf[i] = 0x80; } #[allow(clippy::identity_op)] // more readble #[allow(clippy::erasing_op)] if chunk + 1 == num_chunks { let bit_len = bytes.len() as u64 * 8; buf[64 - 8] = ((bit_len >> 8 * 7) & 0xFF) as u8; buf[64 - 7] = ((bit_len >> 8 * 6) & 0xFF) as u8; buf[64 - 6] = ((bit_len >> 8 * 5) & 0xFF) as u8; buf[64 - 5] = ((bit_len >> 8 * 4) & 0xFF) as u8; buf[64 - 4] = ((bit_len >> 8 * 3) & 0xFF) as u8; buf[64 - 3] = ((bit_len >> 8 * 2) & 0xFF) as u8; buf[64 - 2] = ((bit_len >> 8 * 1) & 0xFF) as u8; buf[64 - 1] = ((bit_len >> 8 * 0) & 0xFF) as u8; } Self::copy_w(&buf, 0) }; chunk += 1; let mut a = state[0]; let mut b = state[1]; let mut c = state[2]; let mut d = state[3]; let mut e = state[4]; let mut f = state[5]; let mut g = state[6]; let mut h = state[7]; round!(a, b, c, d, e, f, g, h, 0x428a2f98, w[0]); round!(h, a, b, c, d, e, f, g, 0x71374491, w[1]); round!(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w[2]); round!(f, g, h, a, b, c, d, e, 0xe9b5dba5, w[3]); round!(e, f, g, h, a, b, c, d, 0x3956c25b, w[4]); round!(d, e, f, g, h, a, b, c, 0x59f111f1, w[5]); round!(c, d, e, f, g, h, a, b, 0x923f82a4, w[6]); round!(b, c, d, e, f, g, h, a, 0xab1c5ed5, w[7]); round!(a, b, c, d, e, f, g, h, 0xd807aa98, w[8]); round!(h, a, b, c, d, e, f, g, 0x12835b01, w[9]); round!(g, h, a, b, c, d, e, f, 0x243185be, w[10]); round!(f, g, h, a, b, c, d, e, 0x550c7dc3, w[11]); round!(e, f, g, h, a, b, c, d, 0x72be5d74, w[12]); round!(d, e, f, g, h, a, b, c, 0x80deb1fe, w[13]); round!(c, d, e, f, g, h, a, b, 0x9bdc06a7, w[14]); round!(b, c, d, e, f, g, h, a, 0xc19bf174, w[15]); round!(a, b, c, d, e, f, g, h, 0xe49b69c1, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0xefbe4786, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x0fc19dc6, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x240ca1cc, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x2de92c6f, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x4a7484aa, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x76f988da, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0x983e5152, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0xa831c66d, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0xb00327c8, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0xbf597fc7, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0xc6e00bf3, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xd5a79147, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0x06ca6351, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0x14292967, w[15], w[13], w[8], w[0]); round!(a, b, c, d, e, f, g, h, 0x27b70a85, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0x2e1b2138, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x53380d13, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x650a7354, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x766a0abb, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x81c2c92e, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x92722c85, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0xa81a664b, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0xc24b8b70, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0xc76c51a3, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0xd192e819, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xd6990624, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0xf40e3585, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0x106aa070, w[15], w[13], w[8], w[0]); round!(a, b, c, d, e, f, g, h, 0x19a4c116, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0x1e376c08, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x2748774c, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x34b0bcb5, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x391c0cb3, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x5b9cca4f, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x682e6ff3, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0x748f82ee, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0x78a5636f, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0x84c87814, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0x8cc70208, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0x90befffa, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xa4506ceb, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0xbef9a3f7, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0xc67178f2, w[15], w[13], w[8], w[0]); state[0] = state[0].wrapping_add(a); state[1] = state[1].wrapping_add(b); state[2] = state[2].wrapping_add(c); state[3] = state[3].wrapping_add(d); state[4] = state[4].wrapping_add(e); state[5] = state[5].wrapping_add(f); state[6] = state[6].wrapping_add(g); state[7] = state[7].wrapping_add(h); } let mut output = [0u8; 32]; let mut i = 0; #[allow(clippy::identity_op)] // more readble while i < 8 { output[i * 4 + 0] = (state[i + 0] >> 24) as u8; output[i * 4 + 1] = (state[i + 0] >> 16) as u8; output[i * 4 + 2] = (state[i + 0] >> 8) as u8; output[i * 4 + 3] = (state[i + 0] >> 0) as u8; i += 1; } Midstate(output) } } impl HashEngine { /// Create a new [`HashEngine`] from a [`Midstate`]. /// /// # Panics /// /// If `length` is not a multiple of the block size. pub fn from_midstate(midstate: Midstate, length: usize) -> HashEngine { assert!(length % BLOCK_SIZE == 0, "length is no multiple of the block size"); let mut ret = [0; 8]; for (ret_val, midstate_bytes) in ret.iter_mut().zip(midstate[..].chunks_exact(4)) { *ret_val = u32::from_be_bytes(midstate_bytes.try_into().expect("4 byte slice")); } HashEngine { buffer: [0; BLOCK_SIZE], h: ret, length } } fn process_block(&mut self) { #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))] { if is_x86_feature_detected!("sse4.1") && is_x86_feature_detected!("sha") && is_x86_feature_detected!("sse2") && is_x86_feature_detected!("ssse3") { return unsafe { self.process_block_simd_x86_intrinsics() }; } } // fallback implementation without using any intrinsics self.software_process_block() } #[cfg(all(feature = "std", any(target_arch = "x86", target_arch = "x86_64")))] #[target_feature(enable = "sha,sse2,ssse3,sse4.1")] unsafe fn process_block_simd_x86_intrinsics(&mut self) { // Code translated and based on from // https://github.com/noloader/SHA-Intrinsics/blob/4899efc81d1af159c1fd955936c673139f35aea9/sha256-x86.c /* sha256-x86.c - Intel SHA extensions using C intrinsics */ /* Written and place in public domain by Jeffrey Walton */ /* Based on code from Intel, and by Sean Gulley for */ /* the miTLS project. */ // Variable names are also kept the same as in the original C code for easier comparison. let (mut state0, mut state1); let (mut msg, mut tmp); let (mut msg0, mut msg1, mut msg2, mut msg3); let (abef_save, cdgh_save); #[allow(non_snake_case)] let MASK: __m128i = _mm_set_epi64x(0x0c0d_0e0f_0809_0a0bu64 as i64, 0x0405_0607_0001_0203u64 as i64); let block_offset = 0; // Load initial values // CAST SAFETY: loadu_si128 documentation states that mem_addr does not // need to be aligned on any particular boundary. tmp = _mm_loadu_si128(self.h.as_ptr().add(0) as *const __m128i); state1 = _mm_loadu_si128(self.h.as_ptr().add(4) as *const __m128i); tmp = _mm_shuffle_epi32(tmp, 0xB1); // CDAB state1 = _mm_shuffle_epi32(state1, 0x1B); // EFGH state0 = _mm_alignr_epi8(tmp, state1, 8); // ABEF state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH // Process a single block { // Save current state abef_save = state0; cdgh_save = state1; // Rounds 0-3 msg = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset) as *const __m128i); msg0 = _mm_shuffle_epi8(msg, MASK); msg = _mm_add_epi32( msg0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFu64 as i64, 0x71374491428A2F98u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 4-7 msg1 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 16) as *const __m128i); msg1 = _mm_shuffle_epi8(msg1, MASK); msg = _mm_add_epi32( msg1, _mm_set_epi64x(0xAB1C5ED5923F82A4u64 as i64, 0x59F111F13956C25Bu64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg0 = _mm_sha256msg1_epu32(msg0, msg1); // Rounds 8-11 msg2 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 32) as *const __m128i); msg2 = _mm_shuffle_epi8(msg2, MASK); msg = _mm_add_epi32( msg2, _mm_set_epi64x(0x550C7DC3243185BEu64 as i64, 0x12835B01D807AA98u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg1 = _mm_sha256msg1_epu32(msg1, msg2); // Rounds 12-15 msg3 = _mm_loadu_si128(self.buffer.as_ptr().add(block_offset + 48) as *const __m128i); msg3 = _mm_shuffle_epi8(msg3, MASK); msg = _mm_add_epi32( msg3, _mm_set_epi64x(0xC19BF1749BDC06A7u64 as i64, 0x80DEB1FE72BE5D74u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg3, msg2, 4); msg0 = _mm_add_epi32(msg0, tmp); msg0 = _mm_sha256msg2_epu32(msg0, msg3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg2 = _mm_sha256msg1_epu32(msg2, msg3); // Rounds 16-19 msg = _mm_add_epi32( msg0, _mm_set_epi64x(0x240CA1CC0FC19DC6u64 as i64, 0xEFBE4786E49B69C1u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg0, msg3, 4); msg1 = _mm_add_epi32(msg1, tmp); msg1 = _mm_sha256msg2_epu32(msg1, msg0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg3 = _mm_sha256msg1_epu32(msg3, msg0); // Rounds 20-23 msg = _mm_add_epi32( msg1, _mm_set_epi64x(0x76F988DA5CB0A9DCu64 as i64, 0x4A7484AA2DE92C6Fu64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg1, msg0, 4); msg2 = _mm_add_epi32(msg2, tmp); msg2 = _mm_sha256msg2_epu32(msg2, msg1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg0 = _mm_sha256msg1_epu32(msg0, msg1); // Rounds 24-27 msg = _mm_add_epi32( msg2, _mm_set_epi64x(0xBF597FC7B00327C8u64 as i64, 0xA831C66D983E5152u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg2, msg1, 4); msg3 = _mm_add_epi32(msg3, tmp); msg3 = _mm_sha256msg2_epu32(msg3, msg2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg1 = _mm_sha256msg1_epu32(msg1, msg2); // Rounds 28-31 msg = _mm_add_epi32( msg3, _mm_set_epi64x(0x1429296706CA6351u64 as i64, 0xD5A79147C6E00BF3u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg3, msg2, 4); msg0 = _mm_add_epi32(msg0, tmp); msg0 = _mm_sha256msg2_epu32(msg0, msg3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg2 = _mm_sha256msg1_epu32(msg2, msg3); // Rounds 32-35 msg = _mm_add_epi32( msg0, _mm_set_epi64x(0x53380D134D2C6DFCu64 as i64, 0x2E1B213827B70A85u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg0, msg3, 4); msg1 = _mm_add_epi32(msg1, tmp); msg1 = _mm_sha256msg2_epu32(msg1, msg0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg3 = _mm_sha256msg1_epu32(msg3, msg0); // Rounds 36-39 msg = _mm_add_epi32( msg1, _mm_set_epi64x(0x92722C8581C2C92Eu64 as i64, 0x766A0ABB650A7354u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg1, msg0, 4); msg2 = _mm_add_epi32(msg2, tmp); msg2 = _mm_sha256msg2_epu32(msg2, msg1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg0 = _mm_sha256msg1_epu32(msg0, msg1); // Rounds 40-43 msg = _mm_add_epi32( msg2, _mm_set_epi64x(0xC76C51A3C24B8B70u64 as i64, 0xA81A664BA2BFE8A1u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg2, msg1, 4); msg3 = _mm_add_epi32(msg3, tmp); msg3 = _mm_sha256msg2_epu32(msg3, msg2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg1 = _mm_sha256msg1_epu32(msg1, msg2); // Rounds 44-47 msg = _mm_add_epi32( msg3, _mm_set_epi64x(0x106AA070F40E3585u64 as i64, 0xD6990624D192E819u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg3, msg2, 4); msg0 = _mm_add_epi32(msg0, tmp); msg0 = _mm_sha256msg2_epu32(msg0, msg3); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg2 = _mm_sha256msg1_epu32(msg2, msg3); // Rounds 48-51 msg = _mm_add_epi32( msg0, _mm_set_epi64x(0x34B0BCB52748774Cu64 as i64, 0x1E376C0819A4C116u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg0, msg3, 4); msg1 = _mm_add_epi32(msg1, tmp); msg1 = _mm_sha256msg2_epu32(msg1, msg0); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); msg3 = _mm_sha256msg1_epu32(msg3, msg0); // Rounds 52-55 msg = _mm_add_epi32( msg1, _mm_set_epi64x(0x682E6FF35B9CCA4Fu64 as i64, 0x4ED8AA4A391C0CB3u64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg1, msg0, 4); msg2 = _mm_add_epi32(msg2, tmp); msg2 = _mm_sha256msg2_epu32(msg2, msg1); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 56-59 msg = _mm_add_epi32( msg2, _mm_set_epi64x(0x8CC7020884C87814u64 as i64, 0x78A5636F748F82EEu64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); tmp = _mm_alignr_epi8(msg2, msg1, 4); msg3 = _mm_add_epi32(msg3, tmp); msg3 = _mm_sha256msg2_epu32(msg3, msg2); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Rounds 60-63 msg = _mm_add_epi32( msg3, _mm_set_epi64x(0xC67178F2BEF9A3F7u64 as i64, 0xA4506CEB90BEFFFAu64 as i64), ); state1 = _mm_sha256rnds2_epu32(state1, state0, msg); msg = _mm_shuffle_epi32(msg, 0x0E); state0 = _mm_sha256rnds2_epu32(state0, state1, msg); // Combine state state0 = _mm_add_epi32(state0, abef_save); state1 = _mm_add_epi32(state1, cdgh_save); } tmp = _mm_shuffle_epi32(state0, 0x1B); // FEBA state1 = _mm_shuffle_epi32(state1, 0xB1); // DCHG state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA state1 = _mm_alignr_epi8(state1, tmp, 8); // ABEF // Save state // CAST SAFETY: storeu_si128 documentation states that mem_addr does not // need to be aligned on any particular boundary. _mm_storeu_si128(self.h.as_mut_ptr().add(0) as *mut __m128i, state0); _mm_storeu_si128(self.h.as_mut_ptr().add(4) as *mut __m128i, state1); } // Algorithm copied from libsecp256k1 fn software_process_block(&mut self) { debug_assert_eq!(self.buffer.len(), BLOCK_SIZE); let mut w = [0u32; 16]; for (w_val, buff_bytes) in w.iter_mut().zip(self.buffer.chunks_exact(4)) { *w_val = u32::from_be_bytes(buff_bytes.try_into().expect("4 byte slice")); } let mut a = self.h[0]; let mut b = self.h[1]; let mut c = self.h[2]; let mut d = self.h[3]; let mut e = self.h[4]; let mut f = self.h[5]; let mut g = self.h[6]; let mut h = self.h[7]; round!(a, b, c, d, e, f, g, h, 0x428a2f98, w[0]); round!(h, a, b, c, d, e, f, g, 0x71374491, w[1]); round!(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w[2]); round!(f, g, h, a, b, c, d, e, 0xe9b5dba5, w[3]); round!(e, f, g, h, a, b, c, d, 0x3956c25b, w[4]); round!(d, e, f, g, h, a, b, c, 0x59f111f1, w[5]); round!(c, d, e, f, g, h, a, b, 0x923f82a4, w[6]); round!(b, c, d, e, f, g, h, a, 0xab1c5ed5, w[7]); round!(a, b, c, d, e, f, g, h, 0xd807aa98, w[8]); round!(h, a, b, c, d, e, f, g, 0x12835b01, w[9]); round!(g, h, a, b, c, d, e, f, 0x243185be, w[10]); round!(f, g, h, a, b, c, d, e, 0x550c7dc3, w[11]); round!(e, f, g, h, a, b, c, d, 0x72be5d74, w[12]); round!(d, e, f, g, h, a, b, c, 0x80deb1fe, w[13]); round!(c, d, e, f, g, h, a, b, 0x9bdc06a7, w[14]); round!(b, c, d, e, f, g, h, a, 0xc19bf174, w[15]); round!(a, b, c, d, e, f, g, h, 0xe49b69c1, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0xefbe4786, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x0fc19dc6, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x240ca1cc, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x2de92c6f, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x4a7484aa, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x76f988da, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0x983e5152, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0xa831c66d, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0xb00327c8, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0xbf597fc7, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0xc6e00bf3, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xd5a79147, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0x06ca6351, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0x14292967, w[15], w[13], w[8], w[0]); round!(a, b, c, d, e, f, g, h, 0x27b70a85, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0x2e1b2138, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x53380d13, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x650a7354, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x766a0abb, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x81c2c92e, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x92722c85, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0xa81a664b, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0xc24b8b70, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0xc76c51a3, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0xd192e819, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xd6990624, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0xf40e3585, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0x106aa070, w[15], w[13], w[8], w[0]); round!(a, b, c, d, e, f, g, h, 0x19a4c116, w[0], w[14], w[9], w[1]); round!(h, a, b, c, d, e, f, g, 0x1e376c08, w[1], w[15], w[10], w[2]); round!(g, h, a, b, c, d, e, f, 0x2748774c, w[2], w[0], w[11], w[3]); round!(f, g, h, a, b, c, d, e, 0x34b0bcb5, w[3], w[1], w[12], w[4]); round!(e, f, g, h, a, b, c, d, 0x391c0cb3, w[4], w[2], w[13], w[5]); round!(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w[5], w[3], w[14], w[6]); round!(c, d, e, f, g, h, a, b, 0x5b9cca4f, w[6], w[4], w[15], w[7]); round!(b, c, d, e, f, g, h, a, 0x682e6ff3, w[7], w[5], w[0], w[8]); round!(a, b, c, d, e, f, g, h, 0x748f82ee, w[8], w[6], w[1], w[9]); round!(h, a, b, c, d, e, f, g, 0x78a5636f, w[9], w[7], w[2], w[10]); round!(g, h, a, b, c, d, e, f, 0x84c87814, w[10], w[8], w[3], w[11]); round!(f, g, h, a, b, c, d, e, 0x8cc70208, w[11], w[9], w[4], w[12]); round!(e, f, g, h, a, b, c, d, 0x90befffa, w[12], w[10], w[5], w[13]); round!(d, e, f, g, h, a, b, c, 0xa4506ceb, w[13], w[11], w[6], w[14]); round!(c, d, e, f, g, h, a, b, 0xbef9a3f7, w[14], w[12], w[7], w[15]); round!(b, c, d, e, f, g, h, a, 0xc67178f2, w[15], w[13], w[8], w[0]); self.h[0] = self.h[0].wrapping_add(a); self.h[1] = self.h[1].wrapping_add(b); self.h[2] = self.h[2].wrapping_add(c); self.h[3] = self.h[3].wrapping_add(d); self.h[4] = self.h[4].wrapping_add(e); self.h[5] = self.h[5].wrapping_add(f); self.h[6] = self.h[6].wrapping_add(g); self.h[7] = self.h[7].wrapping_add(h); } } #[cfg(test)] mod tests { use crate::{sha256, Hash, HashEngine}; #[test] #[cfg(feature = "alloc")] fn test() { #[derive(Clone)] struct Test { input: &'static str, output: Vec, output_str: &'static str, } #[rustfmt::skip] let tests = vec![ // Examples from wikipedia Test { input: "", output: vec![ 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55, ], output_str: "e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855" }, Test { input: "The quick brown fox jumps over the lazy dog", output: vec![ 0xd7, 0xa8, 0xfb, 0xb3, 0x07, 0xd7, 0x80, 0x94, 0x69, 0xca, 0x9a, 0xbc, 0xb0, 0x08, 0x2e, 0x4f, 0x8d, 0x56, 0x51, 0xe4, 0x6d, 0x3c, 0xdb, 0x76, 0x2d, 0x02, 0xd0, 0xbf, 0x37, 0xc9, 0xe5, 0x92, ], output_str: "d7a8fbb307d7809469ca9abcb0082e4f8d5651e46d3cdb762d02d0bf37c9e592", }, Test { input: "The quick brown fox jumps over the lazy dog.", output: vec![ 0xef, 0x53, 0x7f, 0x25, 0xc8, 0x95, 0xbf, 0xa7, 0x82, 0x52, 0x65, 0x29, 0xa9, 0xb6, 0x3d, 0x97, 0xaa, 0x63, 0x15, 0x64, 0xd5, 0xd7, 0x89, 0xc2, 0xb7, 0x65, 0x44, 0x8c, 0x86, 0x35, 0xfb, 0x6c, ], output_str: "ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c", }, ]; for test in tests { // Hash through high-level API, check hex encoding/decoding let hash = sha256::Hash::hash(test.input.as_bytes()); assert_eq!(hash, test.output_str.parse::().expect("parse hex")); assert_eq!(&hash[..], &test.output[..]); assert_eq!(&hash.to_string(), &test.output_str); // Hash through engine, checking that we can input byte by byte let mut engine = sha256::Hash::engine(); for ch in test.input.as_bytes() { engine.input(&[*ch]); } let manual_hash = sha256::Hash::from_engine(engine); assert_eq!(hash, manual_hash); assert_eq!(hash.to_byte_array()[..].as_ref(), test.output.as_slice()); } } #[test] #[rustfmt::skip] fn midstate() { // Test vector obtained by doing an asset issuance on Elements let mut engine = sha256::Hash::engine(); // sha256dhash of outpoint // 73828cbc65fd68ab78dc86992b76ae50ae2bf8ceedbe8de0483172f0886219f7:0 engine.input(&[ 0x9d, 0xd0, 0x1b, 0x56, 0xb1, 0x56, 0x45, 0x14, 0x3e, 0xad, 0x15, 0x8d, 0xec, 0x19, 0xf8, 0xce, 0xa9, 0x0b, 0xd0, 0xa9, 0xb2, 0xf8, 0x1d, 0x21, 0xff, 0xa3, 0xa4, 0xc6, 0x44, 0x81, 0xd4, 0x1c, ]); // 32 bytes of zeroes representing "new asset" engine.input(&[0; 32]); assert_eq!( engine.midstate(), // RPC output sha256::Midstate::from_byte_array([ 0x0b, 0xcf, 0xe0, 0xe5, 0x4e, 0x6c, 0xc7, 0xd3, 0x4f, 0x4f, 0x7c, 0x1d, 0xf0, 0xb0, 0xf5, 0x03, 0xf2, 0xf7, 0x12, 0x91, 0x2a, 0x06, 0x05, 0xb4, 0x14, 0xed, 0x33, 0x7f, 0x7f, 0x03, 0x2e, 0x03, ]) ); } #[test] fn engine_with_state() { let mut engine = sha256::Hash::engine(); let midstate_engine = sha256::HashEngine::from_midstate(engine.midstate(), 0); // Fresh engine and engine initialized with fresh state should have same state assert_eq!(engine.h, midstate_engine.h); // Midstate changes after writing 64 bytes engine.input(&[1; 63]); assert_eq!(engine.h, midstate_engine.h); engine.input(&[2; 1]); assert_ne!(engine.h, midstate_engine.h); // Initializing an engine with midstate from another engine should result in // both engines producing the same hashes let data_vec = vec![vec![3; 1], vec![4; 63], vec![5; 65], vec![6; 66]]; for data in data_vec { let mut engine = engine.clone(); let mut midstate_engine = sha256::HashEngine::from_midstate(engine.midstate(), engine.length); assert_eq!(engine.h, midstate_engine.h); assert_eq!(engine.length, midstate_engine.length); engine.input(&data); midstate_engine.input(&data); assert_eq!(engine.h, midstate_engine.h); let hash1 = sha256::Hash::from_engine(engine); let hash2 = sha256::Hash::from_engine(midstate_engine); assert_eq!(hash1, hash2); } // Test that a specific midstate results in a specific hash. Midstate was // obtained by applying sha256 to sha256("MuSig coefficient")||sha256("MuSig // coefficient"). #[rustfmt::skip] static MIDSTATE: [u8; 32] = [ 0x0f, 0xd0, 0x69, 0x0c, 0xfe, 0xfe, 0xae, 0x97, 0x99, 0x6e, 0xac, 0x7f, 0x5c, 0x30, 0xd8, 0x64, 0x8c, 0x4a, 0x05, 0x73, 0xac, 0xa1, 0xa2, 0x2f, 0x6f, 0x43, 0xb8, 0x01, 0x85, 0xce, 0x27, 0xcd, ]; #[rustfmt::skip] static HASH_EXPECTED: [u8; 32] = [ 0x18, 0x84, 0xe4, 0x72, 0x40, 0x4e, 0xf4, 0x5a, 0xb4, 0x9c, 0x4e, 0xa4, 0x9a, 0xe6, 0x23, 0xa8, 0x88, 0x52, 0x7f, 0x7d, 0x8a, 0x06, 0x94, 0x20, 0x8f, 0xf1, 0xf7, 0xa9, 0xd5, 0x69, 0x09, 0x59, ]; let midstate_engine = sha256::HashEngine::from_midstate(sha256::Midstate::from_byte_array(MIDSTATE), 64); let hash = sha256::Hash::from_engine(midstate_engine); assert_eq!(hash, sha256::Hash(HASH_EXPECTED)); } #[test] fn const_hash() { assert_eq!(super::Hash::hash(&[]), super::Hash::const_hash(&[])); let mut bytes = Vec::new(); for i in 0..256 { bytes.push(i as u8); assert_eq!( super::Hash::hash(&bytes), super::Hash::const_hash(&bytes), "hashes don't match for length {}", i + 1 ); } } #[test] fn const_midstate() { use super::Midstate; assert_eq!( Midstate::hash_tag(b"TapLeaf"), Midstate([ 156, 224, 228, 230, 124, 17, 108, 57, 56, 179, 202, 242, 195, 15, 80, 137, 211, 243, 147, 108, 71, 99, 110, 96, 125, 179, 62, 234, 221, 198, 240, 201, ]) ) } #[cfg(feature = "serde")] #[test] fn sha256_serde() { use serde_test::{assert_tokens, Configure, Token}; #[rustfmt::skip] static HASH_BYTES: [u8; 32] = [ 0xef, 0x53, 0x7f, 0x25, 0xc8, 0x95, 0xbf, 0xa7, 0x82, 0x52, 0x65, 0x29, 0xa9, 0xb6, 0x3d, 0x97, 0xaa, 0x63, 0x15, 0x64, 0xd5, 0xd7, 0x89, 0xc2, 0xb7, 0x65, 0x44, 0x8c, 0x86, 0x35, 0xfb, 0x6c, ]; let hash = sha256::Hash::from_slice(&HASH_BYTES).expect("right number of bytes"); assert_tokens(&hash.compact(), &[Token::BorrowedBytes(&HASH_BYTES[..])]); assert_tokens( &hash.readable(), &[Token::Str("ef537f25c895bfa782526529a9b63d97aa631564d5d789c2b765448c8635fb6c")], ); } #[cfg(target_arch = "wasm32")] mod wasm_tests { extern crate wasm_bindgen_test; use self::wasm_bindgen_test::*; use super::*; #[wasm_bindgen_test] fn sha256_tests() { test(); midstate(); engine_with_state(); } } } #[cfg(bench)] mod benches { use test::Bencher; use crate::{sha256, Hash, HashEngine}; #[bench] pub fn sha256_10(bh: &mut Bencher) { let mut engine = sha256::Hash::engine(); let bytes = [1u8; 10]; bh.iter(|| { engine.input(&bytes); }); bh.bytes = bytes.len() as u64; } #[bench] pub fn sha256_1k(bh: &mut Bencher) { let mut engine = sha256::Hash::engine(); let bytes = [1u8; 1024]; bh.iter(|| { engine.input(&bytes); }); bh.bytes = bytes.len() as u64; } #[bench] pub fn sha256_64k(bh: &mut Bencher) { let mut engine = sha256::Hash::engine(); let bytes = [1u8; 65536]; bh.iter(|| { engine.input(&bytes); }); bh.bytes = bytes.len() as u64; } }