rust-bitcoin-unsafe-fast/units/src/amount.rs

2958 lines
109 KiB
Rust

// SPDX-License-Identifier: CC0-1.0
//! Bitcoin amounts.
//!
//! This module mainly introduces the [Amount] and [SignedAmount] types.
//! We refer to the documentation on the types for more information.
#[cfg(feature = "alloc")]
use alloc::string::{String, ToString};
use core::cmp::Ordering;
#[cfg(feature = "alloc")]
use core::fmt::Write as _;
use core::str::FromStr;
use core::{default, fmt, ops};
#[cfg(feature = "serde")]
use ::serde::{Deserialize, Serialize};
use internals::error::InputString;
use internals::write_err;
/// A set of denominations in which amounts can be expressed.
///
/// # Examples
/// ```
/// # use core::str::FromStr;
/// # use bitcoin_units::Amount;
///
/// assert_eq!(Amount::from_str("1 BTC").unwrap(), Amount::from_sat(100_000_000));
/// assert_eq!(Amount::from_str("1 cBTC").unwrap(), Amount::from_sat(1_000_000));
/// assert_eq!(Amount::from_str("1 mBTC").unwrap(), Amount::from_sat(100_000));
/// assert_eq!(Amount::from_str("1 uBTC").unwrap(), Amount::from_sat(100));
/// assert_eq!(Amount::from_str("10 nBTC").unwrap(), Amount::from_sat(1));
/// assert_eq!(Amount::from_str("10000 pBTC").unwrap(), Amount::from_sat(1));
/// assert_eq!(Amount::from_str("1 bit").unwrap(), Amount::from_sat(100));
/// assert_eq!(Amount::from_str("1 sat").unwrap(), Amount::from_sat(1));
/// assert_eq!(Amount::from_str("1000 msats").unwrap(), Amount::from_sat(1));
/// ```
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
#[non_exhaustive]
pub enum Denomination {
/// BTC
Bitcoin,
/// cBTC
CentiBitcoin,
/// mBTC
MilliBitcoin,
/// uBTC
MicroBitcoin,
/// nBTC
NanoBitcoin,
/// pBTC
PicoBitcoin,
/// bits
Bit,
/// satoshi
Satoshi,
/// msat
MilliSatoshi,
}
impl Denomination {
/// Convenience alias for `Denomination::Bitcoin`.
pub const BTC: Self = Denomination::Bitcoin;
/// Convenience alias for `Denomination::Satoshi`.
pub const SAT: Self = Denomination::Satoshi;
/// The number of decimal places more than a satoshi.
fn precision(self) -> i8 {
match self {
Denomination::Bitcoin => -8,
Denomination::CentiBitcoin => -6,
Denomination::MilliBitcoin => -5,
Denomination::MicroBitcoin => -2,
Denomination::NanoBitcoin => 1,
Denomination::PicoBitcoin => 4,
Denomination::Bit => -2,
Denomination::Satoshi => 0,
Denomination::MilliSatoshi => 3,
}
}
/// Returns stringly representation of this
fn as_str(self) -> &'static str {
match self {
Denomination::Bitcoin => "BTC",
Denomination::CentiBitcoin => "cBTC",
Denomination::MilliBitcoin => "mBTC",
Denomination::MicroBitcoin => "uBTC",
Denomination::NanoBitcoin => "nBTC",
Denomination::PicoBitcoin => "pBTC",
Denomination::Bit => "bits",
Denomination::Satoshi => "satoshi",
Denomination::MilliSatoshi => "msat",
}
}
/// The different str forms of denominations that are recognized.
fn forms(s: &str) -> Option<Self> {
match s {
"BTC" | "btc" => Some(Denomination::Bitcoin),
"cBTC" | "cbtc" => Some(Denomination::CentiBitcoin),
"mBTC" | "mbtc" => Some(Denomination::MilliBitcoin),
"uBTC" | "ubtc" => Some(Denomination::MicroBitcoin),
"nBTC" | "nbtc" => Some(Denomination::NanoBitcoin),
"pBTC" | "pbtc" => Some(Denomination::PicoBitcoin),
"bit" | "bits" | "BIT" | "BITS" => Some(Denomination::Bit),
"SATOSHI" | "satoshi" | "SATOSHIS" | "satoshis" | "SAT" | "sat" | "SATS" | "sats" =>
Some(Denomination::Satoshi),
"mSAT" | "msat" | "mSATs" | "msats" => Some(Denomination::MilliSatoshi),
_ => None,
}
}
}
/// These form are ambigous and could have many meanings. For example, M could denote Mega or Milli.
/// If any of these forms are used, an error type PossiblyConfusingDenomination is returned.
const CONFUSING_FORMS: [&str; 9] =
["Msat", "Msats", "MSAT", "MSATS", "MSat", "MSats", "MBTC", "Mbtc", "PBTC"];
impl fmt::Display for Denomination {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.write_str(self.as_str()) }
}
impl FromStr for Denomination {
type Err = ParseDenominationError;
/// Convert from a str to Denomination.
///
/// Any combination of upper and/or lower case, excluding uppercase of SI(m, u, n, p) is considered valid.
/// - Singular: BTC, mBTC, uBTC, nBTC, pBTC
/// - Plural or singular: sat, satoshi, bit, msat
///
/// Due to ambiguity between mega and milli, pico and peta we prohibit usage of leading capital 'M', 'P'.
fn from_str(s: &str) -> Result<Self, Self::Err> {
use self::ParseDenominationError::*;
if CONFUSING_FORMS.contains(&s) {
return Err(PossiblyConfusing(PossiblyConfusingDenominationError(s.into())));
};
let form = self::Denomination::forms(s);
form.ok_or_else(|| Unknown(UnknownDenominationError(s.into())))
}
}
/// An error during amount parsing amount with denomination.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum ParseError {
/// Invalid amount.
Amount(ParseAmountError),
/// Invalid denomination.
Denomination(ParseDenominationError),
/// The denomination was not identified.
MissingDenomination(MissingDenominationError),
}
internals::impl_from_infallible!(ParseError);
impl From<ParseAmountError> for ParseError {
fn from(e: ParseAmountError) -> Self { Self::Amount(e) }
}
impl From<ParseDenominationError> for ParseError {
fn from(e: ParseDenominationError) -> Self { Self::Denomination(e) }
}
impl From<OutOfRangeError> for ParseError {
fn from(e: OutOfRangeError) -> Self { Self::Amount(e.into()) }
}
impl From<TooPreciseError> for ParseError {
fn from(e: TooPreciseError) -> Self { Self::Amount(e.into()) }
}
impl From<MissingDigitsError> for ParseError {
fn from(e: MissingDigitsError) -> Self { Self::Amount(e.into()) }
}
impl From<InputTooLargeError> for ParseError {
fn from(e: InputTooLargeError) -> Self { Self::Amount(e.into()) }
}
impl From<InvalidCharacterError> for ParseError {
fn from(e: InvalidCharacterError) -> Self { Self::Amount(e.into()) }
}
impl fmt::Display for ParseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
ParseError::Amount(error) => write_err!(f, "invalid amount"; error),
ParseError::Denomination(error) => write_err!(f, "invalid denomination"; error),
// We consider this to not be a source because it currently doesn't contain useful
// information
ParseError::MissingDenomination(_) =>
f.write_str("the input doesn't contain a denomination"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParseError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
match self {
ParseError::Amount(error) => Some(error),
ParseError::Denomination(error) => Some(error),
// We consider this to not be a source because it currently doesn't contain useful
// information
ParseError::MissingDenomination(_) => None,
}
}
}
/// An error during amount parsing.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum ParseAmountError {
/// The amount is too big or too small.
OutOfRange(OutOfRangeError),
/// Amount has higher precision than supported by the type.
TooPrecise(TooPreciseError),
/// A digit was expected but not found.
MissingDigits(MissingDigitsError),
/// Input string was too large.
InputTooLarge(InputTooLargeError),
/// Invalid character in input.
InvalidCharacter(InvalidCharacterError),
}
impl From<TooPreciseError> for ParseAmountError {
fn from(value: TooPreciseError) -> Self { Self::TooPrecise(value) }
}
impl From<MissingDigitsError> for ParseAmountError {
fn from(value: MissingDigitsError) -> Self { Self::MissingDigits(value) }
}
impl From<InputTooLargeError> for ParseAmountError {
fn from(value: InputTooLargeError) -> Self { Self::InputTooLarge(value) }
}
impl From<InvalidCharacterError> for ParseAmountError {
fn from(value: InvalidCharacterError) -> Self { Self::InvalidCharacter(value) }
}
internals::impl_from_infallible!(ParseAmountError);
impl fmt::Display for ParseAmountError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use ParseAmountError::*;
match *self {
OutOfRange(ref error) => write_err!(f, "amount out of range"; error),
TooPrecise(ref error) => write_err!(f, "amount has a too high precision"; error),
MissingDigits(ref error) => write_err!(f, "the input has too few digits"; error),
InputTooLarge(ref error) => write_err!(f, "the input is too large"; error),
InvalidCharacter(ref error) => write_err!(f, "invalid character in the input"; error),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParseAmountError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use ParseAmountError::*;
match *self {
TooPrecise(ref error) => Some(error),
InputTooLarge(ref error) => Some(error),
OutOfRange(ref error) => Some(error),
MissingDigits(ref error) => Some(error),
InvalidCharacter(ref error) => Some(error),
}
}
}
/// Returned when a parsed amount is too big or too small.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub struct OutOfRangeError {
is_signed: bool,
is_greater_than_max: bool,
}
impl OutOfRangeError {
/// Returns the minimum and maximum allowed values for the type that was parsed.
///
/// This can be used to give a hint to the user which values are allowed.
pub fn valid_range(&self) -> (i64, u64) {
match self.is_signed {
true => (i64::MIN, i64::MAX as u64),
false => (0, u64::MAX),
}
}
/// Returns true if the input value was large than the maximum allowed value.
pub fn is_above_max(&self) -> bool { self.is_greater_than_max }
/// Returns true if the input value was smaller than the minimum allowed value.
pub fn is_below_min(&self) -> bool { !self.is_greater_than_max }
pub(crate) fn too_big(is_signed: bool) -> Self { Self { is_signed, is_greater_than_max: true } }
pub(crate) fn too_small() -> Self {
Self {
// implied - negative() is used for the other
is_signed: true,
is_greater_than_max: false,
}
}
pub(crate) fn negative() -> Self {
Self {
// implied - too_small() is used for the other
is_signed: false,
is_greater_than_max: false,
}
}
}
impl fmt::Display for OutOfRangeError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.is_greater_than_max {
write!(f, "the amount is greater than {}", self.valid_range().1)
} else {
write!(f, "the amount is less than {}", self.valid_range().0)
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for OutOfRangeError {}
impl From<OutOfRangeError> for ParseAmountError {
fn from(value: OutOfRangeError) -> Self { ParseAmountError::OutOfRange(value) }
}
/// Error returned when the input string has higher precision than satoshis.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct TooPreciseError {
position: usize,
}
impl fmt::Display for TooPreciseError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.position {
0 => f.write_str("the amount is less than 1 satoshi but it's not zero"),
pos => write!(
f,
"the digits starting from position {} represent a sub-satoshi amount",
pos
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for TooPreciseError {}
/// Error returned when the input string is too large.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct InputTooLargeError {
len: usize,
}
impl fmt::Display for InputTooLargeError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.len - INPUT_STRING_LEN_LIMIT {
1 => write!(
f,
"the input is one character longer than the maximum allowed length ({})",
INPUT_STRING_LEN_LIMIT
),
n => write!(
f,
"the input is {} characters longer than the maximum allowed length ({})",
n, INPUT_STRING_LEN_LIMIT
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for InputTooLargeError {}
/// Error returned when digits were expected in the input but there were none.
///
/// In particular, this is currently returned when the string is empty or only contains the minus sign.
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct MissingDigitsError {
kind: MissingDigitsKind,
}
impl fmt::Display for MissingDigitsError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.kind {
MissingDigitsKind::Empty => f.write_str("the input is empty"),
MissingDigitsKind::OnlyMinusSign =>
f.write_str("there are no digits following the minus (-) sign"),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for MissingDigitsError {}
#[derive(Debug, Clone, Eq, PartialEq)]
enum MissingDigitsKind {
Empty,
OnlyMinusSign,
}
/// Returned when the input contains an invalid character.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct InvalidCharacterError {
invalid_char: char,
position: usize,
}
impl fmt::Display for InvalidCharacterError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.invalid_char {
'.' => f.write_str("there is more than one decimal separator (dot) in the input"),
'-' => f.write_str("there is more than one minus sign (-) in the input"),
c => write!(
f,
"the character '{}' at position {} is not a valid digit",
c, self.position
),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for InvalidCharacterError {}
/// An error during amount parsing.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub enum ParseDenominationError {
/// The denomination was unknown.
Unknown(UnknownDenominationError),
/// The denomination has multiple possible interpretations.
PossiblyConfusing(PossiblyConfusingDenominationError),
}
internals::impl_from_infallible!(ParseDenominationError);
impl fmt::Display for ParseDenominationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use ParseDenominationError::*;
match *self {
Unknown(ref e) => write_err!(f, "denomination parse error"; e),
PossiblyConfusing(ref e) => write_err!(f, "denomination parse error"; e),
}
}
}
#[cfg(feature = "std")]
impl std::error::Error for ParseDenominationError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use ParseDenominationError::*;
match *self {
Unknown(_) | PossiblyConfusing(_) => None,
}
}
}
/// Error returned when the denomination is empty.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub struct MissingDenominationError;
/// Parsing error, unknown denomination.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub struct UnknownDenominationError(InputString);
impl fmt::Display for UnknownDenominationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.unknown_variant("bitcoin denomination", f)
}
}
#[cfg(feature = "std")]
impl std::error::Error for UnknownDenominationError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
}
/// Parsing error, possibly confusing denomination.
#[derive(Debug, Clone, PartialEq, Eq)]
#[non_exhaustive]
pub struct PossiblyConfusingDenominationError(InputString);
impl fmt::Display for PossiblyConfusingDenominationError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}: possibly confusing denomination - we intentionally do not support 'M' and 'P' so as to not confuse mega/milli and peta/pico", self.0.display_cannot_parse("bitcoin denomination"))
}
}
#[cfg(feature = "std")]
impl std::error::Error for PossiblyConfusingDenominationError {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> { None }
}
/// Returns `Some(position)` if the precision is not supported.
///
/// The position indicates the first digit that is too precise.
fn is_too_precise(s: &str, precision: usize) -> Option<usize> {
match s.find('.') {
Some(pos) if precision >= pos => Some(0),
Some(pos) => s[..pos]
.char_indices()
.rev()
.take(precision)
.find(|(_, d)| *d != '0')
.map(|(i, _)| i)
.or_else(|| {
s[(pos + 1)..].char_indices().find(|(_, d)| *d != '0').map(|(i, _)| i + pos + 1)
}),
None if precision >= s.len() => Some(0),
None => s.char_indices().rev().take(precision).find(|(_, d)| *d != '0').map(|(i, _)| i),
}
}
const INPUT_STRING_LEN_LIMIT: usize = 50;
/// Parse decimal string in the given denomination into a satoshi value and a
/// bool indicator for a negative amount.
fn parse_signed_to_satoshi(
mut s: &str,
denom: Denomination,
) -> Result<(bool, u64), InnerParseError> {
if s.is_empty() {
return Err(InnerParseError::MissingDigits(MissingDigitsError {
kind: MissingDigitsKind::Empty,
}));
}
if s.len() > INPUT_STRING_LEN_LIMIT {
return Err(InnerParseError::InputTooLarge(s.len()));
}
let is_negative = s.starts_with('-');
if is_negative {
if s.len() == 1 {
return Err(InnerParseError::MissingDigits(MissingDigitsError {
kind: MissingDigitsKind::OnlyMinusSign,
}));
}
s = &s[1..];
}
let max_decimals = {
// The difference in precision between native (satoshi)
// and desired denomination.
let precision_diff = -denom.precision();
if precision_diff <= 0 {
// If precision diff is negative, this means we are parsing
// into a less precise amount. That is not allowed unless
// there are no decimals and the last digits are zeroes as
// many as the difference in precision.
let last_n = precision_diff.unsigned_abs().into();
if let Some(position) = is_too_precise(s, last_n) {
match s.parse::<i64>() {
Ok(0) => return Ok((is_negative, 0)),
_ =>
return Err(InnerParseError::TooPrecise(TooPreciseError {
position: position + is_negative as usize,
})),
}
}
s = &s[0..s.find('.').unwrap_or(s.len()) - last_n];
0
} else {
precision_diff
}
};
let mut decimals = None;
let mut value: u64 = 0; // as satoshis
for (i, c) in s.char_indices() {
match c {
'0'..='9' => {
// Do `value = 10 * value + digit`, catching overflows.
match 10_u64.checked_mul(value) {
None => return Err(InnerParseError::Overflow { is_negative }),
Some(val) => match val.checked_add((c as u8 - b'0') as u64) {
None => return Err(InnerParseError::Overflow { is_negative }),
Some(val) => value = val,
},
}
// Increment the decimal digit counter if past decimal.
decimals = match decimals {
None => None,
Some(d) if d < max_decimals => Some(d + 1),
_ =>
return Err(InnerParseError::TooPrecise(TooPreciseError {
position: i + is_negative as usize,
})),
};
}
'.' => match decimals {
None if max_decimals <= 0 => break,
None => decimals = Some(0),
// Double decimal dot.
_ =>
return Err(InnerParseError::InvalidCharacter(InvalidCharacterError {
invalid_char: '.',
position: i + is_negative as usize,
})),
},
c =>
return Err(InnerParseError::InvalidCharacter(InvalidCharacterError {
invalid_char: c,
position: i + is_negative as usize,
})),
}
}
// Decimally shift left by `max_decimals - decimals`.
let scale_factor = max_decimals - decimals.unwrap_or(0);
for _ in 0..scale_factor {
value = match 10_u64.checked_mul(value) {
Some(v) => v,
None => return Err(InnerParseError::Overflow { is_negative }),
};
}
Ok((is_negative, value))
}
enum InnerParseError {
Overflow { is_negative: bool },
TooPrecise(TooPreciseError),
MissingDigits(MissingDigitsError),
InputTooLarge(usize),
InvalidCharacter(InvalidCharacterError),
}
internals::impl_from_infallible!(InnerParseError);
impl InnerParseError {
fn convert(self, is_signed: bool) -> ParseAmountError {
match self {
Self::Overflow { is_negative } =>
OutOfRangeError { is_signed, is_greater_than_max: !is_negative }.into(),
Self::TooPrecise(error) => ParseAmountError::TooPrecise(error),
Self::MissingDigits(error) => ParseAmountError::MissingDigits(error),
Self::InputTooLarge(len) => ParseAmountError::InputTooLarge(InputTooLargeError { len }),
Self::InvalidCharacter(error) => ParseAmountError::InvalidCharacter(error),
}
}
}
fn split_amount_and_denomination(s: &str) -> Result<(&str, Denomination), ParseError> {
let (i, j) = if let Some(i) = s.find(' ') {
(i, i + 1)
} else {
let i = s
.find(|c: char| c.is_alphabetic())
.ok_or(ParseError::MissingDenomination(MissingDenominationError))?;
(i, i)
};
Ok((&s[..i], s[j..].parse()?))
}
/// Options given by `fmt::Formatter`
struct FormatOptions {
fill: char,
align: Option<fmt::Alignment>,
width: Option<usize>,
precision: Option<usize>,
sign_plus: bool,
sign_aware_zero_pad: bool,
}
impl FormatOptions {
fn from_formatter(f: &fmt::Formatter) -> Self {
FormatOptions {
fill: f.fill(),
align: f.align(),
width: f.width(),
precision: f.precision(),
sign_plus: f.sign_plus(),
sign_aware_zero_pad: f.sign_aware_zero_pad(),
}
}
}
impl Default for FormatOptions {
fn default() -> Self {
FormatOptions {
fill: ' ',
align: None,
width: None,
precision: None,
sign_plus: false,
sign_aware_zero_pad: false,
}
}
}
fn dec_width(mut num: u64) -> usize {
let mut width = 1;
loop {
num /= 10;
if num == 0 {
break;
}
width += 1;
}
width
}
fn repeat_char(f: &mut dyn fmt::Write, c: char, count: usize) -> fmt::Result {
for _ in 0..count {
f.write_char(c)?;
}
Ok(())
}
/// Format the given satoshi amount in the given denomination.
fn fmt_satoshi_in(
satoshi: u64,
negative: bool,
f: &mut dyn fmt::Write,
denom: Denomination,
show_denom: bool,
options: FormatOptions,
) -> fmt::Result {
let precision = denom.precision();
// First we normalize the number:
// {num_before_decimal_point}{:0exp}{"." if nb_decimals > 0}{:0nb_decimals}{num_after_decimal_point}{:0trailing_decimal_zeros}
let mut num_after_decimal_point = 0;
let mut norm_nb_decimals = 0;
let mut num_before_decimal_point = satoshi;
let trailing_decimal_zeros;
let mut exp = 0;
match precision.cmp(&0) {
// We add the number of zeroes to the end
Ordering::Greater => {
if satoshi > 0 {
exp = precision as usize;
}
trailing_decimal_zeros = options.precision.unwrap_or(0);
}
Ordering::Less => {
let precision = precision.unsigned_abs();
let divisor = 10u64.pow(precision.into());
num_before_decimal_point = satoshi / divisor;
num_after_decimal_point = satoshi % divisor;
// normalize by stripping trailing zeros
if num_after_decimal_point == 0 {
norm_nb_decimals = 0;
} else {
norm_nb_decimals = usize::from(precision);
while num_after_decimal_point % 10 == 0 {
norm_nb_decimals -= 1;
num_after_decimal_point /= 10
}
}
// compute requested precision
let opt_precision = options.precision.unwrap_or(0);
trailing_decimal_zeros = opt_precision.saturating_sub(norm_nb_decimals);
}
Ordering::Equal => trailing_decimal_zeros = options.precision.unwrap_or(0),
}
let total_decimals = norm_nb_decimals + trailing_decimal_zeros;
// Compute expected width of the number
let mut num_width = if total_decimals > 0 {
// 1 for decimal point
1 + total_decimals
} else {
0
};
num_width += dec_width(num_before_decimal_point) + exp;
if options.sign_plus || negative {
num_width += 1;
}
if show_denom {
// + 1 for space
num_width += denom.as_str().len() + 1;
}
let width = options.width.unwrap_or(0);
let align = options.align.unwrap_or(fmt::Alignment::Right);
let (left_pad, pad_right) = match (num_width < width, options.sign_aware_zero_pad, align) {
(false, _, _) => (0, 0),
// Alignment is always right (ignored) when zero-padding
(true, true, _) | (true, false, fmt::Alignment::Right) => (width - num_width, 0),
(true, false, fmt::Alignment::Left) => (0, width - num_width),
// If the required padding is odd it needs to be skewed to the left
(true, false, fmt::Alignment::Center) =>
((width - num_width) / 2, (width - num_width + 1) / 2),
};
if !options.sign_aware_zero_pad {
repeat_char(f, options.fill, left_pad)?;
}
if negative {
write!(f, "-")?;
} else if options.sign_plus {
write!(f, "+")?;
}
if options.sign_aware_zero_pad {
repeat_char(f, '0', left_pad)?;
}
write!(f, "{}", num_before_decimal_point)?;
repeat_char(f, '0', exp)?;
if total_decimals > 0 {
write!(f, ".")?;
}
if norm_nb_decimals > 0 {
write!(f, "{:0width$}", num_after_decimal_point, width = norm_nb_decimals)?;
}
repeat_char(f, '0', trailing_decimal_zeros)?;
if show_denom {
write!(f, " {}", denom.as_str())?;
}
repeat_char(f, options.fill, pad_right)?;
Ok(())
}
/// Amount
///
/// The [Amount] type can be used to express Bitcoin amounts that support
/// arithmetic and conversion to various denominations.
///
///
/// Warning!
///
/// This type implements several arithmetic operations from [core::ops].
/// To prevent errors due to overflow or underflow when using these operations,
/// it is advised to instead use the checked arithmetic methods whose names
/// start with `checked_`. The operations from [core::ops] that [Amount]
/// implements will panic when overflow or underflow occurs. Also note that
/// since the internal representation of amounts is unsigned, subtracting below
/// zero is considered an underflow and will cause a panic if you're not using
/// the checked arithmetic methods.
///
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Amount(u64);
impl Amount {
/// The zero amount.
pub const ZERO: Amount = Amount(0);
/// Exactly one satoshi.
pub const ONE_SAT: Amount = Amount(1);
/// Exactly one bitcoin.
pub const ONE_BTC: Amount = Self::from_int_btc(1);
/// The maximum value allowed as an amount. Useful for sanity checking.
pub const MAX_MONEY: Amount = Self::from_int_btc(21_000_000);
/// The minimum value of an amount.
pub const MIN: Amount = Amount::ZERO;
/// The maximum value of an amount.
pub const MAX: Amount = Amount(u64::MAX);
/// The number of bytes that an amount contributes to the size of a transaction.
pub const SIZE: usize = 8; // Serialized length of a u64.
/// Create an [Amount] with satoshi precision and the given number of satoshis.
pub const fn from_sat(satoshi: u64) -> Amount { Amount(satoshi) }
/// Gets the number of satoshis in this [`Amount`].
pub fn to_sat(self) -> u64 { self.0 }
/// Convert from a value expressing bitcoins to an [Amount].
#[cfg(feature = "alloc")]
pub fn from_btc(btc: f64) -> Result<Amount, ParseAmountError> {
Amount::from_float_in(btc, Denomination::Bitcoin)
}
/// Convert from a value expressing integer values of bitcoins to an [Amount]
/// in const context.
///
/// ## Panics
///
/// The function panics if the argument multiplied by the number of sats
/// per bitcoin overflows a u64 type.
pub const fn from_int_btc(btc: u64) -> Amount {
match btc.checked_mul(100_000_000) {
Some(amount) => Amount::from_sat(amount),
None => {
// When MSRV is 1.57+ we can use `panic!()`.
#[allow(unconditional_panic)]
#[allow(clippy::let_unit_value)]
#[allow(clippy::out_of_bounds_indexing)]
let _int_overflow_converting_btc_to_sats = [(); 0][1];
Amount(0)
}
}
}
/// Parse a decimal string as a value in the given denomination.
///
/// Note: This only parses the value string. If you want to parse a value
/// with denomination, use [FromStr].
pub fn from_str_in(s: &str, denom: Denomination) -> Result<Amount, ParseAmountError> {
let (negative, satoshi) =
parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(false))?;
if negative {
return Err(ParseAmountError::OutOfRange(OutOfRangeError::negative()));
}
Ok(Amount::from_sat(satoshi))
}
/// Parses amounts with denomination suffix like they are produced with
/// [Self::to_string_with_denomination] or with [fmt::Display].
/// If you want to parse only the amount without the denomination,
/// use [Self::from_str_in].
pub fn from_str_with_denomination(s: &str) -> Result<Amount, ParseError> {
let (amt, denom) = split_amount_and_denomination(s)?;
Amount::from_str_in(amt, denom).map_err(Into::into)
}
/// Express this [Amount] as a floating-point value in the given denomination.
///
/// Please be aware of the risk of using floating-point numbers.
#[cfg(feature = "alloc")]
pub fn to_float_in(self, denom: Denomination) -> f64 {
f64::from_str(&self.to_string_in(denom)).unwrap()
}
/// Express this [`Amount`] as a floating-point value in Bitcoin.
///
/// Please be aware of the risk of using floating-point numbers.
///
/// # Examples
/// ```
/// # use bitcoin_units::amount::{Amount, Denomination};
/// let amount = Amount::from_sat(100_000);
/// assert_eq!(amount.to_btc(), amount.to_float_in(Denomination::Bitcoin))
/// ```
#[cfg(feature = "alloc")]
pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) }
/// Convert this [Amount] in floating-point notation with a given
/// denomination.
/// Can return error if the amount is too big, too precise or negative.
///
/// Please be aware of the risk of using floating-point numbers.
#[cfg(feature = "alloc")]
pub fn from_float_in(value: f64, denom: Denomination) -> Result<Amount, ParseAmountError> {
if value < 0.0 {
return Err(OutOfRangeError::negative().into());
}
// This is inefficient, but the safest way to deal with this. The parsing logic is safe.
// Any performance-critical application should not be dealing with floats.
Amount::from_str_in(&value.to_string(), denom)
}
/// Create an object that implements [`fmt::Display`] using specified denomination.
pub fn display_in(self, denomination: Denomination) -> Display {
Display {
sats_abs: self.to_sat(),
is_negative: false,
style: DisplayStyle::FixedDenomination { denomination, show_denomination: false },
}
}
/// Create an object that implements [`fmt::Display`] dynamically selecting denomination.
///
/// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To
/// avoid confusion the denomination is always shown.
pub fn display_dynamic(self) -> Display {
Display {
sats_abs: self.to_sat(),
is_negative: false,
style: DisplayStyle::DynamicDenomination,
}
}
/// Format the value of this [Amount] in the given denomination.
///
/// Does not include the denomination.
#[rustfmt::skip]
pub fn fmt_value_in(self, f: &mut dyn fmt::Write, denom: Denomination) -> fmt::Result {
fmt_satoshi_in(self.to_sat(), false, f, denom, false, FormatOptions::default())
}
/// Get a string number of this [Amount] in the given denomination.
///
/// Does not include the denomination.
#[cfg(feature = "alloc")]
pub fn to_string_in(self, denom: Denomination) -> String {
let mut buf = String::new();
self.fmt_value_in(&mut buf, denom).unwrap();
buf
}
/// Get a formatted string of this [Amount] in the given denomination,
/// suffixed with the abbreviation for the denomination.
#[cfg(feature = "alloc")]
pub fn to_string_with_denomination(self, denom: Denomination) -> String {
let mut buf = String::new();
self.fmt_value_in(&mut buf, denom).unwrap();
write!(buf, " {}", denom).unwrap();
buf
}
// Some arithmetic that doesn't fit in `core::ops` traits.
/// Checked addition.
///
/// Returns [None] if overflow occurred.
pub fn checked_add(self, rhs: Amount) -> Option<Amount> {
self.0.checked_add(rhs.0).map(Amount)
}
/// Checked subtraction.
///
/// Returns [None] if overflow occurred.
pub fn checked_sub(self, rhs: Amount) -> Option<Amount> {
self.0.checked_sub(rhs.0).map(Amount)
}
/// Checked multiplication.
///
/// Returns [None] if overflow occurred.
pub fn checked_mul(self, rhs: u64) -> Option<Amount> { self.0.checked_mul(rhs).map(Amount) }
/// Checked integer division.
///
/// Be aware that integer division loses the remainder if no exact division
/// can be made.
/// Returns [None] if overflow occurred.
pub fn checked_div(self, rhs: u64) -> Option<Amount> { self.0.checked_div(rhs).map(Amount) }
/// Checked remainder.
///
/// Returns [None] if overflow occurred.
pub fn checked_rem(self, rhs: u64) -> Option<Amount> { self.0.checked_rem(rhs).map(Amount) }
/// Unchecked addition.
///
/// Computes `self + rhs`. Panics in debug mode, wraps in release mode.
pub fn unchecked_add(self, rhs: Amount) -> Amount { Self(self.0 + rhs.0) }
/// Unchecked subtraction.
///
/// Computes `self - rhs`. Panics in debug mode, wraps in release mode.
pub fn unchecked_sub(self, rhs: Amount) -> Amount { Self(self.0 - rhs.0) }
/// Convert to a signed amount.
pub fn to_signed(self) -> Result<SignedAmount, OutOfRangeError> {
if self.to_sat() > SignedAmount::MAX.to_sat() as u64 {
Err(OutOfRangeError::too_big(true))
} else {
Ok(SignedAmount::from_sat(self.to_sat() as i64))
}
}
}
impl default::Default for Amount {
fn default() -> Self { Amount::ZERO }
}
impl fmt::Debug for Amount {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{} SAT", self.to_sat()) }
}
// No one should depend on a binding contract for Display for this type.
// Just using Bitcoin denominated string.
impl fmt::Display for Amount {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let satoshis = self.to_sat();
let denomination = Denomination::Bitcoin;
let mut format_options = FormatOptions::from_formatter(f);
if f.precision().is_none() && satoshis.rem_euclid(Amount::ONE_BTC.to_sat()) != 0 {
format_options.precision = Some(8);
}
fmt_satoshi_in(satoshis, false, f, denomination, true, format_options)
}
}
impl ops::Add for Amount {
type Output = Amount;
fn add(self, rhs: Amount) -> Self::Output {
self.checked_add(rhs).expect("Amount addition error")
}
}
impl ops::AddAssign for Amount {
fn add_assign(&mut self, other: Amount) { *self = *self + other }
}
impl ops::Sub for Amount {
type Output = Amount;
fn sub(self, rhs: Amount) -> Self::Output {
self.checked_sub(rhs).expect("Amount subtraction error")
}
}
impl ops::SubAssign for Amount {
fn sub_assign(&mut self, other: Amount) { *self = *self - other }
}
impl ops::Rem<u64> for Amount {
type Output = Amount;
fn rem(self, modulus: u64) -> Self {
self.checked_rem(modulus).expect("Amount remainder error")
}
}
impl ops::RemAssign<u64> for Amount {
fn rem_assign(&mut self, modulus: u64) { *self = *self % modulus }
}
impl ops::Mul<u64> for Amount {
type Output = Amount;
fn mul(self, rhs: u64) -> Self::Output {
self.checked_mul(rhs).expect("Amount multiplication error")
}
}
impl ops::MulAssign<u64> for Amount {
fn mul_assign(&mut self, rhs: u64) { *self = *self * rhs }
}
impl ops::Div<u64> for Amount {
type Output = Amount;
fn div(self, rhs: u64) -> Self::Output { self.checked_div(rhs).expect("Amount division error") }
}
impl ops::DivAssign<u64> for Amount {
fn div_assign(&mut self, rhs: u64) { *self = *self / rhs }
}
impl FromStr for Amount {
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> { Amount::from_str_with_denomination(s) }
}
impl TryFrom<SignedAmount> for Amount {
type Error = OutOfRangeError;
fn try_from(value: SignedAmount) -> Result<Self, Self::Error> { value.to_unsigned() }
}
impl core::iter::Sum for Amount {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
let sats: u64 = iter.map(|amt| amt.0).sum();
Amount::from_sat(sats)
}
}
/// A helper/builder that displays amount with specified settings.
///
/// This provides richer interface than `fmt::Formatter`:
///
/// * Ability to select denomination
/// * Show or hide denomination
/// * Dynamically-selected denomination - show in sats if less than 1 BTC.
///
/// However this can still be combined with `fmt::Formatter` options to precisely control zeros,
/// padding, alignment... The formatting works like floats from `core` but note that precision will
/// **never** be lossy - that means no rounding.
///
/// See [`Amount::display_in`] and [`Amount::display_dynamic`] on how to construct this.
#[derive(Debug, Clone)]
pub struct Display {
/// Absolute value of satoshis to display (sign is below)
sats_abs: u64,
/// The sign
is_negative: bool,
/// How to display the value
style: DisplayStyle,
}
impl Display {
/// Makes subsequent calls to `Display::fmt` display denomination.
pub fn show_denomination(mut self) -> Self {
match &mut self.style {
DisplayStyle::FixedDenomination { show_denomination, .. } => *show_denomination = true,
// No-op because dynamic denomination is always shown
DisplayStyle::DynamicDenomination => (),
}
self
}
}
impl fmt::Display for Display {
#[rustfmt::skip]
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let format_options = FormatOptions::from_formatter(f);
match &self.style {
DisplayStyle::FixedDenomination { show_denomination, denomination } => {
fmt_satoshi_in(self.sats_abs, self.is_negative, f, *denomination, *show_denomination, format_options)
},
DisplayStyle::DynamicDenomination if self.sats_abs >= Amount::ONE_BTC.to_sat() => {
fmt_satoshi_in(self.sats_abs, self.is_negative, f, Denomination::Bitcoin, true, format_options)
},
DisplayStyle::DynamicDenomination => {
fmt_satoshi_in(self.sats_abs, self.is_negative, f, Denomination::Satoshi, true, format_options)
},
}
}
}
#[derive(Clone, Debug)]
enum DisplayStyle {
FixedDenomination { denomination: Denomination, show_denomination: bool },
DynamicDenomination,
}
/// SignedAmount
///
/// The [SignedAmount] type can be used to express Bitcoin amounts that support
/// arithmetic and conversion to various denominations.
///
///
/// Warning!
///
/// This type implements several arithmetic operations from [core::ops].
/// To prevent errors due to overflow or underflow when using these operations,
/// it is advised to instead use the checked arithmetic methods whose names
/// start with `checked_`. The operations from [core::ops] that [Amount]
/// implements will panic when overflow or underflow occurs.
///
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct SignedAmount(i64);
impl SignedAmount {
/// The zero amount.
pub const ZERO: SignedAmount = SignedAmount(0);
/// Exactly one satoshi.
pub const ONE_SAT: SignedAmount = SignedAmount(1);
/// Exactly one bitcoin.
pub const ONE_BTC: SignedAmount = SignedAmount(100_000_000);
/// The maximum value allowed as an amount. Useful for sanity checking.
pub const MAX_MONEY: SignedAmount = SignedAmount(21_000_000 * 100_000_000);
/// The minimum value of an amount.
pub const MIN: SignedAmount = SignedAmount(i64::MIN);
/// The maximum value of an amount.
pub const MAX: SignedAmount = SignedAmount(i64::MAX);
/// Create an [SignedAmount] with satoshi precision and the given number of satoshis.
pub const fn from_sat(satoshi: i64) -> SignedAmount { SignedAmount(satoshi) }
/// Gets the number of satoshis in this [`SignedAmount`].
pub fn to_sat(self) -> i64 { self.0 }
/// Convert from a value expressing bitcoins to an [SignedAmount].
#[cfg(feature = "alloc")]
pub fn from_btc(btc: f64) -> Result<SignedAmount, ParseAmountError> {
SignedAmount::from_float_in(btc, Denomination::Bitcoin)
}
/// Parse a decimal string as a value in the given denomination.
///
/// Note: This only parses the value string. If you want to parse a value
/// with denomination, use [FromStr].
pub fn from_str_in(s: &str, denom: Denomination) -> Result<SignedAmount, ParseAmountError> {
match parse_signed_to_satoshi(s, denom).map_err(|error| error.convert(true))? {
// (negative, amount)
(false, sat) if sat > i64::MAX as u64 =>
Err(ParseAmountError::OutOfRange(OutOfRangeError::too_big(true))),
(false, sat) => Ok(SignedAmount(sat as i64)),
(true, sat) if sat == i64::MIN.unsigned_abs() => Ok(SignedAmount(i64::MIN)),
(true, sat) if sat > i64::MIN.unsigned_abs() =>
Err(ParseAmountError::OutOfRange(OutOfRangeError::too_small())),
(true, sat) => Ok(SignedAmount(-(sat as i64))),
}
}
/// Parses amounts with denomination suffix like they are produced with
/// [Self::to_string_with_denomination] or with [fmt::Display].
/// If you want to parse only the amount without the denomination,
/// use [Self::from_str_in].
pub fn from_str_with_denomination(s: &str) -> Result<SignedAmount, ParseError> {
let (amt, denom) = split_amount_and_denomination(s)?;
SignedAmount::from_str_in(amt, denom).map_err(Into::into)
}
/// Express this [SignedAmount] as a floating-point value in the given denomination.
///
/// Please be aware of the risk of using floating-point numbers.
#[cfg(feature = "alloc")]
pub fn to_float_in(self, denom: Denomination) -> f64 {
f64::from_str(&self.to_string_in(denom)).unwrap()
}
/// Express this [`SignedAmount`] as a floating-point value in Bitcoin.
///
/// Equivalent to `to_float_in(Denomination::Bitcoin)`.
///
/// Please be aware of the risk of using floating-point numbers.
#[cfg(feature = "alloc")]
pub fn to_btc(self) -> f64 { self.to_float_in(Denomination::Bitcoin) }
/// Convert this [SignedAmount] in floating-point notation with a given
/// denomination.
/// Can return error if the amount is too big, too precise or negative.
///
/// Please be aware of the risk of using floating-point numbers.
#[cfg(feature = "alloc")]
pub fn from_float_in(
value: f64,
denom: Denomination,
) -> Result<SignedAmount, ParseAmountError> {
// This is inefficient, but the safest way to deal with this. The parsing logic is safe.
// Any performance-critical application should not be dealing with floats.
SignedAmount::from_str_in(&value.to_string(), denom)
}
/// Create an object that implements [`fmt::Display`] using specified denomination.
pub fn display_in(self, denomination: Denomination) -> Display {
Display {
sats_abs: self.unsigned_abs().to_sat(),
is_negative: self.is_negative(),
style: DisplayStyle::FixedDenomination { denomination, show_denomination: false },
}
}
/// Create an object that implements [`fmt::Display`] dynamically selecting denomination.
///
/// This will use BTC for values greater than or equal to 1 BTC and satoshis otherwise. To
/// avoid confusion the denomination is always shown.
pub fn display_dynamic(self) -> Display {
Display {
sats_abs: self.unsigned_abs().to_sat(),
is_negative: self.is_negative(),
style: DisplayStyle::DynamicDenomination,
}
}
/// Format the value of this [SignedAmount] in the given denomination.
///
/// Does not include the denomination.
#[rustfmt::skip]
pub fn fmt_value_in(self, f: &mut dyn fmt::Write, denom: Denomination) -> fmt::Result {
fmt_satoshi_in(self.unsigned_abs().to_sat(), self.is_negative(), f, denom, false, FormatOptions::default())
}
/// Get a string number of this [SignedAmount] in the given denomination.
///
/// Does not include the denomination.
#[cfg(feature = "alloc")]
pub fn to_string_in(self, denom: Denomination) -> String {
let mut buf = String::new();
self.fmt_value_in(&mut buf, denom).unwrap();
buf
}
/// Get a formatted string of this [SignedAmount] in the given denomination,
/// suffixed with the abbreviation for the denomination.
#[cfg(feature = "alloc")]
pub fn to_string_with_denomination(self, denom: Denomination) -> String {
let mut buf = String::new();
self.fmt_value_in(&mut buf, denom).unwrap();
write!(buf, " {}", denom).unwrap();
buf
}
// Some arithmetic that doesn't fit in `core::ops` traits.
/// Get the absolute value of this [SignedAmount].
pub fn abs(self) -> SignedAmount { SignedAmount(self.0.abs()) }
/// Get the absolute value of this [SignedAmount] returning `Amount`.
pub fn unsigned_abs(self) -> Amount { Amount(self.0.unsigned_abs()) }
/// Returns a number representing sign of this [SignedAmount].
///
/// - `0` if the amount is zero
/// - `1` if the amount is positive
/// - `-1` if the amount is negative
pub fn signum(self) -> i64 { self.0.signum() }
/// Returns `true` if this [SignedAmount] is positive and `false` if
/// this [SignedAmount] is zero or negative.
pub fn is_positive(self) -> bool { self.0.is_positive() }
/// Returns `true` if this [SignedAmount] is negative and `false` if
/// this [SignedAmount] is zero or positive.
pub fn is_negative(self) -> bool { self.0.is_negative() }
/// Get the absolute value of this [SignedAmount].
/// Returns [None] if overflow occurred. (`self == MIN`)
pub fn checked_abs(self) -> Option<SignedAmount> { self.0.checked_abs().map(SignedAmount) }
/// Checked addition.
/// Returns [None] if overflow occurred.
pub fn checked_add(self, rhs: SignedAmount) -> Option<SignedAmount> {
self.0.checked_add(rhs.0).map(SignedAmount)
}
/// Checked subtraction.
/// Returns [None] if overflow occurred.
pub fn checked_sub(self, rhs: SignedAmount) -> Option<SignedAmount> {
self.0.checked_sub(rhs.0).map(SignedAmount)
}
/// Checked multiplication.
/// Returns [None] if overflow occurred.
pub fn checked_mul(self, rhs: i64) -> Option<SignedAmount> {
self.0.checked_mul(rhs).map(SignedAmount)
}
/// Checked integer division.
/// Be aware that integer division loses the remainder if no exact division
/// can be made.
/// Returns [None] if overflow occurred.
pub fn checked_div(self, rhs: i64) -> Option<SignedAmount> {
self.0.checked_div(rhs).map(SignedAmount)
}
/// Checked remainder.
/// Returns [None] if overflow occurred.
pub fn checked_rem(self, rhs: i64) -> Option<SignedAmount> {
self.0.checked_rem(rhs).map(SignedAmount)
}
/// Unchecked addition.
///
/// Computes `self + rhs`. Panics in debug mode, wraps in release mode.
pub fn unchecked_add(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 + rhs.0) }
/// Unchecked subtraction.
///
/// Computes `self - rhs`. Panics in debug mode, wraps in release mode.
pub fn unchecked_sub(self, rhs: SignedAmount) -> SignedAmount { Self(self.0 - rhs.0) }
/// Subtraction that doesn't allow negative [SignedAmount]s.
/// Returns [None] if either [self], `rhs` or the result is strictly negative.
pub fn positive_sub(self, rhs: SignedAmount) -> Option<SignedAmount> {
if self.is_negative() || rhs.is_negative() || rhs > self {
None
} else {
self.checked_sub(rhs)
}
}
/// Convert to an unsigned amount.
pub fn to_unsigned(self) -> Result<Amount, OutOfRangeError> {
if self.is_negative() {
Err(OutOfRangeError::negative())
} else {
Ok(Amount::from_sat(self.to_sat() as u64))
}
}
}
impl default::Default for SignedAmount {
fn default() -> Self { SignedAmount::ZERO }
}
impl fmt::Debug for SignedAmount {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SignedAmount({} SAT)", self.to_sat())
}
}
// No one should depend on a binding contract for Display for this type.
// Just using Bitcoin denominated string.
impl fmt::Display for SignedAmount {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_value_in(f, Denomination::Bitcoin)?;
write!(f, " {}", Denomination::Bitcoin)
}
}
impl ops::Add for SignedAmount {
type Output = SignedAmount;
fn add(self, rhs: SignedAmount) -> Self::Output {
self.checked_add(rhs).expect("SignedAmount addition error")
}
}
impl ops::AddAssign for SignedAmount {
fn add_assign(&mut self, other: SignedAmount) { *self = *self + other }
}
impl ops::Sub for SignedAmount {
type Output = SignedAmount;
fn sub(self, rhs: SignedAmount) -> Self::Output {
self.checked_sub(rhs).expect("SignedAmount subtraction error")
}
}
impl ops::SubAssign for SignedAmount {
fn sub_assign(&mut self, other: SignedAmount) { *self = *self - other }
}
impl ops::Rem<i64> for SignedAmount {
type Output = SignedAmount;
fn rem(self, modulus: i64) -> Self {
self.checked_rem(modulus).expect("SignedAmount remainder error")
}
}
impl ops::RemAssign<i64> for SignedAmount {
fn rem_assign(&mut self, modulus: i64) { *self = *self % modulus }
}
impl ops::Mul<i64> for SignedAmount {
type Output = SignedAmount;
fn mul(self, rhs: i64) -> Self::Output {
self.checked_mul(rhs).expect("SignedAmount multiplication error")
}
}
impl ops::MulAssign<i64> for SignedAmount {
fn mul_assign(&mut self, rhs: i64) { *self = *self * rhs }
}
impl ops::Div<i64> for SignedAmount {
type Output = SignedAmount;
fn div(self, rhs: i64) -> Self::Output {
self.checked_div(rhs).expect("SignedAmount division error")
}
}
impl ops::DivAssign<i64> for SignedAmount {
fn div_assign(&mut self, rhs: i64) { *self = *self / rhs }
}
impl ops::Neg for SignedAmount {
type Output = Self;
fn neg(self) -> Self::Output { Self(self.0.neg()) }
}
impl FromStr for SignedAmount {
type Err = ParseError;
fn from_str(s: &str) -> Result<Self, Self::Err> { SignedAmount::from_str_with_denomination(s) }
}
impl TryFrom<Amount> for SignedAmount {
type Error = OutOfRangeError;
fn try_from(value: Amount) -> Result<Self, Self::Error> { value.to_signed() }
}
impl core::iter::Sum for SignedAmount {
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
let sats: i64 = iter.map(|amt| amt.0).sum();
SignedAmount::from_sat(sats)
}
}
/// Calculate the sum over the iterator using checked arithmetic.
pub trait CheckedSum<R>: private::SumSeal<R> {
/// Calculate the sum over the iterator using checked arithmetic. If an over or underflow would
/// happen it returns `None`.
fn checked_sum(self) -> Option<R>;
}
impl<T> CheckedSum<Amount> for T
where
T: Iterator<Item = Amount>,
{
fn checked_sum(mut self) -> Option<Amount> {
let first = Some(self.next().unwrap_or_default());
self.fold(first, |acc, item| acc.and_then(|acc| acc.checked_add(item)))
}
}
impl<T> CheckedSum<SignedAmount> for T
where
T: Iterator<Item = SignedAmount>,
{
fn checked_sum(mut self) -> Option<SignedAmount> {
let first = Some(self.next().unwrap_or_default());
self.fold(first, |acc, item| acc.and_then(|acc| acc.checked_add(item)))
}
}
mod private {
use super::{Amount, SignedAmount};
/// Used to seal the `CheckedSum` trait
pub trait SumSeal<A> {}
impl<T> SumSeal<Amount> for T where T: Iterator<Item = Amount> {}
impl<T> SumSeal<SignedAmount> for T where T: Iterator<Item = SignedAmount> {}
}
#[cfg(feature = "serde")]
pub mod serde {
// methods are implementation of a standardized serde-specific signature
#![allow(missing_docs)]
//! This module adds serde serialization and deserialization support for Amounts.
//! Since there is not a default way to serialize and deserialize Amounts, multiple
//! ways are supported and it's up to the user to decide which serialiation to use.
//! The provided modules can be used as follows:
//!
//! ```rust,ignore
//! use serde::{Serialize, Deserialize};
//! use bitcoin_units::Amount;
//!
//! #[derive(Serialize, Deserialize)]
//! pub struct HasAmount {
//! #[serde(with = "bitcoin_units::amount::serde::as_btc")]
//! pub amount: Amount,
//! }
//! ```
use core::fmt;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
#[cfg(feature = "alloc")]
use super::Denomination;
use super::{Amount, ParseAmountError, SignedAmount};
/// This trait is used only to avoid code duplication and naming collisions
/// of the different serde serialization crates.
pub trait SerdeAmount: Copy + Sized {
fn ser_sat<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error>;
fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error>;
#[cfg(feature = "alloc")]
fn ser_btc<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error>;
#[cfg(feature = "alloc")]
fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error>;
}
mod private {
/// Controls access to the trait methods.
pub struct Token;
}
/// This trait is only for internal Amount type serialization/deserialization
pub trait SerdeAmountForOpt: Copy + Sized + SerdeAmount {
fn type_prefix(_: private::Token) -> &'static str;
fn ser_sat_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error>;
#[cfg(feature = "alloc")]
fn ser_btc_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error>;
}
struct DisplayFullError(ParseAmountError);
#[cfg(feature = "std")]
impl fmt::Display for DisplayFullError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use std::error::Error;
fmt::Display::fmt(&self.0, f)?;
let mut source_opt = self.0.source();
while let Some(source) = source_opt {
write!(f, ": {}", source)?;
source_opt = source.source();
}
Ok(())
}
}
#[cfg(not(feature = "std"))]
impl fmt::Display for DisplayFullError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Display::fmt(&self.0, f) }
}
impl SerdeAmount for Amount {
fn ser_sat<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
u64::serialize(&self.to_sat(), s)
}
fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error> {
Ok(Amount::from_sat(u64::deserialize(d)?))
}
#[cfg(feature = "alloc")]
fn ser_btc<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
f64::serialize(&self.to_float_in(Denomination::Bitcoin), s)
}
#[cfg(feature = "alloc")]
fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error> {
use serde::de::Error;
Amount::from_btc(f64::deserialize(d)?)
.map_err(DisplayFullError)
.map_err(D::Error::custom)
}
}
impl SerdeAmountForOpt for Amount {
fn type_prefix(_: private::Token) -> &'static str { "u" }
fn ser_sat_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
s.serialize_some(&self.to_sat())
}
#[cfg(feature = "alloc")]
fn ser_btc_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
s.serialize_some(&self.to_btc())
}
}
impl SerdeAmount for SignedAmount {
fn ser_sat<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
i64::serialize(&self.to_sat(), s)
}
fn des_sat<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error> {
Ok(SignedAmount::from_sat(i64::deserialize(d)?))
}
#[cfg(feature = "alloc")]
fn ser_btc<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
f64::serialize(&self.to_float_in(Denomination::Bitcoin), s)
}
#[cfg(feature = "alloc")]
fn des_btc<'d, D: Deserializer<'d>>(d: D, _: private::Token) -> Result<Self, D::Error> {
use serde::de::Error;
SignedAmount::from_btc(f64::deserialize(d)?)
.map_err(DisplayFullError)
.map_err(D::Error::custom)
}
}
impl SerdeAmountForOpt for SignedAmount {
fn type_prefix(_: private::Token) -> &'static str { "i" }
fn ser_sat_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
s.serialize_some(&self.to_sat())
}
#[cfg(feature = "alloc")]
fn ser_btc_opt<S: Serializer>(self, s: S, _: private::Token) -> Result<S::Ok, S::Error> {
s.serialize_some(&self.to_btc())
}
}
pub mod as_sat {
//! Serialize and deserialize [`Amount`](crate::Amount) as real numbers denominated in satoshi.
//! Use with `#[serde(with = "amount::serde::as_sat")]`.
//!
use serde::{Deserializer, Serializer};
use super::private;
use crate::amount::serde::SerdeAmount;
pub fn serialize<A: SerdeAmount, S: Serializer>(a: &A, s: S) -> Result<S::Ok, S::Error> {
a.ser_sat(s, private::Token)
}
pub fn deserialize<'d, A: SerdeAmount, D: Deserializer<'d>>(d: D) -> Result<A, D::Error> {
A::des_sat(d, private::Token)
}
pub mod opt {
//! Serialize and deserialize [`Option<Amount>`](crate::Amount) as real numbers denominated in satoshi.
//! Use with `#[serde(default, with = "amount::serde::as_sat::opt")]`.
use core::fmt;
use core::marker::PhantomData;
use serde::{de, Deserializer, Serializer};
use super::private;
use crate::amount::serde::SerdeAmountForOpt;
pub fn serialize<A: SerdeAmountForOpt, S: Serializer>(
a: &Option<A>,
s: S,
) -> Result<S::Ok, S::Error> {
match *a {
Some(a) => a.ser_sat_opt(s, private::Token),
None => s.serialize_none(),
}
}
pub fn deserialize<'d, A: SerdeAmountForOpt, D: Deserializer<'d>>(
d: D,
) -> Result<Option<A>, D::Error> {
struct VisitOptAmt<X>(PhantomData<X>);
impl<'de, X: SerdeAmountForOpt> de::Visitor<'de> for VisitOptAmt<X> {
type Value = Option<X>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "An Option<{}64>", X::type_prefix(private::Token))
}
fn visit_none<E>(self) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(None)
}
fn visit_some<D>(self, d: D) -> Result<Self::Value, D::Error>
where
D: Deserializer<'de>,
{
Ok(Some(X::des_sat(d, private::Token)?))
}
}
d.deserialize_option(VisitOptAmt::<A>(PhantomData))
}
}
}
#[cfg(feature = "alloc")]
pub mod as_btc {
//! Serialize and deserialize [`Amount`](crate::Amount) as JSON numbers denominated in BTC.
//! Use with `#[serde(with = "amount::serde::as_btc")]`.
use serde::{Deserializer, Serializer};
use super::private;
use crate::amount::serde::SerdeAmount;
pub fn serialize<A: SerdeAmount, S: Serializer>(a: &A, s: S) -> Result<S::Ok, S::Error> {
a.ser_btc(s, private::Token)
}
pub fn deserialize<'d, A: SerdeAmount, D: Deserializer<'d>>(d: D) -> Result<A, D::Error> {
A::des_btc(d, private::Token)
}
pub mod opt {
//! Serialize and deserialize `Option<Amount>` as JSON numbers denominated in BTC.
//! Use with `#[serde(default, with = "amount::serde::as_btc::opt")]`.
use core::fmt;
use core::marker::PhantomData;
use serde::{de, Deserializer, Serializer};
use super::private;
use crate::amount::serde::SerdeAmountForOpt;
pub fn serialize<A: SerdeAmountForOpt, S: Serializer>(
a: &Option<A>,
s: S,
) -> Result<S::Ok, S::Error> {
match *a {
Some(a) => a.ser_btc_opt(s, private::Token),
None => s.serialize_none(),
}
}
pub fn deserialize<'d, A: SerdeAmountForOpt, D: Deserializer<'d>>(
d: D,
) -> Result<Option<A>, D::Error> {
struct VisitOptAmt<X>(PhantomData<X>);
impl<'de, X: SerdeAmountForOpt> de::Visitor<'de> for VisitOptAmt<X> {
type Value = Option<X>;
fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
write!(formatter, "An Option<f64>")
}
fn visit_none<E>(self) -> Result<Self::Value, E>
where
E: de::Error,
{
Ok(None)
}
fn visit_some<D>(self, d: D) -> Result<Self::Value, D::Error>
where
D: Deserializer<'de>,
{
Ok(Some(X::des_btc(d, private::Token)?))
}
}
d.deserialize_option(VisitOptAmt::<A>(PhantomData))
}
}
}
}
#[cfg(kani)]
mod verification {
use std::cmp;
use std::convert::TryInto;
use super::*;
// Note regarding the `unwind` parameter: this defines how many iterations
// of loops kani will unwind before handing off to the SMT solver. Basically
// it should be set as low as possible such that Kani still succeeds (doesn't
// return "undecidable").
//
// There is more info here: https://model-checking.github.io/kani/tutorial-loop-unwinding.html
//
// Unfortunately what it means to "loop" is pretty opaque ... in this case
// there appear to be loops in memcmp, which I guess comes from assert_eq!,
// though I didn't see any failures until I added the to_signed() test.
// Further confusing the issue, a value of 2 works fine on my system, but on
// CI it fails, so we need to set it higher.
#[kani::unwind(4)]
#[kani::proof]
fn u_amount_add_homomorphic() {
let n1 = kani::any::<u64>();
let n2 = kani::any::<u64>();
kani::assume(n1.checked_add(n2).is_some()); // assume we don't overflow in the actual test
assert_eq!(Amount::from_sat(n1) + Amount::from_sat(n2), Amount::from_sat(n1 + n2));
let mut amt = Amount::from_sat(n1);
amt += Amount::from_sat(n2);
assert_eq!(amt, Amount::from_sat(n1 + n2));
let max = cmp::max(n1, n2);
let min = cmp::min(n1, n2);
assert_eq!(Amount::from_sat(max) - Amount::from_sat(min), Amount::from_sat(max - min));
let mut amt = Amount::from_sat(max);
amt -= Amount::from_sat(min);
assert_eq!(amt, Amount::from_sat(max - min));
assert_eq!(
Amount::from_sat(n1).to_signed(),
if n1 <= i64::MAX as u64 {
Ok(SignedAmount::from_sat(n1.try_into().unwrap()))
} else {
Err(OutOfRangeError::too_big(true))
},
);
}
#[kani::unwind(4)]
#[kani::proof]
fn u_amount_add_homomorphic_checked() {
let n1 = kani::any::<u64>();
let n2 = kani::any::<u64>();
assert_eq!(
Amount::from_sat(n1).checked_add(Amount::from_sat(n2)),
n1.checked_add(n2).map(Amount::from_sat),
);
assert_eq!(
Amount::from_sat(n1).checked_sub(Amount::from_sat(n2)),
n1.checked_sub(n2).map(Amount::from_sat),
);
}
#[kani::unwind(4)]
#[kani::proof]
fn s_amount_add_homomorphic() {
let n1 = kani::any::<i64>();
let n2 = kani::any::<i64>();
kani::assume(n1.checked_add(n2).is_some()); // assume we don't overflow in the actual test
kani::assume(n1.checked_sub(n2).is_some()); // assume we don't overflow in the actual test
assert_eq!(
SignedAmount::from_sat(n1) + SignedAmount::from_sat(n2),
SignedAmount::from_sat(n1 + n2)
);
assert_eq!(
SignedAmount::from_sat(n1) - SignedAmount::from_sat(n2),
SignedAmount::from_sat(n1 - n2)
);
let mut amt = SignedAmount::from_sat(n1);
amt += SignedAmount::from_sat(n2);
assert_eq!(amt, SignedAmount::from_sat(n1 + n2));
let mut amt = SignedAmount::from_sat(n1);
amt -= SignedAmount::from_sat(n2);
assert_eq!(amt, SignedAmount::from_sat(n1 - n2));
assert_eq!(
SignedAmount::from_sat(n1).to_unsigned(),
if n1 >= 0 {
Ok(Amount::from_sat(n1.try_into().unwrap()))
} else {
Err(OutOfRangeError { is_signed: true, is_greater_than_max: false })
},
);
}
#[kani::unwind(4)]
#[kani::proof]
fn s_amount_add_homomorphic_checked() {
let n1 = kani::any::<i64>();
let n2 = kani::any::<i64>();
assert_eq!(
SignedAmount::from_sat(n1).checked_add(SignedAmount::from_sat(n2)),
n1.checked_add(n2).map(SignedAmount::from_sat),
);
assert_eq!(
SignedAmount::from_sat(n1).checked_sub(SignedAmount::from_sat(n2)),
n1.checked_sub(n2).map(SignedAmount::from_sat),
);
assert_eq!(
SignedAmount::from_sat(n1).positive_sub(SignedAmount::from_sat(n2)),
if n1 >= 0 && n2 >= 0 && n1 >= n2 {
Some(SignedAmount::from_sat(n1 - n2))
} else {
None
},
);
}
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use alloc::format;
#[cfg(feature = "std")]
use std::panic;
use super::*;
#[test]
#[cfg(feature = "alloc")]
fn from_str_zero() {
let denoms = ["BTC", "mBTC", "uBTC", "nBTC", "pBTC", "bits", "sats", "msats"];
for denom in denoms {
for v in &["0", "000"] {
let s = format!("{} {}", v, denom);
match Amount::from_str(&s) {
Err(e) => panic!("Failed to crate amount from {}: {:?}", s, e),
Ok(amount) => assert_eq!(amount, Amount::from_sat(0)),
}
}
let s = format!("-0 {}", denom);
match Amount::from_str(&s) {
Err(e) => assert_eq!(
e,
ParseError::Amount(ParseAmountError::OutOfRange(OutOfRangeError::negative()))
),
Ok(_) => panic!("Unsigned amount from {}", s),
}
match SignedAmount::from_str(&s) {
Err(e) => panic!("Failed to crate amount from {}: {:?}", s, e),
Ok(amount) => assert_eq!(amount, SignedAmount::from_sat(0)),
}
}
}
#[test]
fn from_int_btc() {
let amt = Amount::from_int_btc(2);
assert_eq!(Amount::from_sat(200_000_000), amt);
}
#[should_panic]
#[test]
fn from_int_btc_panic() { Amount::from_int_btc(u64::MAX); }
#[test]
fn test_signed_amount_try_from_amount() {
let ua_positive = Amount::from_sat(123);
let sa_positive = SignedAmount::try_from(ua_positive).unwrap();
assert_eq!(sa_positive, SignedAmount(123));
let ua_max = Amount::MAX;
let result = SignedAmount::try_from(ua_max);
assert_eq!(result, Err(OutOfRangeError { is_signed: true, is_greater_than_max: true }));
}
#[test]
fn test_amount_try_from_signed_amount() {
let sa_positive = SignedAmount(123);
let ua_positive = Amount::try_from(sa_positive).unwrap();
assert_eq!(ua_positive, Amount::from_sat(123));
let sa_negative = SignedAmount(-123);
let result = Amount::try_from(sa_negative);
assert_eq!(result, Err(OutOfRangeError { is_signed: false, is_greater_than_max: false }));
}
#[test]
fn mul_div() {
let sat = Amount::from_sat;
let ssat = SignedAmount::from_sat;
assert_eq!(sat(14) * 3, sat(42));
assert_eq!(sat(14) / 2, sat(7));
assert_eq!(sat(14) % 3, sat(2));
assert_eq!(ssat(-14) * 3, ssat(-42));
assert_eq!(ssat(-14) / 2, ssat(-7));
assert_eq!(ssat(-14) % 3, ssat(-2));
let mut b = ssat(30);
b /= 3;
assert_eq!(b, ssat(10));
b %= 3;
assert_eq!(b, ssat(1));
}
#[cfg(feature = "std")]
#[test]
fn test_overflows() {
// panic on overflow
let result = panic::catch_unwind(|| Amount::MAX + Amount::from_sat(1));
assert!(result.is_err());
let result = panic::catch_unwind(|| Amount::from_sat(8446744073709551615) * 3);
assert!(result.is_err());
}
#[test]
fn checked_arithmetic() {
let sat = Amount::from_sat;
let ssat = SignedAmount::from_sat;
assert_eq!(SignedAmount::MAX.checked_add(ssat(1)), None);
assert_eq!(SignedAmount::MIN.checked_sub(ssat(1)), None);
assert_eq!(Amount::MAX.checked_add(sat(1)), None);
assert_eq!(Amount::MIN.checked_sub(sat(1)), None);
assert_eq!(sat(5).checked_div(2), Some(sat(2))); // integer division
assert_eq!(ssat(-6).checked_div(2), Some(ssat(-3)));
}
#[test]
#[cfg(not(debug_assertions))]
fn unchecked_amount_add() {
let amt = Amount::MAX.unchecked_add(Amount::ONE_SAT);
assert_eq!(amt, Amount::ZERO);
}
#[test]
#[cfg(not(debug_assertions))]
fn unchecked_signed_amount_add() {
let signed_amt = SignedAmount::MAX.unchecked_add(SignedAmount::ONE_SAT);
assert_eq!(signed_amt, SignedAmount::MIN);
}
#[test]
#[cfg(not(debug_assertions))]
fn unchecked_amount_subtract() {
let amt = Amount::ZERO.unchecked_sub(Amount::ONE_SAT);
assert_eq!(amt, Amount::MAX);
}
#[test]
#[cfg(not(debug_assertions))]
fn unchecked_signed_amount_subtract() {
let signed_amt = SignedAmount::MIN.unchecked_sub(SignedAmount::ONE_SAT);
assert_eq!(signed_amt, SignedAmount::MAX);
}
#[cfg(feature = "alloc")]
#[test]
fn floating_point() {
use super::Denomination as D;
let f = Amount::from_float_in;
let sf = SignedAmount::from_float_in;
let sat = Amount::from_sat;
let ssat = SignedAmount::from_sat;
assert_eq!(f(11.22, D::Bitcoin), Ok(sat(1122000000)));
assert_eq!(sf(-11.22, D::MilliBitcoin), Ok(ssat(-1122000)));
assert_eq!(f(11.22, D::Bit), Ok(sat(1122)));
assert_eq!(sf(-1000.0, D::MilliSatoshi), Ok(ssat(-1)));
assert_eq!(f(0.0001234, D::Bitcoin), Ok(sat(12340)));
assert_eq!(sf(-0.00012345, D::Bitcoin), Ok(ssat(-12345)));
assert_eq!(f(-100.0, D::MilliSatoshi), Err(OutOfRangeError::negative().into()));
assert_eq!(f(11.22, D::Satoshi), Err(TooPreciseError { position: 3 }.into()));
assert_eq!(sf(-100.0, D::MilliSatoshi), Err(TooPreciseError { position: 1 }.into()));
assert_eq!(f(42.123456781, D::Bitcoin), Err(TooPreciseError { position: 11 }.into()));
assert_eq!(sf(-184467440738.0, D::Bitcoin), Err(OutOfRangeError::too_small().into()));
assert_eq!(
f(18446744073709551617.0, D::Satoshi),
Err(OutOfRangeError::too_big(false).into())
);
// Amount can be grater than the max SignedAmount.
assert!(f(SignedAmount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi).is_ok());
assert_eq!(
f(Amount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi),
Err(OutOfRangeError::too_big(false).into())
);
assert_eq!(
sf(SignedAmount::MAX.to_float_in(D::Satoshi) + 1.0, D::Satoshi),
Err(OutOfRangeError::too_big(true).into())
);
let btc = move |f| SignedAmount::from_btc(f).unwrap();
assert_eq!(btc(2.5).to_float_in(D::Bitcoin), 2.5);
assert_eq!(btc(-2.5).to_float_in(D::MilliBitcoin), -2500.0);
assert_eq!(btc(2.5).to_float_in(D::Satoshi), 250000000.0);
assert_eq!(btc(-2.5).to_float_in(D::MilliSatoshi), -250000000000.0);
let btc = move |f| Amount::from_btc(f).unwrap();
assert_eq!(&btc(0.0012).to_float_in(D::Bitcoin).to_string(), "0.0012")
}
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn parsing() {
use super::ParseAmountError as E;
let btc = Denomination::Bitcoin;
let sat = Denomination::Satoshi;
let msat = Denomination::MilliSatoshi;
let p = Amount::from_str_in;
let sp = SignedAmount::from_str_in;
assert_eq!(
p("x", btc),
Err(E::from(InvalidCharacterError { invalid_char: 'x', position: 0 }))
);
assert_eq!(
p("-", btc),
Err(E::from(MissingDigitsError { kind: MissingDigitsKind::OnlyMinusSign }))
);
assert_eq!(
sp("-", btc),
Err(E::from(MissingDigitsError { kind: MissingDigitsKind::OnlyMinusSign }))
);
assert_eq!(
p("-1.0x", btc),
Err(E::from(InvalidCharacterError { invalid_char: 'x', position: 4 }))
);
assert_eq!(
p("0.0 ", btc),
Err(E::from(InvalidCharacterError { invalid_char: ' ', position: 3 }))
);
assert_eq!(
p("0.000.000", btc),
Err(E::from(InvalidCharacterError { invalid_char: '.', position: 5 }))
);
#[cfg(feature = "alloc")]
let more_than_max = format!("1{}", Amount::MAX);
#[cfg(feature = "alloc")]
assert_eq!(p(&more_than_max, btc), Err(OutOfRangeError::too_big(false).into()));
assert_eq!(p("0.000000042", btc), Err(TooPreciseError { position: 10 }.into()));
assert_eq!(p("999.0000000", msat), Err(TooPreciseError { position: 0 }.into()));
assert_eq!(p("1.0000000", msat), Err(TooPreciseError { position: 0 }.into()));
assert_eq!(p("1.1", msat), Err(TooPreciseError { position: 0 }.into()));
assert_eq!(p("1000.1", msat), Err(TooPreciseError { position: 5 }.into()));
assert_eq!(p("1001.0000000", msat), Err(TooPreciseError { position: 3 }.into()));
assert_eq!(p("1000.0000001", msat), Err(TooPreciseError { position: 11 }.into()));
assert_eq!(p("1000.1000000", msat), Err(TooPreciseError { position: 5 }.into()));
assert_eq!(p("1100.0000000", msat), Err(TooPreciseError { position: 1 }.into()));
assert_eq!(p("10001.0000000", msat), Err(TooPreciseError { position: 4 }.into()));
assert_eq!(p("1", btc), Ok(Amount::from_sat(1_000_000_00)));
assert_eq!(sp("-.5", btc), Ok(SignedAmount::from_sat(-500_000_00)));
#[cfg(feature = "alloc")]
assert_eq!(sp(&i64::MIN.to_string(), sat), Ok(SignedAmount::from_sat(i64::MIN)));
assert_eq!(p("1.1", btc), Ok(Amount::from_sat(1_100_000_00)));
assert_eq!(p("100", sat), Ok(Amount::from_sat(100)));
assert_eq!(p("55", sat), Ok(Amount::from_sat(55)));
assert_eq!(p("5500000000000000000", sat), Ok(Amount::from_sat(55_000_000_000_000_000_00)));
// Should this even pass?
assert_eq!(p("5500000000000000000.", sat), Ok(Amount::from_sat(55_000_000_000_000_000_00)));
assert_eq!(
p("12345678901.12345678", btc),
Ok(Amount::from_sat(12_345_678_901__123_456_78))
);
assert_eq!(p("1000.0", msat), Ok(Amount::from_sat(1)));
assert_eq!(p("1000.000000000000000000000000000", msat), Ok(Amount::from_sat(1)));
// make sure satoshi > i64::MAX is checked.
#[cfg(feature = "alloc")]
{
let amount = Amount::from_sat(i64::MAX as u64);
assert_eq!(Amount::from_str_in(&amount.to_string_in(sat), sat), Ok(amount));
assert!(
SignedAmount::from_str_in(&(amount + Amount(1)).to_string_in(sat), sat).is_err()
);
assert!(Amount::from_str_in(&(amount + Amount(1)).to_string_in(sat), sat).is_ok());
}
assert_eq!(
p("12.000", Denomination::MilliSatoshi),
Err(TooPreciseError { position: 0 }.into())
);
// exactly 50 chars.
assert_eq!(
p("100000000000000.0000000000000000000000000000000000", Denomination::Bitcoin),
Err(OutOfRangeError::too_big(false).into())
);
// more than 50 chars.
assert_eq!(
p("100000000000000.00000000000000000000000000000000000", Denomination::Bitcoin),
Err(E::InputTooLarge(InputTooLargeError { len: 51 }))
);
}
#[test]
#[cfg(feature = "alloc")]
fn to_string() {
use super::Denomination as D;
assert_eq!(Amount::ONE_BTC.to_string_in(D::Bitcoin), "1");
assert_eq!(format!("{:.8}", Amount::ONE_BTC.display_in(D::Bitcoin)), "1.00000000");
assert_eq!(Amount::ONE_BTC.to_string_in(D::Satoshi), "100000000");
assert_eq!(Amount::ONE_SAT.to_string_in(D::Bitcoin), "0.00000001");
assert_eq!(SignedAmount::from_sat(-42).to_string_in(D::Bitcoin), "-0.00000042");
assert_eq!(Amount::ONE_BTC.to_string_with_denomination(D::Bitcoin), "1 BTC");
assert_eq!(Amount::ONE_SAT.to_string_with_denomination(D::MilliSatoshi), "1000 msat");
assert_eq!(
SignedAmount::ONE_BTC.to_string_with_denomination(D::Satoshi),
"100000000 satoshi"
);
assert_eq!(Amount::ONE_SAT.to_string_with_denomination(D::Bitcoin), "0.00000001 BTC");
assert_eq!(
SignedAmount::from_sat(-42).to_string_with_denomination(D::Bitcoin),
"-0.00000042 BTC"
);
}
// May help identify a problem sooner
#[cfg(feature = "alloc")]
#[test]
fn test_repeat_char() {
let mut buf = String::new();
repeat_char(&mut buf, '0', 0).unwrap();
assert_eq!(buf.len(), 0);
repeat_char(&mut buf, '0', 42).unwrap();
assert_eq!(buf.len(), 42);
assert!(buf.chars().all(|c| c == '0'));
}
// Creates individual test functions to make it easier to find which check failed.
macro_rules! check_format_non_negative {
($denom:ident; $($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => {
$(
#[test]
#[cfg(feature = "alloc")]
fn $test_name() {
assert_eq!(format!($format_string, Amount::from_sat($val).display_in(Denomination::$denom)), $expected);
assert_eq!(format!($format_string, SignedAmount::from_sat($val as i64).display_in(Denomination::$denom)), $expected);
}
)*
}
}
macro_rules! check_format_non_negative_show_denom {
($denom:ident, $denom_suffix:literal; $($test_name:ident, $val:literal, $format_string:literal, $expected:literal);* $(;)?) => {
$(
#[test]
#[cfg(feature = "alloc")]
fn $test_name() {
assert_eq!(format!($format_string, Amount::from_sat($val).display_in(Denomination::$denom).show_denomination()), concat!($expected, $denom_suffix));
assert_eq!(format!($format_string, SignedAmount::from_sat($val as i64).display_in(Denomination::$denom).show_denomination()), concat!($expected, $denom_suffix));
}
)*
}
}
check_format_non_negative! {
Satoshi;
sat_check_fmt_non_negative_0, 0, "{}", "0";
sat_check_fmt_non_negative_1, 0, "{:2}", " 0";
sat_check_fmt_non_negative_2, 0, "{:02}", "00";
sat_check_fmt_non_negative_3, 0, "{:.1}", "0.0";
sat_check_fmt_non_negative_4, 0, "{:4.1}", " 0.0";
sat_check_fmt_non_negative_5, 0, "{:04.1}", "00.0";
sat_check_fmt_non_negative_6, 1, "{}", "1";
sat_check_fmt_non_negative_7, 1, "{:2}", " 1";
sat_check_fmt_non_negative_8, 1, "{:02}", "01";
sat_check_fmt_non_negative_9, 1, "{:.1}", "1.0";
sat_check_fmt_non_negative_10, 1, "{:4.1}", " 1.0";
sat_check_fmt_non_negative_11, 1, "{:04.1}", "01.0";
sat_check_fmt_non_negative_12, 10, "{}", "10";
sat_check_fmt_non_negative_13, 10, "{:2}", "10";
sat_check_fmt_non_negative_14, 10, "{:02}", "10";
sat_check_fmt_non_negative_15, 10, "{:3}", " 10";
sat_check_fmt_non_negative_16, 10, "{:03}", "010";
sat_check_fmt_non_negative_17, 10, "{:.1}", "10.0";
sat_check_fmt_non_negative_18, 10, "{:5.1}", " 10.0";
sat_check_fmt_non_negative_19, 10, "{:05.1}", "010.0";
sat_check_fmt_non_negative_20, 1, "{:<2}", "1 ";
sat_check_fmt_non_negative_21, 1, "{:<02}", "01";
sat_check_fmt_non_negative_22, 1, "{:<3.1}", "1.0";
sat_check_fmt_non_negative_23, 1, "{:<4.1}", "1.0 ";
}
check_format_non_negative_show_denom! {
Satoshi, " satoshi";
sat_check_fmt_non_negative_show_denom_0, 0, "{}", "0";
sat_check_fmt_non_negative_show_denom_1, 0, "{:2}", "0";
sat_check_fmt_non_negative_show_denom_2, 0, "{:02}", "0";
sat_check_fmt_non_negative_show_denom_3, 0, "{:9}", "0";
sat_check_fmt_non_negative_show_denom_4, 0, "{:09}", "0";
sat_check_fmt_non_negative_show_denom_5, 0, "{:10}", " 0";
sat_check_fmt_non_negative_show_denom_6, 0, "{:010}", "00";
sat_check_fmt_non_negative_show_denom_7, 0, "{:.1}", "0.0";
sat_check_fmt_non_negative_show_denom_8, 0, "{:11.1}", "0.0";
sat_check_fmt_non_negative_show_denom_9, 0, "{:011.1}", "0.0";
sat_check_fmt_non_negative_show_denom_10, 0, "{:12.1}", " 0.0";
sat_check_fmt_non_negative_show_denom_11, 0, "{:012.1}", "00.0";
sat_check_fmt_non_negative_show_denom_12, 1, "{}", "1";
sat_check_fmt_non_negative_show_denom_13, 1, "{:10}", " 1";
sat_check_fmt_non_negative_show_denom_14, 1, "{:010}", "01";
sat_check_fmt_non_negative_show_denom_15, 1, "{:.1}", "1.0";
sat_check_fmt_non_negative_show_denom_16, 1, "{:12.1}", " 1.0";
sat_check_fmt_non_negative_show_denom_17, 1, "{:012.1}", "01.0";
sat_check_fmt_non_negative_show_denom_18, 10, "{}", "10";
sat_check_fmt_non_negative_show_denom_19, 10, "{:10}", "10";
sat_check_fmt_non_negative_show_denom_20, 10, "{:010}", "10";
sat_check_fmt_non_negative_show_denom_21, 10, "{:11}", " 10";
sat_check_fmt_non_negative_show_denom_22, 10, "{:011}", "010";
}
check_format_non_negative! {
Bitcoin;
btc_check_fmt_non_negative_0, 0, "{}", "0";
btc_check_fmt_non_negative_1, 0, "{:2}", " 0";
btc_check_fmt_non_negative_2, 0, "{:02}", "00";
btc_check_fmt_non_negative_3, 0, "{:.1}", "0.0";
btc_check_fmt_non_negative_4, 0, "{:4.1}", " 0.0";
btc_check_fmt_non_negative_5, 0, "{:04.1}", "00.0";
btc_check_fmt_non_negative_6, 1, "{}", "0.00000001";
btc_check_fmt_non_negative_7, 1, "{:2}", "0.00000001";
btc_check_fmt_non_negative_8, 1, "{:02}", "0.00000001";
btc_check_fmt_non_negative_9, 1, "{:.1}", "0.00000001";
btc_check_fmt_non_negative_10, 1, "{:11}", " 0.00000001";
btc_check_fmt_non_negative_11, 1, "{:11.1}", " 0.00000001";
btc_check_fmt_non_negative_12, 1, "{:011.1}", "00.00000001";
btc_check_fmt_non_negative_13, 1, "{:.9}", "0.000000010";
btc_check_fmt_non_negative_14, 1, "{:11.9}", "0.000000010";
btc_check_fmt_non_negative_15, 1, "{:011.9}", "0.000000010";
btc_check_fmt_non_negative_16, 1, "{:12.9}", " 0.000000010";
btc_check_fmt_non_negative_17, 1, "{:012.9}", "00.000000010";
btc_check_fmt_non_negative_18, 100_000_000, "{}", "1";
btc_check_fmt_non_negative_19, 100_000_000, "{:2}", " 1";
btc_check_fmt_non_negative_20, 100_000_000, "{:02}", "01";
btc_check_fmt_non_negative_21, 100_000_000, "{:.1}", "1.0";
btc_check_fmt_non_negative_22, 100_000_000, "{:4.1}", " 1.0";
btc_check_fmt_non_negative_23, 100_000_000, "{:04.1}", "01.0";
btc_check_fmt_non_negative_24, 110_000_000, "{}", "1.1";
btc_check_fmt_non_negative_25, 100_000_001, "{}", "1.00000001";
btc_check_fmt_non_negative_26, 100_000_001, "{:1}", "1.00000001";
btc_check_fmt_non_negative_27, 100_000_001, "{:.1}", "1.00000001";
btc_check_fmt_non_negative_28, 100_000_001, "{:10}", "1.00000001";
btc_check_fmt_non_negative_29, 100_000_001, "{:11}", " 1.00000001";
btc_check_fmt_non_negative_30, 100_000_001, "{:011}", "01.00000001";
btc_check_fmt_non_negative_31, 100_000_001, "{:.8}", "1.00000001";
btc_check_fmt_non_negative_32, 100_000_001, "{:.9}", "1.000000010";
btc_check_fmt_non_negative_33, 100_000_001, "{:11.9}", "1.000000010";
btc_check_fmt_non_negative_34, 100_000_001, "{:12.9}", " 1.000000010";
btc_check_fmt_non_negative_35, 100_000_001, "{:012.9}", "01.000000010";
btc_check_fmt_non_negative_36, 100_000_001, "{:+011.8}", "+1.00000001";
btc_check_fmt_non_negative_37, 100_000_001, "{:+12.8}", " +1.00000001";
btc_check_fmt_non_negative_38, 100_000_001, "{:+012.8}", "+01.00000001";
btc_check_fmt_non_negative_39, 100_000_001, "{:+12.9}", "+1.000000010";
btc_check_fmt_non_negative_40, 100_000_001, "{:+012.9}", "+1.000000010";
btc_check_fmt_non_negative_41, 100_000_001, "{:+13.9}", " +1.000000010";
btc_check_fmt_non_negative_42, 100_000_001, "{:+013.9}", "+01.000000010";
btc_check_fmt_non_negative_43, 100_000_001, "{:<10}", "1.00000001";
btc_check_fmt_non_negative_44, 100_000_001, "{:<11}", "1.00000001 ";
btc_check_fmt_non_negative_45, 100_000_001, "{:<011}", "01.00000001";
btc_check_fmt_non_negative_46, 100_000_001, "{:<11.9}", "1.000000010";
btc_check_fmt_non_negative_47, 100_000_001, "{:<12.9}", "1.000000010 ";
btc_check_fmt_non_negative_48, 100_000_001, "{:<12}", "1.00000001 ";
btc_check_fmt_non_negative_49, 100_000_001, "{:^11}", "1.00000001 ";
btc_check_fmt_non_negative_50, 100_000_001, "{:^11.9}", "1.000000010";
btc_check_fmt_non_negative_51, 100_000_001, "{:^12.9}", "1.000000010 ";
btc_check_fmt_non_negative_52, 100_000_001, "{:^12}", " 1.00000001 ";
btc_check_fmt_non_negative_53, 100_000_001, "{:^12.9}", "1.000000010 ";
btc_check_fmt_non_negative_54, 100_000_001, "{:^13.9}", " 1.000000010 ";
}
check_format_non_negative_show_denom! {
Bitcoin, " BTC";
btc_check_fmt_non_negative_show_denom_0, 1, "{:14.1}", "0.00000001";
btc_check_fmt_non_negative_show_denom_1, 1, "{:14.8}", "0.00000001";
btc_check_fmt_non_negative_show_denom_2, 1, "{:15}", " 0.00000001";
btc_check_fmt_non_negative_show_denom_3, 1, "{:015}", "00.00000001";
btc_check_fmt_non_negative_show_denom_4, 1, "{:.9}", "0.000000010";
btc_check_fmt_non_negative_show_denom_5, 1, "{:15.9}", "0.000000010";
btc_check_fmt_non_negative_show_denom_6, 1, "{:16.9}", " 0.000000010";
btc_check_fmt_non_negative_show_denom_7, 1, "{:016.9}", "00.000000010";
}
check_format_non_negative_show_denom! {
Bitcoin, " BTC ";
btc_check_fmt_non_negative_show_denom_align_0, 1, "{:<15}", "0.00000001";
btc_check_fmt_non_negative_show_denom_align_1, 1, "{:^15}", "0.00000001";
btc_check_fmt_non_negative_show_denom_align_2, 1, "{:^16}", " 0.00000001";
}
check_format_non_negative! {
MilliSatoshi;
msat_check_fmt_non_negative_0, 0, "{}", "0";
msat_check_fmt_non_negative_1, 1, "{}", "1000";
msat_check_fmt_non_negative_2, 1, "{:5}", " 1000";
msat_check_fmt_non_negative_3, 1, "{:05}", "01000";
msat_check_fmt_non_negative_4, 1, "{:.1}", "1000.0";
msat_check_fmt_non_negative_5, 1, "{:6.1}", "1000.0";
msat_check_fmt_non_negative_6, 1, "{:06.1}", "1000.0";
msat_check_fmt_non_negative_7, 1, "{:7.1}", " 1000.0";
msat_check_fmt_non_negative_8, 1, "{:07.1}", "01000.0";
}
#[test]
fn test_unsigned_signed_conversion() {
let sa = SignedAmount::from_sat;
let ua = Amount::from_sat;
assert_eq!(Amount::MAX.to_signed(), Err(OutOfRangeError::too_big(true)));
assert_eq!(ua(i64::MAX as u64).to_signed(), Ok(sa(i64::MAX)));
assert_eq!(ua(i64::MAX as u64 + 1).to_signed(), Err(OutOfRangeError::too_big(true)));
assert_eq!(sa(i64::MAX).to_unsigned(), Ok(ua(i64::MAX as u64)));
assert_eq!(sa(i64::MAX).to_unsigned().unwrap().to_signed(), Ok(sa(i64::MAX)));
}
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn from_str() {
use ParseDenominationError::*;
use super::ParseAmountError as E;
assert_eq!(
Amount::from_str("x BTC"),
Err(InvalidCharacterError { invalid_char: 'x', position: 0 }.into())
);
assert_eq!(
Amount::from_str("xBTC"),
Err(Unknown(UnknownDenominationError("xBTC".into())).into()),
);
assert_eq!(
Amount::from_str("5 BTC BTC"),
Err(Unknown(UnknownDenominationError("BTC BTC".into())).into()),
);
assert_eq!(
Amount::from_str("5BTC BTC"),
Err(E::from(InvalidCharacterError { invalid_char: 'B', position: 1 }).into())
);
assert_eq!(
Amount::from_str("5 5 BTC"),
Err(Unknown(UnknownDenominationError("5 BTC".into())).into()),
);
#[track_caller]
fn ok_case(s: &str, expected: Amount) {
assert_eq!(Amount::from_str(s).unwrap(), expected);
assert_eq!(Amount::from_str(&s.replace(' ', "")).unwrap(), expected);
}
#[track_caller]
fn case(s: &str, expected: Result<Amount, impl Into<ParseError>>) {
let expected = expected.map_err(Into::into);
assert_eq!(Amount::from_str(s), expected);
assert_eq!(Amount::from_str(&s.replace(' ', "")), expected);
}
#[track_caller]
fn ok_scase(s: &str, expected: SignedAmount) {
assert_eq!(SignedAmount::from_str(s).unwrap(), expected);
assert_eq!(SignedAmount::from_str(&s.replace(' ', "")).unwrap(), expected);
}
#[track_caller]
fn scase(s: &str, expected: Result<SignedAmount, impl Into<ParseError>>) {
let expected = expected.map_err(Into::into);
assert_eq!(SignedAmount::from_str(s), expected);
assert_eq!(SignedAmount::from_str(&s.replace(' ', "")), expected);
}
case("5 BCH", Err(Unknown(UnknownDenominationError("BCH".into()))));
case("-1 BTC", Err(OutOfRangeError::negative()));
case("-0.0 BTC", Err(OutOfRangeError::negative()));
case("0.123456789 BTC", Err(TooPreciseError { position: 10 }));
scase("-0.1 satoshi", Err(TooPreciseError { position: 3 }));
case("0.123456 mBTC", Err(TooPreciseError { position: 7 }));
scase("-1.001 bits", Err(TooPreciseError { position: 5 }));
scase("-200000000000 BTC", Err(OutOfRangeError::too_small()));
case("18446744073709551616 sat", Err(OutOfRangeError::too_big(false)));
ok_case(".5 bits", Amount::from_sat(50));
ok_scase("-.5 bits", SignedAmount::from_sat(-50));
ok_case("0.00253583 BTC", Amount::from_sat(253583));
ok_scase("-5 satoshi", SignedAmount::from_sat(-5));
ok_case("0.10000000 BTC", Amount::from_sat(100_000_00));
ok_scase("-100 bits", SignedAmount::from_sat(-10_000));
#[cfg(feature = "alloc")]
ok_scase(&format!("{} SAT", i64::MIN), SignedAmount::from_sat(i64::MIN));
}
#[cfg(feature = "alloc")]
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn to_from_string_in() {
use super::Denomination as D;
let ua_str = Amount::from_str_in;
let ua_sat = Amount::from_sat;
let sa_str = SignedAmount::from_str_in;
let sa_sat = SignedAmount::from_sat;
assert_eq!("0.5", Amount::from_sat(50).to_string_in(D::Bit));
assert_eq!("-0.5", SignedAmount::from_sat(-50).to_string_in(D::Bit));
assert_eq!("0.00253583", Amount::from_sat(253583).to_string_in(D::Bitcoin));
assert_eq!("-5", SignedAmount::from_sat(-5).to_string_in(D::Satoshi));
assert_eq!("0.1", Amount::from_sat(100_000_00).to_string_in(D::Bitcoin));
assert_eq!("-100", SignedAmount::from_sat(-10_000).to_string_in(D::Bit));
assert_eq!("2535830", Amount::from_sat(253583).to_string_in(D::NanoBitcoin));
assert_eq!("-100000", SignedAmount::from_sat(-10_000).to_string_in(D::NanoBitcoin));
assert_eq!("2535830000", Amount::from_sat(253583).to_string_in(D::PicoBitcoin));
assert_eq!("-100000000", SignedAmount::from_sat(-10_000).to_string_in(D::PicoBitcoin));
assert_eq!("0.50", format!("{:.2}", Amount::from_sat(50).display_in(D::Bit)));
assert_eq!("-0.50", format!("{:.2}", SignedAmount::from_sat(-50).display_in(D::Bit)));
assert_eq!(
"0.10000000",
format!("{:.8}", Amount::from_sat(100_000_00).display_in(D::Bitcoin))
);
assert_eq!("-100.00", format!("{:.2}", SignedAmount::from_sat(-10_000).display_in(D::Bit)));
assert_eq!(ua_str(&ua_sat(0).to_string_in(D::Satoshi), D::Satoshi), Ok(ua_sat(0)));
assert_eq!(ua_str(&ua_sat(500).to_string_in(D::Bitcoin), D::Bitcoin), Ok(ua_sat(500)));
assert_eq!(
ua_str(&ua_sat(21_000_000).to_string_in(D::Bit), D::Bit),
Ok(ua_sat(21_000_000))
);
assert_eq!(
ua_str(&ua_sat(1).to_string_in(D::MicroBitcoin), D::MicroBitcoin),
Ok(ua_sat(1))
);
assert_eq!(
ua_str(&ua_sat(1_000_000_000_000).to_string_in(D::MilliBitcoin), D::MilliBitcoin),
Ok(ua_sat(1_000_000_000_000))
);
assert!(ua_str(&ua_sat(u64::MAX).to_string_in(D::MilliBitcoin), D::MilliBitcoin).is_ok());
assert_eq!(
sa_str(&sa_sat(-1).to_string_in(D::MicroBitcoin), D::MicroBitcoin),
Ok(sa_sat(-1))
);
assert_eq!(
sa_str(&sa_sat(i64::MAX).to_string_in(D::Satoshi), D::MicroBitcoin),
Err(OutOfRangeError::too_big(true).into())
);
// Test an overflow bug in `abs()`
assert_eq!(
sa_str(&sa_sat(i64::MIN).to_string_in(D::Satoshi), D::MicroBitcoin),
Err(OutOfRangeError::too_small().into())
);
assert_eq!(
sa_str(&sa_sat(-1).to_string_in(D::NanoBitcoin), D::NanoBitcoin),
Ok(sa_sat(-1))
);
assert_eq!(
sa_str(&sa_sat(i64::MAX).to_string_in(D::Satoshi), D::NanoBitcoin),
Err(TooPreciseError { position: 18 }.into())
);
assert_eq!(
sa_str(&sa_sat(i64::MIN).to_string_in(D::Satoshi), D::NanoBitcoin),
Err(TooPreciseError { position: 19 }.into())
);
assert_eq!(
sa_str(&sa_sat(-1).to_string_in(D::PicoBitcoin), D::PicoBitcoin),
Ok(sa_sat(-1))
);
assert_eq!(
sa_str(&sa_sat(i64::MAX).to_string_in(D::Satoshi), D::PicoBitcoin),
Err(TooPreciseError { position: 18 }.into())
);
assert_eq!(
sa_str(&sa_sat(i64::MIN).to_string_in(D::Satoshi), D::PicoBitcoin),
Err(TooPreciseError { position: 19 }.into())
);
}
#[cfg(feature = "alloc")]
#[test]
fn to_string_with_denomination_from_str_roundtrip() {
use ParseDenominationError::*;
use super::Denomination as D;
let amt = Amount::from_sat(42);
let denom = Amount::to_string_with_denomination;
assert_eq!(Amount::from_str(&denom(amt, D::Bitcoin)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::MilliBitcoin)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::MicroBitcoin)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::Bit)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::Satoshi)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::NanoBitcoin)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::MilliSatoshi)), Ok(amt));
assert_eq!(Amount::from_str(&denom(amt, D::PicoBitcoin)), Ok(amt));
assert_eq!(
Amount::from_str("42 satoshi BTC"),
Err(Unknown(UnknownDenominationError("satoshi BTC".into())).into()),
);
assert_eq!(
SignedAmount::from_str("-42 satoshi BTC"),
Err(Unknown(UnknownDenominationError("satoshi BTC".into())).into()),
);
}
#[cfg(feature = "serde")]
#[test]
fn serde_as_sat() {
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct T {
#[serde(with = "crate::amount::serde::as_sat")]
pub amt: Amount,
#[serde(with = "crate::amount::serde::as_sat")]
pub samt: SignedAmount,
}
serde_test::assert_tokens(
&T { amt: Amount::from_sat(123456789), samt: SignedAmount::from_sat(-123456789) },
&[
serde_test::Token::Struct { name: "T", len: 2 },
serde_test::Token::Str("amt"),
serde_test::Token::U64(123456789),
serde_test::Token::Str("samt"),
serde_test::Token::I64(-123456789),
serde_test::Token::StructEnd,
],
);
}
#[cfg(feature = "serde")]
#[cfg(feature = "alloc")]
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn serde_as_btc() {
use serde_json;
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct T {
#[serde(with = "crate::amount::serde::as_btc")]
pub amt: Amount,
#[serde(with = "crate::amount::serde::as_btc")]
pub samt: SignedAmount,
}
let orig = T {
amt: Amount::from_sat(21_000_000__000_000_01),
samt: SignedAmount::from_sat(-21_000_000__000_000_01),
};
let json = "{\"amt\": 21000000.00000001, \
\"samt\": -21000000.00000001}";
let t: T = serde_json::from_str(json).unwrap();
assert_eq!(t, orig);
let value: serde_json::Value = serde_json::from_str(json).unwrap();
assert_eq!(t, serde_json::from_value(value).unwrap());
// errors
let t: Result<T, serde_json::Error> =
serde_json::from_str("{\"amt\": 1000000.000000001, \"samt\": 1}");
assert!(t
.unwrap_err()
.to_string()
.contains(&ParseAmountError::TooPrecise(TooPreciseError { position: 16 }).to_string()));
let t: Result<T, serde_json::Error> = serde_json::from_str("{\"amt\": -1, \"samt\": 1}");
assert!(t.unwrap_err().to_string().contains(&OutOfRangeError::negative().to_string()));
}
#[cfg(feature = "serde")]
#[cfg(feature = "alloc")]
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn serde_as_btc_opt() {
use serde_json;
#[derive(Serialize, Deserialize, PartialEq, Debug, Eq)]
struct T {
#[serde(default, with = "crate::amount::serde::as_btc::opt")]
pub amt: Option<Amount>,
#[serde(default, with = "crate::amount::serde::as_btc::opt")]
pub samt: Option<SignedAmount>,
}
let with = T {
amt: Some(Amount::from_sat(2_500_000_00)),
samt: Some(SignedAmount::from_sat(-2_500_000_00)),
};
let without = T { amt: None, samt: None };
// Test Roundtripping
for s in [&with, &without].iter() {
let v = serde_json::to_string(s).unwrap();
let w: T = serde_json::from_str(&v).unwrap();
assert_eq!(w, **s);
}
let t: T = serde_json::from_str("{\"amt\": 2.5, \"samt\": -2.5}").unwrap();
assert_eq!(t, with);
let t: T = serde_json::from_str("{}").unwrap();
assert_eq!(t, without);
let value_with: serde_json::Value =
serde_json::from_str("{\"amt\": 2.5, \"samt\": -2.5}").unwrap();
assert_eq!(with, serde_json::from_value(value_with).unwrap());
let value_without: serde_json::Value = serde_json::from_str("{}").unwrap();
assert_eq!(without, serde_json::from_value(value_without).unwrap());
}
#[cfg(feature = "serde")]
#[cfg(feature = "alloc")]
#[test]
#[allow(clippy::inconsistent_digit_grouping)] // Group to show 100,000,000 sats per bitcoin.
fn serde_as_sat_opt() {
use serde_json;
#[derive(Serialize, Deserialize, PartialEq, Debug, Eq)]
struct T {
#[serde(default, with = "crate::amount::serde::as_sat::opt")]
pub amt: Option<Amount>,
#[serde(default, with = "crate::amount::serde::as_sat::opt")]
pub samt: Option<SignedAmount>,
}
let with = T {
amt: Some(Amount::from_sat(2_500_000_00)),
samt: Some(SignedAmount::from_sat(-2_500_000_00)),
};
let without = T { amt: None, samt: None };
// Test Roundtripping
for s in [&with, &without].iter() {
let v = serde_json::to_string(s).unwrap();
let w: T = serde_json::from_str(&v).unwrap();
assert_eq!(w, **s);
}
let t: T = serde_json::from_str("{\"amt\": 250000000, \"samt\": -250000000}").unwrap();
assert_eq!(t, with);
let t: T = serde_json::from_str("{}").unwrap();
assert_eq!(t, without);
let value_with: serde_json::Value =
serde_json::from_str("{\"amt\": 250000000, \"samt\": -250000000}").unwrap();
assert_eq!(with, serde_json::from_value(value_with).unwrap());
let value_without: serde_json::Value = serde_json::from_str("{}").unwrap();
assert_eq!(without, serde_json::from_value(value_without).unwrap());
}
#[test]
fn sum_amounts() {
assert_eq!(Amount::from_sat(0), [].into_iter().sum::<Amount>());
assert_eq!(SignedAmount::from_sat(0), [].into_iter().sum::<SignedAmount>());
let amounts = [Amount::from_sat(42), Amount::from_sat(1337), Amount::from_sat(21)];
let sum = amounts.into_iter().sum::<Amount>();
assert_eq!(Amount::from_sat(1400), sum);
let amounts =
[SignedAmount::from_sat(-42), SignedAmount::from_sat(1337), SignedAmount::from_sat(21)];
let sum = amounts.into_iter().sum::<SignedAmount>();
assert_eq!(SignedAmount::from_sat(1316), sum);
}
#[test]
fn checked_sum_amounts() {
assert_eq!(Some(Amount::from_sat(0)), [].into_iter().checked_sum());
assert_eq!(Some(SignedAmount::from_sat(0)), [].into_iter().checked_sum());
let amounts = [Amount::from_sat(42), Amount::from_sat(1337), Amount::from_sat(21)];
let sum = amounts.into_iter().checked_sum();
assert_eq!(Some(Amount::from_sat(1400)), sum);
let amounts = [Amount::from_sat(u64::MAX), Amount::from_sat(1337), Amount::from_sat(21)];
let sum = amounts.into_iter().checked_sum();
assert_eq!(None, sum);
let amounts = [
SignedAmount::from_sat(i64::MIN),
SignedAmount::from_sat(-1),
SignedAmount::from_sat(21),
];
let sum = amounts.into_iter().checked_sum();
assert_eq!(None, sum);
let amounts = [
SignedAmount::from_sat(i64::MAX),
SignedAmount::from_sat(1),
SignedAmount::from_sat(21),
];
let sum = amounts.into_iter().checked_sum();
assert_eq!(None, sum);
let amounts =
[SignedAmount::from_sat(42), SignedAmount::from_sat(3301), SignedAmount::from_sat(21)];
let sum = amounts.into_iter().checked_sum();
assert_eq!(Some(SignedAmount::from_sat(3364)), sum);
}
#[test]
fn denomination_string_acceptable_forms() {
// Non-exhaustive list of valid forms.
let valid = [
"BTC", "btc", "mBTC", "mbtc", "uBTC", "ubtc", "SATOSHI", "satoshi", "SATOSHIS",
"satoshis", "SAT", "sat", "SATS", "sats", "bit", "bits", "nBTC", "pBTC",
];
for denom in valid.iter() {
assert!(Denomination::from_str(denom).is_ok());
}
}
#[test]
fn disallow_confusing_forms() {
let confusing = ["Msat", "Msats", "MSAT", "MSATS", "MSat", "MSats", "MBTC", "Mbtc", "PBTC"];
for denom in confusing.iter() {
match Denomination::from_str(denom) {
Ok(_) => panic!("from_str should error for {}", denom),
Err(ParseDenominationError::PossiblyConfusing(_)) => {}
Err(e) => panic!("unexpected error: {}", e),
}
}
}
#[test]
fn disallow_unknown_denomination() {
// Non-exhaustive list of unknown forms.
let unknown = ["NBTC", "UBTC", "ABC", "abc", "cBtC", "Sat", "Sats"];
for denom in unknown.iter() {
match Denomination::from_str(denom) {
Ok(_) => panic!("from_str should error for {}", denom),
Err(ParseDenominationError::Unknown(_)) => (),
Err(e) => panic!("unexpected error: {}", e),
}
}
}
#[test]
#[cfg(feature = "alloc")]
fn trailing_zeros_for_amount() {
assert_eq!(format!("{}", Amount::ONE_SAT), "0.00000001 BTC");
assert_eq!(format!("{}", Amount::ONE_BTC), "1 BTC");
assert_eq!(format!("{}", Amount::from_sat(1)), "0.00000001 BTC");
assert_eq!(format!("{}", Amount::from_sat(10)), "0.00000010 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(10)), "0.0000001 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(100)), "0.000001 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(1000)), "0.00001 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(10_000)), "0.0001 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(100_000)), "0.001 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(1_000_000)), "0.01 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(10_000_000)), "0.10 BTC");
assert_eq!(format!("{:.2}", Amount::from_sat(100_000_000)), "1.00 BTC");
assert_eq!(format!("{}", Amount::from_sat(100_000_000)), "1 BTC");
assert_eq!(format!("{}", Amount::from_sat(40_000_000_000)), "400 BTC");
assert_eq!(format!("{:.10}", Amount::from_sat(100_000_000)), "1.0000000000 BTC");
assert_eq!(format!("{}", Amount::from_sat(400_000_000_000_010)), "4000000.00000010 BTC");
assert_eq!(format!("{}", Amount::from_sat(400_000_000_000_000)), "4000000 BTC");
}
}