rust-bitcoin-unsafe-fast/bitcoin/src/network/constants.rs

675 lines
22 KiB
Rust

// Written in 2014 by Andrew Poelstra <apoelstra@wpsoftware.net>
// SPDX-License-Identifier: CC0-1.0
//! Bitcoin network constants.
//!
//! This module provides various constants relating to the Bitcoin network
//! protocol, such as protocol versioning and magic header bytes.
//!
//! The [`Network`][1] type implements the [`Decodable`][2] and
//! [`Encodable`][3] traits and encodes the magic bytes of the given
//! network.
//!
//! [1]: enum.Network.html
//! [2]: ../../consensus/encode/trait.Decodable.html
//! [3]: ../../consensus/encode/trait.Encodable.html
//!
//! # Example: encoding a network's magic bytes
//!
//! ```rust
//! use bitcoin::network::constants::Network;
//! use bitcoin::consensus::encode::serialize;
//!
//! let network = Network::Bitcoin;
//! let bytes = serialize(&network.magic());
//!
//! assert_eq!(&bytes[..], &[0xF9, 0xBE, 0xB4, 0xD9]);
//! ```
use core::borrow::{Borrow, BorrowMut};
use core::convert::TryFrom;
use core::fmt::Display;
use core::str::FromStr;
use core::{fmt, ops};
use bitcoin_internals::{debug_from_display, write_err};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use crate::consensus::encode::{self, Decodable, Encodable};
use crate::constants::ChainHash;
use crate::error::impl_std_error;
use crate::hashes::hex::{Error, FromHex};
use crate::io;
use crate::prelude::{String, ToOwned};
/// Version of the protocol as appearing in network message headers
/// This constant is used to signal to other peers which features you support.
/// Increasing it implies that your software also supports every feature prior to this version.
/// Doing so without support may lead to you incorrectly banning other peers or other peers banning you.
/// These are the features required for each version:
/// 70016 - Support receiving `wtxidrelay` message between `version` and `verack` message
/// 70015 - Support receiving invalid compact blocks from a peer without banning them
/// 70014 - Support compact block messages `sendcmpct`, `cmpctblock`, `getblocktxn` and `blocktxn`
/// 70013 - Support `feefilter` message
/// 70012 - Support `sendheaders` message and announce new blocks via headers rather than inv
/// 70011 - Support NODE_BLOOM service flag and don't support bloom filter messages if it is not set
/// 70002 - Support `reject` message
/// 70001 - Support bloom filter messages `filterload`, `filterclear` `filteradd`, `merkleblock` and FILTERED_BLOCK inventory type
/// 60002 - Support `mempool` message
/// 60001 - Support `pong` message and nonce in `ping` message
pub const PROTOCOL_VERSION: u32 = 70001;
/// The cryptocurrency network to act on.
#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Clone, Hash, Debug)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "serde", serde(crate = "actual_serde"))]
#[cfg_attr(feature = "serde", serde(rename_all = "lowercase"))]
#[non_exhaustive]
pub enum Network {
/// Mainnet Bitcoin.
Bitcoin,
/// Bitcoin's testnet network.
Testnet,
/// Bitcoin's signet network.
Signet,
/// Bitcoin's regtest network.
Regtest,
}
impl Network {
/// Creates a `Network` from the magic bytes.
///
/// # Examples
///
/// ```rust
/// use bitcoin::network::constants::{Network, Magic};
/// use std::convert::TryFrom;
///
/// assert_eq!(Ok(Network::Bitcoin), Network::try_from(Magic::from_bytes([0xF9, 0xBE, 0xB4, 0xD9])));
/// assert_eq!(None, Network::from_magic(Magic::from_bytes([0xFF, 0xFF, 0xFF, 0xFF])));
/// ```
pub fn from_magic(magic: Magic) -> Option<Network> { Network::try_from(magic).ok() }
/// Return the network magic bytes, which should be encoded little-endian
/// at the start of every message
///
/// # Examples
///
/// ```rust
/// use bitcoin::network::constants::{Network, Magic};
///
/// let network = Network::Bitcoin;
/// assert_eq!(network.magic(), Magic::from_bytes([0xF9, 0xBE, 0xB4, 0xD9]));
/// ```
pub fn magic(self) -> Magic { Magic::from(self) }
/// Converts a `Network` to its equivalent `bitcoind -chain` argument name.
///
/// ```bash
/// $ bitcoin-23.0/bin/bitcoind --help | grep -C 3 '\-chain=<chain>'
/// Chain selection options:
///
/// -chain=<chain>
/// Use the chain <chain> (default: main). Allowed values: main, test, signet, regtest
/// ```
pub fn to_core_arg(self) -> &'static str {
match self {
Network::Bitcoin => "main",
Network::Testnet => "test",
Network::Signet => "signet",
Network::Regtest => "regtest",
}
}
/// Converts a `bitcoind -chain` argument name to its equivalent `Network`.
///
/// ```bash
/// $ bitcoin-23.0/bin/bitcoind --help | grep -C 3 '\-chain=<chain>'
/// Chain selection options:
///
/// -chain=<chain>
/// Use the chain <chain> (default: main). Allowed values: main, test, signet, regtest
/// ```
pub fn from_core_arg(core_arg: &str) -> Result<Self, ParseNetworkError> {
use Network::*;
let network = match core_arg {
"main" => Bitcoin,
"test" => Testnet,
"signet" => Signet,
"regtest" => Regtest,
_ => return Err(ParseNetworkError(core_arg.to_owned())),
};
Ok(network)
}
/// Return the network's chain hash (genesis block hash).
///
/// # Examples
///
/// ```rust
/// use bitcoin::network::constants::Network;
/// use bitcoin::blockdata::constants::ChainHash;
///
/// let network = Network::Bitcoin;
/// assert_eq!(network.chain_hash(), ChainHash::BITCOIN);
/// ```
pub fn chain_hash(self) -> ChainHash { ChainHash::using_genesis_block(self) }
/// Creates a `Network` from the chain hash (genesis block hash).
///
/// # Examples
///
/// ```rust
/// use bitcoin::network::constants::Network;
/// use bitcoin::blockdata::constants::ChainHash;
/// use std::convert::TryFrom;
///
/// assert_eq!(Ok(Network::Bitcoin), Network::try_from(ChainHash::BITCOIN));
/// ```
pub fn from_chain_hash(chain_hash: ChainHash) -> Option<Network> {
Network::try_from(chain_hash).ok()
}
}
/// An error in parsing network string.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParseNetworkError(String);
impl fmt::Display for ParseNetworkError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write_err!(f, "failed to parse {} as network", self.0; self)
}
}
impl_std_error!(ParseNetworkError);
impl FromStr for Network {
type Err = ParseNetworkError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
use Network::*;
let network = match s {
"bitcoin" => Bitcoin,
"testnet" => Testnet,
"signet" => Signet,
"regtest" => Regtest,
_ => return Err(ParseNetworkError(s.to_owned())),
};
Ok(network)
}
}
impl fmt::Display for Network {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use Network::*;
let s = match *self {
Bitcoin => "bitcoin",
Testnet => "testnet",
Signet => "signet",
Regtest => "regtest",
};
write!(f, "{}", s)
}
}
/// Error in parsing network from chain hash.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct UnknownChainHash(ChainHash);
impl Display for UnknownChainHash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "unknown chain hash: {}", self.0)
}
}
impl_std_error!(UnknownChainHash);
impl TryFrom<ChainHash> for Network {
type Error = UnknownChainHash;
fn try_from(chain_hash: ChainHash) -> Result<Self, Self::Error> {
match chain_hash {
// Note: any new network entries must be matched against here.
ChainHash::BITCOIN => Ok(Network::Bitcoin),
ChainHash::TESTNET => Ok(Network::Testnet),
ChainHash::SIGNET => Ok(Network::Signet),
ChainHash::REGTEST => Ok(Network::Regtest),
_ => Err(UnknownChainHash(chain_hash)),
}
}
}
/// Network magic bytes to identify the cryptocurrency network the message was intended for.
#[derive(Copy, PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
pub struct Magic([u8; 4]);
impl Magic {
/// Bitcoin mainnet network magic bytes.
pub const BITCOIN: Self = Self([0xF9, 0xBE, 0xB4, 0xD9]);
/// Bitcoin testnet network magic bytes.
pub const TESTNET: Self = Self([0x0B, 0x11, 0x09, 0x07]);
/// Bitcoin signet network magic bytes.
pub const SIGNET: Self = Self([0x0A, 0x03, 0xCF, 0x40]);
/// Bitcoin regtest network magic bytes.
pub const REGTEST: Self = Self([0xFA, 0xBF, 0xB5, 0xDA]);
/// Create network magic from bytes.
pub fn from_bytes(bytes: [u8; 4]) -> Magic { Magic(bytes) }
/// Get network magic bytes.
pub fn to_bytes(self) -> [u8; 4] { self.0 }
}
/// An error in parsing magic bytes.
#[derive(Debug, PartialEq, Eq, Clone)]
pub struct ParseMagicError {
/// The error that occurred when parsing the string.
error: Error,
/// The byte string that failed to parse.
magic: String,
}
impl FromStr for Magic {
type Err = ParseMagicError;
fn from_str(s: &str) -> Result<Magic, Self::Err> {
match <[u8; 4]>::from_hex(s) {
Ok(magic) => Ok(Magic::from_bytes(magic)),
Err(e) => Err(ParseMagicError { error: e, magic: s.to_owned() }),
}
}
}
impl From<Network> for Magic {
fn from(network: Network) -> Magic {
match network {
// Note: new network entries must explicitly be matched in `try_from` below.
Network::Bitcoin => Magic::BITCOIN,
Network::Testnet => Magic::TESTNET,
Network::Signet => Magic::SIGNET,
Network::Regtest => Magic::REGTEST,
}
}
}
/// Error in creating a Network from Magic bytes.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct UnknownMagic(Magic);
impl TryFrom<Magic> for Network {
type Error = UnknownMagic;
fn try_from(magic: Magic) -> Result<Self, Self::Error> {
match magic {
// Note: any new network entries must be matched against here.
Magic::BITCOIN => Ok(Network::Bitcoin),
Magic::TESTNET => Ok(Network::Testnet),
Magic::SIGNET => Ok(Network::Signet),
Magic::REGTEST => Ok(Network::Regtest),
_ => Err(UnknownMagic(magic)),
}
}
}
impl fmt::Display for Magic {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
bitcoin_internals::fmt_hex_exact!(f, 4, &self.0, bitcoin_internals::hex::Case::Lower)?;
Ok(())
}
}
debug_from_display!(Magic);
impl fmt::LowerHex for Magic {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
bitcoin_internals::fmt_hex_exact!(f, 4, &self.0, bitcoin_internals::hex::Case::Lower)?;
Ok(())
}
}
impl fmt::UpperHex for Magic {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
bitcoin_internals::fmt_hex_exact!(f, 4, &self.0, bitcoin_internals::hex::Case::Upper)?;
Ok(())
}
}
impl Encodable for Magic {
fn consensus_encode<W: io::Write + ?Sized>(&self, writer: &mut W) -> Result<usize, io::Error> {
self.0.consensus_encode(writer)
}
}
impl Decodable for Magic {
fn consensus_decode<R: io::Read + ?Sized>(reader: &mut R) -> Result<Self, encode::Error> {
Ok(Magic(Decodable::consensus_decode(reader)?))
}
}
impl AsRef<[u8]> for Magic {
fn as_ref(&self) -> &[u8] { &self.0 }
}
impl AsRef<[u8; 4]> for Magic {
fn as_ref(&self) -> &[u8; 4] { &self.0 }
}
impl AsMut<[u8]> for Magic {
fn as_mut(&mut self) -> &mut [u8] { &mut self.0 }
}
impl AsMut<[u8; 4]> for Magic {
fn as_mut(&mut self) -> &mut [u8; 4] { &mut self.0 }
}
impl Borrow<[u8]> for Magic {
fn borrow(&self) -> &[u8] { &self.0 }
}
impl Borrow<[u8; 4]> for Magic {
fn borrow(&self) -> &[u8; 4] { &self.0 }
}
impl BorrowMut<[u8]> for Magic {
fn borrow_mut(&mut self) -> &mut [u8] { &mut self.0 }
}
impl BorrowMut<[u8; 4]> for Magic {
fn borrow_mut(&mut self) -> &mut [u8; 4] { &mut self.0 }
}
impl fmt::Display for ParseMagicError {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write_err!(f, "failed to parse {} as network magic", self.magic; self.error)
}
}
impl_std_error!(ParseMagicError, error);
impl fmt::Display for UnknownMagic {
fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> {
write!(f, "unknown network magic {}", self.0)
}
}
impl_std_error!(UnknownMagic);
/// Flags to indicate which network services a node supports.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct ServiceFlags(u64);
impl ServiceFlags {
/// NONE means no services supported.
pub const NONE: ServiceFlags = ServiceFlags(0);
/// NETWORK means that the node is capable of serving the complete block chain. It is currently
/// set by all Bitcoin Core non pruned nodes, and is unset by SPV clients or other light
/// clients.
pub const NETWORK: ServiceFlags = ServiceFlags(1 << 0);
/// GETUTXO means the node is capable of responding to the getutxo protocol request. Bitcoin
/// Core does not support this but a patch set called Bitcoin XT does.
/// See BIP 64 for details on how this is implemented.
pub const GETUTXO: ServiceFlags = ServiceFlags(1 << 1);
/// BLOOM means the node is capable and willing to handle bloom-filtered connections. Bitcoin
/// Core nodes used to support this by default, without advertising this bit, but no longer do
/// as of protocol version 70011 (= NO_BLOOM_VERSION)
pub const BLOOM: ServiceFlags = ServiceFlags(1 << 2);
/// WITNESS indicates that a node can be asked for blocks and transactions including witness
/// data.
pub const WITNESS: ServiceFlags = ServiceFlags(1 << 3);
/// COMPACT_FILTERS means the node will service basic block filter requests.
/// See BIP157 and BIP158 for details on how this is implemented.
pub const COMPACT_FILTERS: ServiceFlags = ServiceFlags(1 << 6);
/// NETWORK_LIMITED means the same as NODE_NETWORK with the limitation of only serving the last
/// 288 (2 day) blocks.
/// See BIP159 for details on how this is implemented.
pub const NETWORK_LIMITED: ServiceFlags = ServiceFlags(1 << 10);
// NOTE: When adding new flags, remember to update the Display impl accordingly.
/// Add [ServiceFlags] together.
///
/// Returns itself.
pub fn add(&mut self, other: ServiceFlags) -> ServiceFlags {
self.0 |= other.0;
*self
}
/// Remove [ServiceFlags] from this.
///
/// Returns itself.
pub fn remove(&mut self, other: ServiceFlags) -> ServiceFlags {
self.0 ^= other.0;
*self
}
/// Check whether [ServiceFlags] are included in this one.
pub fn has(self, flags: ServiceFlags) -> bool { (self.0 | flags.0) == self.0 }
/// Gets the integer representation of this [`ServiceFlags`].
pub fn to_u64(self) -> u64 { self.0 }
}
impl fmt::LowerHex for ServiceFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::LowerHex::fmt(&self.0, f) }
}
impl fmt::UpperHex for ServiceFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::UpperHex::fmt(&self.0, f) }
}
impl fmt::Display for ServiceFlags {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut flags = *self;
if flags == ServiceFlags::NONE {
return write!(f, "ServiceFlags(NONE)");
}
let mut first = true;
macro_rules! write_flag {
($f:ident) => {
if flags.has(ServiceFlags::$f) {
if !first {
write!(f, "|")?;
}
first = false;
write!(f, stringify!($f))?;
flags.remove(ServiceFlags::$f);
}
};
}
write!(f, "ServiceFlags(")?;
write_flag!(NETWORK);
write_flag!(GETUTXO);
write_flag!(BLOOM);
write_flag!(WITNESS);
write_flag!(COMPACT_FILTERS);
write_flag!(NETWORK_LIMITED);
// If there are unknown flags left, we append them in hex.
if flags != ServiceFlags::NONE {
if !first {
write!(f, "|")?;
}
write!(f, "0x{:x}", flags)?;
}
write!(f, ")")
}
}
impl From<u64> for ServiceFlags {
fn from(f: u64) -> Self { ServiceFlags(f) }
}
impl From<ServiceFlags> for u64 {
fn from(flags: ServiceFlags) -> Self { flags.0 }
}
impl ops::BitOr for ServiceFlags {
type Output = Self;
fn bitor(mut self, rhs: Self) -> Self { self.add(rhs) }
}
impl ops::BitOrAssign for ServiceFlags {
fn bitor_assign(&mut self, rhs: Self) { self.add(rhs); }
}
impl ops::BitXor for ServiceFlags {
type Output = Self;
fn bitxor(mut self, rhs: Self) -> Self { self.remove(rhs) }
}
impl ops::BitXorAssign for ServiceFlags {
fn bitxor_assign(&mut self, rhs: Self) { self.remove(rhs); }
}
impl Encodable for ServiceFlags {
#[inline]
fn consensus_encode<W: io::Write + ?Sized>(&self, w: &mut W) -> Result<usize, io::Error> {
self.0.consensus_encode(w)
}
}
impl Decodable for ServiceFlags {
#[inline]
fn consensus_decode<R: io::Read + ?Sized>(r: &mut R) -> Result<Self, encode::Error> {
Ok(ServiceFlags(Decodable::consensus_decode(r)?))
}
}
#[cfg(test)]
mod tests {
use std::convert::TryFrom;
use std::str::FromStr;
use super::{Magic, Network, ServiceFlags};
use crate::consensus::encode::{deserialize, serialize};
#[test]
fn serialize_test() {
assert_eq!(serialize(&Network::Bitcoin.magic()), &[0xf9, 0xbe, 0xb4, 0xd9]);
assert_eq!(serialize(&Network::Testnet.magic()), &[0x0b, 0x11, 0x09, 0x07]);
assert_eq!(serialize(&Network::Signet.magic()), &[0x0a, 0x03, 0xcf, 0x40]);
assert_eq!(serialize(&Network::Regtest.magic()), &[0xfa, 0xbf, 0xb5, 0xda]);
assert_eq!(deserialize(&[0xf9, 0xbe, 0xb4, 0xd9]).ok(), Some(Network::Bitcoin.magic()));
assert_eq!(deserialize(&[0x0b, 0x11, 0x09, 0x07]).ok(), Some(Network::Testnet.magic()));
assert_eq!(deserialize(&[0x0a, 0x03, 0xcf, 0x40]).ok(), Some(Network::Signet.magic()));
assert_eq!(deserialize(&[0xfa, 0xbf, 0xb5, 0xda]).ok(), Some(Network::Regtest.magic()));
}
#[test]
fn string_test() {
assert_eq!(Network::Bitcoin.to_string(), "bitcoin");
assert_eq!(Network::Testnet.to_string(), "testnet");
assert_eq!(Network::Regtest.to_string(), "regtest");
assert_eq!(Network::Signet.to_string(), "signet");
assert_eq!("bitcoin".parse::<Network>().unwrap(), Network::Bitcoin);
assert_eq!("testnet".parse::<Network>().unwrap(), Network::Testnet);
assert_eq!("regtest".parse::<Network>().unwrap(), Network::Regtest);
assert_eq!("signet".parse::<Network>().unwrap(), Network::Signet);
assert!("fakenet".parse::<Network>().is_err());
}
#[test]
fn service_flags_test() {
let all = [
ServiceFlags::NETWORK,
ServiceFlags::GETUTXO,
ServiceFlags::BLOOM,
ServiceFlags::WITNESS,
ServiceFlags::COMPACT_FILTERS,
ServiceFlags::NETWORK_LIMITED,
];
let mut flags = ServiceFlags::NONE;
for f in all.iter() {
assert!(!flags.has(*f));
}
flags |= ServiceFlags::WITNESS;
assert_eq!(flags, ServiceFlags::WITNESS);
let mut flags2 = flags | ServiceFlags::GETUTXO;
for f in all.iter() {
assert_eq!(flags2.has(*f), *f == ServiceFlags::WITNESS || *f == ServiceFlags::GETUTXO);
}
flags2 ^= ServiceFlags::WITNESS;
assert_eq!(flags2, ServiceFlags::GETUTXO);
flags2 |= ServiceFlags::COMPACT_FILTERS;
flags2 ^= ServiceFlags::GETUTXO;
assert_eq!(flags2, ServiceFlags::COMPACT_FILTERS);
// Test formatting.
assert_eq!("ServiceFlags(NONE)", ServiceFlags::NONE.to_string());
assert_eq!("ServiceFlags(WITNESS)", ServiceFlags::WITNESS.to_string());
let flag = ServiceFlags::WITNESS | ServiceFlags::BLOOM | ServiceFlags::NETWORK;
assert_eq!("ServiceFlags(NETWORK|BLOOM|WITNESS)", flag.to_string());
let flag = ServiceFlags::WITNESS | 0xf0.into();
assert_eq!("ServiceFlags(WITNESS|COMPACT_FILTERS|0xb0)", flag.to_string());
}
#[test]
#[cfg(feature = "serde")]
fn serde_roundtrip() {
use Network::*;
let tests = vec![
(Bitcoin, "bitcoin"),
(Testnet, "testnet"),
(Signet, "signet"),
(Regtest, "regtest"),
];
for tc in tests {
let network = tc.0;
let want = format!("\"{}\"", tc.1);
let got = serde_json::to_string(&tc.0).expect("failed to serialize network");
assert_eq!(got, want);
let back: Network = serde_json::from_str(&got).expect("failed to deserialize network");
assert_eq!(back, network);
}
}
#[test]
fn magic_from_str() {
let known_network_magic_strs = [
("f9beb4d9", Network::Bitcoin),
("0b110907", Network::Testnet),
("fabfb5da", Network::Regtest),
("0a03cf40", Network::Signet),
];
for (magic_str, network) in &known_network_magic_strs {
let magic: Magic = Magic::from_str(magic_str).unwrap();
assert_eq!(Network::try_from(magic).unwrap(), *network);
assert_eq!(&magic.to_string(), magic_str);
}
}
#[test]
fn from_to_core_arg() {
let expected_pairs = [
(Network::Bitcoin, "main"),
(Network::Testnet, "test"),
(Network::Regtest, "regtest"),
(Network::Signet, "signet"),
];
for (net, core_arg) in &expected_pairs {
assert_eq!(Network::from_core_arg(core_arg), Ok(*net));
assert_eq!(net.to_core_arg(), *core_arg);
}
}
}