rust-bitcoin-unsafe-fast/src/network/address.rs

488 lines
19 KiB
Rust

// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Bitcoin network addresses
//!
//! This module defines the structures and functions needed to encode
//! network addresses in Bitcoin messages.
//!
use std::{fmt, io, iter};
use std::net::{SocketAddr, Ipv6Addr, SocketAddrV4, SocketAddrV6, Ipv4Addr, ToSocketAddrs};
use network::constants::ServiceFlags;
use consensus::encode::{self, Decodable, Encodable, VarInt, ReadExt, WriteExt};
/// A message which can be sent on the Bitcoin network
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Address {
/// Services provided by the peer whose address this is
pub services: ServiceFlags,
/// Network byte-order ipv6 address, or ipv4-mapped ipv6 address
pub address: [u16; 8],
/// Network port
pub port: u16
}
const ONION : [u16; 3] = [0xFD87, 0xD87E, 0xEB43];
impl Address {
/// Create an address message for a socket
pub fn new(socket :&SocketAddr, services: ServiceFlags) -> Address {
let (address, port) = match *socket {
SocketAddr::V4(addr) => (addr.ip().to_ipv6_mapped().segments(), addr.port()),
SocketAddr::V6(addr) => (addr.ip().segments(), addr.port())
};
Address { address: address, port: port, services: services }
}
/// Extract socket address from an [Address] message.
/// This will return [io::Error] [ErrorKind::AddrNotAvailable]
/// if the message contains a Tor address.
pub fn socket_addr(&self) -> Result<SocketAddr, io::Error> {
let addr = &self.address;
if addr[0..3] == ONION {
return Err(io::Error::from(io::ErrorKind::AddrNotAvailable));
}
let ipv6 = Ipv6Addr::new(
addr[0],addr[1],addr[2],addr[3],
addr[4],addr[5],addr[6],addr[7]
);
if let Some(ipv4) = ipv6.to_ipv4() {
Ok(SocketAddr::V4(SocketAddrV4::new(ipv4, self.port)))
} else {
Ok(SocketAddr::V6(SocketAddrV6::new(ipv6, self.port, 0, 0)))
}
}
}
fn addr_to_be(addr: [u16; 8]) -> [u16; 8] {
[addr[0].to_be(), addr[1].to_be(), addr[2].to_be(), addr[3].to_be(),
addr[4].to_be(), addr[5].to_be(), addr[6].to_be(), addr[7].to_be()]
}
impl Encodable for Address {
#[inline]
fn consensus_encode<S: io::Write>(
&self,
mut s: S,
) -> Result<usize, encode::Error> {
let len = self.services.consensus_encode(&mut s)?
+ addr_to_be(self.address).consensus_encode(&mut s)?
+ self.port.to_be().consensus_encode(s)?;
Ok(len)
}
}
impl Decodable for Address {
#[inline]
fn consensus_decode<D: io::Read>(mut d: D) -> Result<Self, encode::Error> {
Ok(Address {
services: Decodable::consensus_decode(&mut d)?,
address: addr_to_be(Decodable::consensus_decode(&mut d)?),
port: u16::from_be(Decodable::consensus_decode(d)?)
})
}
}
impl fmt::Debug for Address {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let ipv6 = Ipv6Addr::from(self.address);
match ipv6.to_ipv4() {
Some(addr) => write!(f, "Address {{services: {}, address: {}, port: {}}}",
self.services, addr, self.port),
None => write!(f, "Address {{services: {}, address: {}, port: {}}}",
self.services, ipv6, self.port)
}
}
}
impl ToSocketAddrs for Address {
type Iter = iter::Once<SocketAddr>;
fn to_socket_addrs(&self) -> Result<Self::Iter, io::Error> {
Ok(iter::once(self.socket_addr()?))
}
}
/// Supported networks for use in BIP155 addrv2 message
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub enum AddrV2 {
/// IPV4
Ipv4(Ipv4Addr),
/// IPV6
Ipv6(Ipv6Addr),
/// TORV2
TorV2([u8; 10]),
/// TORV3
TorV3([u8; 32]),
/// I2P
I2p([u8; 32]),
/// CJDNS
Cjdns(Ipv6Addr),
/// Unknown
Unknown(u8, Vec<u8>),
}
impl Encodable for AddrV2 {
fn consensus_encode<W: io::Write>(&self, e: W) -> Result<usize, encode::Error> {
fn encode_addr<W: io::Write>(mut e: W, network: u8, bytes: &[u8]) -> Result<usize, encode::Error> {
let len =
network.consensus_encode(&mut e)? +
VarInt(bytes.len() as u64).consensus_encode(&mut e)? +
bytes.len();
e.emit_slice(bytes)?;
Ok(len)
}
Ok(match *self {
AddrV2::Ipv4(ref addr) => encode_addr(e, 1, &addr.octets())?,
AddrV2::Ipv6(ref addr) => encode_addr(e, 2, &addr.octets())?,
AddrV2::TorV2(ref bytes) => encode_addr(e, 3, bytes)?,
AddrV2::TorV3(ref bytes) => encode_addr(e, 4, bytes)?,
AddrV2::I2p(ref bytes) => encode_addr(e, 5, bytes)?,
AddrV2::Cjdns(ref addr) => encode_addr(e, 6, &addr.octets())?,
AddrV2::Unknown(network, ref bytes) => encode_addr(e, network, bytes)?
})
}
}
impl Decodable for AddrV2 {
fn consensus_decode<D: io::Read>(mut d: D) -> Result<Self, encode::Error> {
let network_id = u8::consensus_decode(&mut d)?;
let len = VarInt::consensus_decode(&mut d)?.0;
if len > 512 {
return Err(encode::Error::ParseFailed("IP must be <= 512 bytes"));
}
Ok(match network_id {
1 => {
if len != 4 {
return Err(encode::Error::ParseFailed("Invalid IPv4 address"));
}
let addr: [u8; 4] = Decodable::consensus_decode(&mut d)?;
AddrV2::Ipv4(Ipv4Addr::new(addr[0], addr[1], addr[2], addr[3]))
},
2 => {
if len != 16 {
return Err(encode::Error::ParseFailed("Invalid IPv6 address"));
}
let addr: [u16; 8] = addr_to_be(Decodable::consensus_decode(&mut d)?);
if addr[0..3] == ONION {
return Err(encode::Error::ParseFailed("OnionCat address sent with IPv6 network id"));
}
if addr[0..6] == [0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0xFFFF] {
return Err(encode::Error::ParseFailed("IPV4 wrapped address sent with IPv6 network id"));
}
AddrV2::Ipv6(Ipv6Addr::new(
addr[0],addr[1],addr[2],addr[3],
addr[4],addr[5],addr[6],addr[7]
))
},
3 => {
if len != 10 {
return Err(encode::Error::ParseFailed("Invalid TorV2 address"));
}
let id = Decodable::consensus_decode(&mut d)?;
AddrV2::TorV2(id)
},
4 => {
if len != 32 {
return Err(encode::Error::ParseFailed("Invalid TorV3 address"));
}
let pubkey = Decodable::consensus_decode(&mut d)?;
AddrV2::TorV3(pubkey)
},
5 => {
if len != 32 {
return Err(encode::Error::ParseFailed("Invalid I2P address"));
}
let hash = Decodable::consensus_decode(&mut d)?;
AddrV2::I2p(hash)
},
6 => {
if len != 16 {
return Err(encode::Error::ParseFailed("Invalid CJDNS address"));
}
let addr: [u16; 8] = Decodable::consensus_decode(&mut d)?;
// check the first byte for the CJDNS marker
if addr[0] as u8 != 0xFC {
return Err(encode::Error::ParseFailed("Invalid CJDNS address"));
}
let addr = addr_to_be(addr);
AddrV2::Cjdns(Ipv6Addr::new(
addr[0],addr[1],addr[2],addr[3],
addr[4],addr[5],addr[6],addr[7]
))
},
_ => {
// len already checked above to be <= 512
let mut addr = vec![0u8; len as usize];
d.read_slice(&mut addr)?;
AddrV2::Unknown(network_id, addr)
}
})
}
}
/// Address received from BIP155 addrv2 message
#[derive(Clone, PartialEq, Eq, Hash, Debug)]
pub struct AddrV2Message {
/// Time that this node was last seen as connected to the network
pub time: u32,
/// Service bits
pub services: ServiceFlags,
/// Network ID + Network Address
pub addr: AddrV2,
/// Network port, 0 if not applicable
pub port: u16
}
impl AddrV2Message {
/// Extract socket address from an [AddrV2Message] message.
/// This will return [io::Error] [ErrorKind::AddrNotAvailable]
/// if the address type can't be converted into a [SocketAddr].
pub fn socket_addr(&self) -> Result<SocketAddr, io::Error> {
match self.addr {
AddrV2::Ipv4(addr) => Ok(SocketAddr::V4(SocketAddrV4::new(addr, self.port))),
AddrV2::Ipv6(addr) => Ok(SocketAddr::V6(SocketAddrV6::new(addr, self.port, 0, 0))),
_ => return Err(io::Error::from(io::ErrorKind::AddrNotAvailable)),
}
}
}
impl Encodable for AddrV2Message {
fn consensus_encode<W: io::Write>(&self, mut e: W) -> Result<usize, encode::Error> {
let mut len = 0;
len += self.time.consensus_encode(&mut e)?;
len += VarInt(self.services.as_u64()).consensus_encode(&mut e)?;
len += self.addr.consensus_encode(&mut e)?;
len += self.port.to_be().consensus_encode(e)?;
Ok(len)
}
}
impl Decodable for AddrV2Message {
fn consensus_decode<D: io::Read>(mut d: D) -> Result<Self, encode::Error> {
Ok(AddrV2Message{
time: Decodable::consensus_decode(&mut d)?,
services: ServiceFlags::from(VarInt::consensus_decode(&mut d)?.0),
addr: Decodable::consensus_decode(&mut d)?,
port: u16::from_be(Decodable::consensus_decode(d)?),
})
}
}
impl ToSocketAddrs for AddrV2Message {
type Iter = iter::Once<SocketAddr>;
fn to_socket_addrs(&self) -> Result<Self::Iter, io::Error> {
Ok(iter::once(self.socket_addr()?))
}
}
#[cfg(test)]
mod test {
use std::str::FromStr;
use super::{AddrV2Message, AddrV2, Address};
use network::constants::ServiceFlags;
use std::net::{SocketAddr, IpAddr, Ipv4Addr, Ipv6Addr};
use hashes::hex::FromHex;
use consensus::encode::{deserialize, serialize};
#[test]
fn serialize_address_test() {
assert_eq!(serialize(&Address {
services: ServiceFlags::NETWORK,
address: [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001],
port: 8333
}),
vec![1u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0xff, 0xff, 0x0a, 0, 0, 1, 0x20, 0x8d]);
}
#[test]
fn debug_format_test() {
let mut flags = ServiceFlags::NETWORK;
assert_eq!(
format!("The address is: {:?}", Address {
services: flags.add(ServiceFlags::WITNESS),
address: [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001],
port: 8333
}),
"The address is: Address {services: ServiceFlags(NETWORK|WITNESS), address: 10.0.0.1, port: 8333}"
);
assert_eq!(
format!("The address is: {:?}", Address {
services: ServiceFlags::NETWORK_LIMITED,
address: [0xFD87, 0xD87E, 0xEB43, 0, 0, 0xffff, 0x0a00, 0x0001],
port: 8333
}),
"The address is: Address {services: ServiceFlags(NETWORK_LIMITED), address: fd87:d87e:eb43::ffff:a00:1, port: 8333}"
);
}
#[test]
fn deserialize_address_test() {
let mut addr: Result<Address, _> = deserialize(&[1u8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x0a, 0,
0, 1, 0x20, 0x8d]);
assert!(addr.is_ok());
let full = addr.unwrap();
assert!(match full.socket_addr().unwrap() {
SocketAddr::V4(_) => true,
_ => false
}
);
assert_eq!(full.services, ServiceFlags::NETWORK);
assert_eq!(full.address, [0, 0, 0, 0, 0, 0xffff, 0x0a00, 0x0001]);
assert_eq!(full.port, 8333);
addr = deserialize(&[1u8, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, 0x0a, 0, 0, 1]);
assert!(addr.is_err());
}
#[test]
fn test_socket_addr () {
let s4 = SocketAddr::new(IpAddr::V4(Ipv4Addr::new(111,222,123,4)), 5555);
let a4 = Address::new(&s4, ServiceFlags::NETWORK | ServiceFlags::WITNESS);
assert_eq!(a4.socket_addr().unwrap(), s4);
let s6 = SocketAddr::new(IpAddr::V6(Ipv6Addr::new(0x1111, 0x2222, 0x3333, 0x4444,
0x5555, 0x6666, 0x7777, 0x8888)), 9999);
let a6 = Address::new(&s6, ServiceFlags::NETWORK | ServiceFlags::WITNESS);
assert_eq!(a6.socket_addr().unwrap(), s6);
}
#[test]
fn onion_test () {
let onionaddr = SocketAddr::new(
IpAddr::V6(
Ipv6Addr::from_str("FD87:D87E:EB43:edb1:8e4:3588:e546:35ca").unwrap()), 1111);
let addr = Address::new(&onionaddr, ServiceFlags::NONE);
assert!(addr.socket_addr().is_err());
}
#[test]
fn serialize_addrv2_test() {
// Taken from https://github.com/bitcoin/bitcoin/blob/12a1c3ad1a43634d2a98717e49e3f02c4acea2fe/src/test/net_tests.cpp#L348
let ip = AddrV2::Ipv4(Ipv4Addr::new(1, 2, 3, 4));
assert_eq!(serialize(&ip), Vec::from_hex("010401020304").unwrap());
let ip = AddrV2::Ipv6(Ipv6Addr::from_str("1a1b:2a2b:3a3b:4a4b:5a5b:6a6b:7a7b:8a8b").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("02101a1b2a2b3a3b4a4b5a5b6a6b7a7b8a8b").unwrap());
let ip = AddrV2::TorV2(FromHex::from_hex("f1f2f3f4f5f6f7f8f9fa").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("030af1f2f3f4f5f6f7f8f9fa").unwrap());
let ip = AddrV2::TorV3(FromHex::from_hex("53cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("042053cd5648488c4707914182655b7664034e09e66f7e8cbf1084e654eb56c5bd88").unwrap());
let ip = AddrV2::I2p(FromHex::from_hex("a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("0520a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap());
let ip = AddrV2::Cjdns(Ipv6Addr::from_str("fc00:1:2:3:4:5:6:7").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("0610fc000001000200030004000500060007").unwrap());
let ip = AddrV2::Unknown(170, Vec::from_hex("01020304").unwrap());
assert_eq!(serialize(&ip), Vec::from_hex("aa0401020304").unwrap());
}
#[test]
fn deserialize_addrv2_test() {
// Taken from https://github.com/bitcoin/bitcoin/blob/12a1c3ad1a43634d2a98717e49e3f02c4acea2fe/src/test/net_tests.cpp#L386
// Valid IPv4.
let ip: AddrV2 = deserialize(&Vec::from_hex("010401020304").unwrap()).unwrap();
assert_eq!(ip, AddrV2::Ipv4(Ipv4Addr::new(1, 2, 3, 4)));
// Invalid IPv4, valid length but address itself is shorter.
deserialize::<AddrV2>(&Vec::from_hex("01040102").unwrap()).unwrap_err();
// Invalid IPv4, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("010501020304").unwrap()).is_err());
// Invalid IPv4, with extreme length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("01fd010201020304").unwrap()).is_err());
// Valid IPv6.
let ip: AddrV2 = deserialize(&Vec::from_hex("02100102030405060708090a0b0c0d0e0f10").unwrap()).unwrap();
assert_eq!(ip, AddrV2::Ipv6(Ipv6Addr::from_str("102:304:506:708:90a:b0c:d0e:f10").unwrap()));
// Invalid IPv6, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("020400").unwrap()).is_err());
// Invalid IPv6, contains embedded IPv4.
assert!(deserialize::<AddrV2>(&Vec::from_hex("021000000000000000000000ffff01020304").unwrap()).is_err());
// Invalid IPv6, contains embedded TORv2.
assert!(deserialize::<AddrV2>(&Vec::from_hex("0210fd87d87eeb430102030405060708090a").unwrap()).is_err());
// Valid TORv2.
let ip: AddrV2 = deserialize(&Vec::from_hex("030af1f2f3f4f5f6f7f8f9fa").unwrap()).unwrap();
assert_eq!(ip, AddrV2::TorV2(FromHex::from_hex("f1f2f3f4f5f6f7f8f9fa").unwrap()));
// Invalid TORv2, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("030700").unwrap()).is_err());
// Valid TORv3.
let ip: AddrV2 = deserialize(&Vec::from_hex("042079bcc625184b05194975c28b66b66b0469f7f6556fb1ac3189a79b40dda32f1f").unwrap()).unwrap();
assert_eq!(ip, AddrV2::TorV3(FromHex::from_hex("79bcc625184b05194975c28b66b66b0469f7f6556fb1ac3189a79b40dda32f1f").unwrap()));
// Invalid TORv3, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("040000").unwrap()).is_err());
// Valid I2P.
let ip: AddrV2 = deserialize(&Vec::from_hex("0520a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap()).unwrap();
assert_eq!(ip, AddrV2::I2p(FromHex::from_hex("a2894dabaec08c0051a481a6dac88b64f98232ae42d4b6fd2fa81952dfe36a87").unwrap()));
// Invalid I2P, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("050300").unwrap()).is_err());
// Valid CJDNS.
let ip: AddrV2 = deserialize(&Vec::from_hex("0610fc000001000200030004000500060007").unwrap()).unwrap();
assert_eq!(ip, AddrV2::Cjdns(Ipv6Addr::from_str("fc00:1:2:3:4:5:6:7").unwrap()));
// Invalid CJDNS, incorrect marker
assert!(deserialize::<AddrV2>(&Vec::from_hex("0610fd000001000200030004000500060007").unwrap()).is_err());
// Invalid CJDNS, with bogus length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("060100").unwrap()).is_err());
// Unknown, with extreme length.
assert!(deserialize::<AddrV2>(&Vec::from_hex("aafe0000000201020304050607").unwrap()).is_err());
// Unknown, with reasonable length.
let ip: AddrV2 = deserialize(&Vec::from_hex("aa0401020304").unwrap()).unwrap();
assert_eq!(ip, AddrV2::Unknown(170, Vec::from_hex("01020304").unwrap()));
// Unknown, with zero length.
let ip: AddrV2 = deserialize(&Vec::from_hex("aa00").unwrap()).unwrap();
assert_eq!(ip, AddrV2::Unknown(170, vec![]));
}
#[test]
fn addrv2message_test() {
let raw = Vec::from_hex("0261bc6649019902abab208d79627683fd4804010409090909208d").unwrap();
let addresses: Vec<AddrV2Message> = deserialize(&raw).unwrap();
assert_eq!(addresses, vec![
AddrV2Message{services: ServiceFlags::NETWORK, time: 0x4966bc61, port: 8333, addr: AddrV2::Unknown(153, Vec::from_hex("abab").unwrap())},
AddrV2Message{services: ServiceFlags::NETWORK_LIMITED | ServiceFlags::WITNESS | ServiceFlags::COMPACT_FILTERS, time: 0x83766279, port: 8333, addr: AddrV2::Ipv4(Ipv4Addr::new(9, 9, 9, 9))},
]);
assert_eq!(serialize(&addresses), raw);
}
}