rust-bitcoin-unsafe-fast/src/util/bip158.rs

690 lines
24 KiB
Rust

// Rust Bitcoin Library
// Written in 2019 by
// The rust-bitcoin developers
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
// This module was largely copied from https://github.com/rust-bitcoin/murmel/blob/master/src/blockfilter.rs
// on 11. June 2019 which is licensed under Apache, that file specifically
// was written entirely by Tamas Blummer, who is re-licensing its contents here as CC0.
//! BIP158 Compact Block Filters for light clients.
//!
//! This module implements a structure for compact filters on block data, for
//! use in the BIP 157 light client protocol. The filter construction proposed
//! is an alternative to Bloom filters, as used in BIP 37, that minimizes filter
//! size by using Golomb-Rice coding for compression.
//!
//! ## Example
//!
//! ```ignore
//! fn get_script_for_coin(coin: &OutPoint) -> Result<Script, BlockFilterError> {
//! // get utxo ...
//! }
//!
//! // create a block filter for a block (server side)
//! let filter = BlockFilter::new_script_filter(&block, get_script_for_coin)?;
//!
//! // or create a filter from known raw data
//! let filter = BlockFilter::new(content);
//!
//! // read and evaluate a filter
//!
//! let query: Iterator<Item=Script> = // .. some scripts you care about
//! if filter.match_any(&block_hash, &mut query.map(|s| s.as_bytes())) {
//! // get this block
//! }
//! ```
//!
use crate::prelude::*;
use crate::io::{self, Cursor};
use core::fmt::{self, Display, Formatter};
use core::cmp::{self, Ordering};
use crate::hashes::{Hash, siphash24};
use crate::hash_types::{BlockHash, FilterHash, FilterHeader};
use crate::blockdata::block::Block;
use crate::blockdata::script::Script;
use crate::blockdata::transaction::OutPoint;
use crate::consensus::{Decodable, Encodable};
use crate::consensus::encode::VarInt;
use crate::util::endian;
/// Golomb encoding parameter as in BIP-158, see also https://gist.github.com/sipa/576d5f09c3b86c3b1b75598d799fc845
const P: u8 = 19;
const M: u64 = 784931;
/// Errors for blockfilter
#[derive(Debug)]
pub enum Error {
/// missing UTXO, can not calculate script filter
UtxoMissing(OutPoint),
/// some IO error reading or writing binary serialization of the filter
Io(io::Error),
}
impl Display for Error {
fn fmt(&self, f: &mut Formatter) -> Result<(), fmt::Error> {
match *self {
Error::UtxoMissing(ref coin) => write!(f, "unresolved UTXO {}", coin),
Error::Io(ref e) => write_err!(f, "IO error"; e),
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use self::Error::*;
match self {
UtxoMissing(_) => None,
Io(e) => Some(e),
}
}
}
impl From<io::Error> for Error {
fn from(io: io::Error) -> Self {
Error::Io(io)
}
}
/// a computed or read block filter
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct BlockFilter {
/// Golomb encoded filter
pub content: Vec<u8>
}
impl FilterHash {
/// compute the filter header from a filter hash and previous filter header
pub fn filter_header(&self, previous_filter_header: &FilterHeader) -> FilterHeader {
let mut header_data = [0u8; 64];
header_data[0..32].copy_from_slice(&self[..]);
header_data[32..64].copy_from_slice(&previous_filter_header[..]);
FilterHeader::hash(&header_data)
}
}
impl BlockFilter {
/// compute this filter's id in a chain of filters
pub fn filter_header(&self, previous_filter_header: &FilterHeader) -> FilterHeader {
let filter_hash = FilterHash::hash(self.content.as_slice());
filter_hash.filter_header(previous_filter_header)
}
/// create a new filter from pre-computed data
pub fn new (content: &[u8]) -> BlockFilter {
BlockFilter { content: content.to_vec() }
}
/// Compute a SCRIPT_FILTER that contains spent and output scripts
pub fn new_script_filter<M>(block: &Block, script_for_coin: M) -> Result<BlockFilter, Error>
where M: Fn(&OutPoint) -> Result<Script, Error> {
let mut out = Vec::new();
{
let mut writer = BlockFilterWriter::new(&mut out, block);
writer.add_output_scripts();
writer.add_input_scripts(script_for_coin)?;
writer.finish()?;
}
Ok(BlockFilter { content: out })
}
/// match any query pattern
pub fn match_any(&self, block_hash: &BlockHash, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
let filter_reader = BlockFilterReader::new(block_hash);
filter_reader.match_any(&mut Cursor::new(self.content.as_slice()), query)
}
/// match all query pattern
pub fn match_all(&self, block_hash: &BlockHash, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
let filter_reader = BlockFilterReader::new(block_hash);
filter_reader.match_all(&mut Cursor::new(self.content.as_slice()), query)
}
}
/// Compiles and writes a block filter
pub struct BlockFilterWriter<'a> {
block: &'a Block,
writer: GCSFilterWriter<'a>,
}
impl<'a> BlockFilterWriter<'a> {
/// Create a block filter writer
pub fn new(writer: &'a mut dyn io::Write, block: &'a Block) -> BlockFilterWriter<'a> {
let block_hash_as_int = block.block_hash().into_inner();
let k0 = endian::slice_to_u64_le(&block_hash_as_int[0..8]);
let k1 = endian::slice_to_u64_le(&block_hash_as_int[8..16]);
let writer = GCSFilterWriter::new(writer, k0, k1, M, P);
BlockFilterWriter { block, writer }
}
/// Add output scripts of the block - excluding OP_RETURN scripts
pub fn add_output_scripts(&mut self) {
for transaction in &self.block.txdata {
for output in &transaction.output {
if !output.script_pubkey.is_op_return() {
self.add_element(output.script_pubkey.as_bytes());
}
}
}
}
/// Add consumed output scripts of a block to filter
pub fn add_input_scripts<M>(&mut self, script_for_coin: M) -> Result<(), Error>
where M: Fn(&OutPoint) -> Result<Script, Error> {
for script in self.block.txdata.iter()
.skip(1) // skip coinbase
.flat_map(|t| t.input.iter().map(|i| &i.previous_output))
.map(script_for_coin) {
match script {
Ok(script) => self.add_element(script.as_bytes()),
Err(e) => return Err(e)
}
}
Ok(())
}
/// Add arbitrary element to a filter
pub fn add_element(&mut self, data: &[u8]) {
self.writer.add_element(data);
}
/// Write block filter
pub fn finish(&mut self) -> Result<usize, io::Error> {
self.writer.finish()
}
}
/// Reads and interpret a block filter
pub struct BlockFilterReader {
reader: GCSFilterReader
}
impl BlockFilterReader {
/// Create a block filter reader
pub fn new(block_hash: &BlockHash) -> BlockFilterReader {
let block_hash_as_int = block_hash.into_inner();
let k0 = endian::slice_to_u64_le(&block_hash_as_int[0..8]);
let k1 = endian::slice_to_u64_le(&block_hash_as_int[8..16]);
BlockFilterReader { reader: GCSFilterReader::new(k0, k1, M, P) }
}
/// match any query pattern
pub fn match_any(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
self.reader.match_any(reader, query)
}
/// match all query pattern
pub fn match_all(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
self.reader.match_all(reader, query)
}
}
/// Golomb-Rice encoded filter reader
pub struct GCSFilterReader {
filter: GCSFilter,
m: u64
}
impl GCSFilterReader {
/// Create a new filter reader with specific seed to siphash
pub fn new(k0: u64, k1: u64, m: u64, p: u8) -> GCSFilterReader {
GCSFilterReader { filter: GCSFilter::new(k0, k1, p), m }
}
/// match any query pattern
pub fn match_any(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
let mut decoder = reader;
let n_elements: VarInt = Decodable::consensus_decode(&mut decoder).unwrap_or(VarInt(0));
let reader = &mut decoder;
// map hashes to [0, n_elements << grp]
let nm = n_elements.0 * self.m;
let mut mapped = query.map(|e| map_to_range(self.filter.hash(e), nm)).collect::<Vec<_>>();
// sort
mapped.sort_unstable();
if mapped.is_empty() {
return Ok(true);
}
if n_elements.0 == 0 {
return Ok(false);
}
// find first match in two sorted arrays in one read pass
let mut reader = BitStreamReader::new(reader);
let mut data = self.filter.golomb_rice_decode(&mut reader)?;
let mut remaining = n_elements.0 - 1;
for p in mapped {
loop {
match data.cmp(&p) {
Ordering::Equal => return Ok(true),
Ordering::Less => {
if remaining > 0 {
data += self.filter.golomb_rice_decode(&mut reader)?;
remaining -= 1;
} else {
return Ok(false);
}
}
Ordering::Greater => break,
}
}
}
Ok(false)
}
/// match all query pattern
pub fn match_all(&self, reader: &mut dyn io::Read, query: &mut dyn Iterator<Item=&[u8]>) -> Result<bool, Error> {
let mut decoder = reader;
let n_elements: VarInt = Decodable::consensus_decode(&mut decoder).unwrap_or(VarInt(0));
let reader = &mut decoder;
// map hashes to [0, n_elements << grp]
let nm = n_elements.0 * self.m;
let mut mapped = query.map(|e| map_to_range(self.filter.hash(e), nm)).collect::<Vec<_>>();
// sort
mapped.sort_unstable();
mapped.dedup();
if mapped.is_empty() {
return Ok(true);
}
if n_elements.0 == 0 {
return Ok(false);
}
// figure if all mapped are there in one read pass
let mut reader = BitStreamReader::new(reader);
let mut data = self.filter.golomb_rice_decode(&mut reader)?;
let mut remaining = n_elements.0 - 1;
for p in mapped {
loop {
match data.cmp(&p) {
Ordering::Equal => break,
Ordering::Less => {
if remaining > 0 {
data += self.filter.golomb_rice_decode(&mut reader)?;
remaining -= 1;
} else {
return Ok(false);
}
},
Ordering::Greater => return Ok(false),
}
}
}
Ok(true)
}
}
// fast reduction of hash to [0, nm) range
fn map_to_range(hash: u64, nm: u64) -> u64 {
((hash as u128 * nm as u128) >> 64) as u64
}
/// Colomb-Rice encoded filter writer
pub struct GCSFilterWriter<'a> {
filter: GCSFilter,
writer: &'a mut dyn io::Write,
elements: HashSet<Vec<u8>>,
m: u64
}
impl<'a> GCSFilterWriter<'a> {
/// Create a new GCS writer wrapping a generic writer, with specific seed to siphash
pub fn new(writer: &'a mut dyn io::Write, k0: u64, k1: u64, m: u64, p: u8) -> GCSFilterWriter<'a> {
GCSFilterWriter {
filter: GCSFilter::new(k0, k1, p),
writer,
elements: HashSet::new(),
m
}
}
/// Add some data to the filter
pub fn add_element(&mut self, element: &[u8]) {
if !element.is_empty() {
self.elements.insert(element.to_vec());
}
}
/// write the filter to the wrapped writer
pub fn finish(&mut self) -> Result<usize, io::Error> {
let nm = self.elements.len() as u64 * self.m;
// map hashes to [0, n_elements * M)
let mut mapped: Vec<_> = self.elements.iter()
.map(|e| map_to_range(self.filter.hash(e.as_slice()), nm)).collect();
mapped.sort_unstable();
// write number of elements as varint
let mut encoder = Vec::new();
VarInt(mapped.len() as u64).consensus_encode(&mut encoder).expect("in-memory writers don't error");
let mut wrote = self.writer.write(encoder.as_slice())?;
// write out deltas of sorted values into a Golonb-Rice coded bit stream
let mut writer = BitStreamWriter::new(self.writer);
let mut last = 0;
for data in mapped {
wrote += self.filter.golomb_rice_encode(&mut writer, data - last)?;
last = data;
}
wrote += writer.flush()?;
Ok(wrote)
}
}
/// Golomb Coded Set Filter
struct GCSFilter {
k0: u64, // sip hash key
k1: u64, // sip hash key
p: u8
}
impl GCSFilter {
/// Create a new filter
fn new(k0: u64, k1: u64, p: u8) -> GCSFilter {
GCSFilter { k0, k1, p }
}
/// Golomb-Rice encode a number n to a bit stream (Parameter 2^k)
fn golomb_rice_encode(&self, writer: &mut BitStreamWriter, n: u64) -> Result<usize, io::Error> {
let mut wrote = 0;
let mut q = n >> self.p;
while q > 0 {
let nbits = cmp::min(q, 64);
wrote += writer.write(!0u64, nbits as u8)?;
q -= nbits;
}
wrote += writer.write(0, 1)?;
wrote += writer.write(n, self.p)?;
Ok(wrote)
}
/// Golomb-Rice decode a number from a bit stream (Parameter 2^k)
fn golomb_rice_decode(&self, reader: &mut BitStreamReader) -> Result<u64, io::Error> {
let mut q = 0u64;
while reader.read(1)? == 1 {
q += 1;
}
let r = reader.read(self.p)?;
Ok((q << self.p) + r)
}
/// Hash an arbitrary slice with siphash using parameters of this filter
fn hash(&self, element: &[u8]) -> u64 {
siphash24::Hash::hash_to_u64_with_keys(self.k0, self.k1, element)
}
}
/// Bitwise stream reader
pub struct BitStreamReader<'a> {
buffer: [u8; 1],
offset: u8,
reader: &'a mut dyn io::Read,
}
impl<'a> BitStreamReader<'a> {
/// Create a new BitStreamReader that reads bitwise from a given reader
pub fn new(reader: &'a mut dyn io::Read) -> BitStreamReader {
BitStreamReader {
buffer: [0u8],
reader,
offset: 8,
}
}
/// Read nbit bits
pub fn read(&mut self, mut nbits: u8) -> Result<u64, io::Error> {
if nbits > 64 {
return Err(io::Error::new(io::ErrorKind::Other, "can not read more than 64 bits at once"));
}
let mut data = 0u64;
while nbits > 0 {
if self.offset == 8 {
self.reader.read_exact(&mut self.buffer)?;
self.offset = 0;
}
let bits = cmp::min(8 - self.offset, nbits);
data <<= bits;
data |= ((self.buffer[0] << self.offset) >> (8 - bits)) as u64;
self.offset += bits;
nbits -= bits;
}
Ok(data)
}
}
/// Bitwise stream writer
pub struct BitStreamWriter<'a> {
buffer: [u8; 1],
offset: u8,
writer: &'a mut dyn io::Write,
}
impl<'a> BitStreamWriter<'a> {
/// Create a new BitStreamWriter that writes bitwise to a given writer
pub fn new(writer: &'a mut dyn io::Write) -> BitStreamWriter {
BitStreamWriter {
buffer: [0u8],
writer,
offset: 0,
}
}
/// Write nbits bits from data
pub fn write(&mut self, data: u64, mut nbits: u8) -> Result<usize, io::Error> {
if nbits > 64 {
return Err(io::Error::new(io::ErrorKind::Other, "can not write more than 64 bits at once"));
}
let mut wrote = 0;
while nbits > 0 {
let bits = cmp::min(8 - self.offset, nbits);
self.buffer[0] |= ((data << (64 - nbits)) >> (64 - 8 + self.offset)) as u8;
self.offset += bits;
nbits -= bits;
if self.offset == 8 {
wrote += self.flush()?;
}
}
Ok(wrote)
}
/// flush bits not yet written
pub fn flush(&mut self) -> Result<usize, io::Error> {
if self.offset > 0 {
self.writer.write_all(&self.buffer)?;
self.buffer[0] = 0u8;
self.offset = 0;
Ok(1)
} else {
Ok(0)
}
}
}
#[cfg(test)]
mod test {
use crate::io::Cursor;
use crate::hash_types::BlockHash;
use crate::hashes::hex::FromHex;
use super::*;
extern crate serde_json;
use self::serde_json::Value;
use crate::consensus::encode::deserialize;
use std::collections::HashMap;
#[test]
fn test_blockfilters() {
// test vectors from: https://github.com/jimpo/bitcoin/blob/c7efb652f3543b001b4dd22186a354605b14f47e/src/test/data/blockfilters.json
let data = include_str!("../../test_data/blockfilters.json");
let testdata = serde_json::from_str::<Value>(data).unwrap().as_array().unwrap().clone();
for t in testdata.iter().skip(1) {
let block_hash = BlockHash::from_hex(&t.get(1).unwrap().as_str().unwrap()).unwrap();
let block: Block = deserialize(&Vec::from_hex(&t.get(2).unwrap().as_str().unwrap()).unwrap()).unwrap();
assert_eq!(block.block_hash(), block_hash);
let scripts = t.get(3).unwrap().as_array().unwrap();
let previous_filter_header = FilterHeader::from_hex(&t.get(4).unwrap().as_str().unwrap()).unwrap();
let filter_content = Vec::from_hex(&t.get(5).unwrap().as_str().unwrap()).unwrap();
let filter_header = FilterHeader::from_hex(&t.get(6).unwrap().as_str().unwrap()).unwrap();
let mut txmap = HashMap::new();
let mut si = scripts.iter();
for tx in block.txdata.iter().skip(1) {
for input in tx.input.iter() {
txmap.insert(input.previous_output.clone(), Script::from(Vec::from_hex(si.next().unwrap().as_str().unwrap()).unwrap()));
}
}
let filter = BlockFilter::new_script_filter(&block,
|o| if let Some(s) = txmap.get(o) {
Ok(s.clone())
} else {
Err(Error::UtxoMissing(o.clone()))
}).unwrap();
let test_filter = BlockFilter::new(filter_content.as_slice());
assert_eq!(test_filter.content, filter.content);
let block_hash = &block.block_hash();
assert!(filter.match_all(block_hash, &mut txmap.iter()
.filter_map(|(_, s)| if !s.is_empty() { Some(s.as_bytes()) } else { None })).unwrap());
for (_, script) in &txmap {
let query = vec![script];
if !script.is_empty () {
assert!(filter.match_any(&block_hash, &mut query.iter()
.map(|s| s.as_bytes())).unwrap());
}
}
assert_eq!(filter_header, filter.filter_header(&previous_filter_header));
}
}
#[test]
fn test_filter() {
let mut patterns = HashSet::new();
patterns.insert(Vec::from_hex("000000").unwrap());
patterns.insert(Vec::from_hex("111111").unwrap());
patterns.insert(Vec::from_hex("222222").unwrap());
patterns.insert(Vec::from_hex("333333").unwrap());
patterns.insert(Vec::from_hex("444444").unwrap());
patterns.insert(Vec::from_hex("555555").unwrap());
patterns.insert(Vec::from_hex("666666").unwrap());
patterns.insert(Vec::from_hex("777777").unwrap());
patterns.insert(Vec::from_hex("888888").unwrap());
patterns.insert(Vec::from_hex("999999").unwrap());
patterns.insert(Vec::from_hex("aaaaaa").unwrap());
patterns.insert(Vec::from_hex("bbbbbb").unwrap());
patterns.insert(Vec::from_hex("cccccc").unwrap());
patterns.insert(Vec::from_hex("dddddd").unwrap());
patterns.insert(Vec::from_hex("eeeeee").unwrap());
patterns.insert(Vec::from_hex("ffffff").unwrap());
let mut out = Vec::new();
{
let mut writer = GCSFilterWriter::new(&mut out, 0, 0, M, P);
for p in &patterns {
writer.add_element(p.as_slice());
}
writer.finish().unwrap();
}
let bytes = out;
{
let mut query = Vec::new();
query.push(Vec::from_hex("abcdef").unwrap());
query.push(Vec::from_hex("eeeeee").unwrap());
let reader = GCSFilterReader::new(0, 0, M, P);
let mut input = Cursor::new(bytes.clone());
assert!(reader.match_any(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
}
{
let mut query = Vec::new();
query.push(Vec::from_hex("abcdef").unwrap());
query.push(Vec::from_hex("123456").unwrap());
let reader = GCSFilterReader::new(0, 0, M, P);
let mut input = Cursor::new(bytes.clone());
assert!(!reader.match_any(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
}
{
let reader = GCSFilterReader::new(0, 0, M, P);
let mut query = Vec::new();
for p in &patterns {
query.push(p.clone());
}
let mut input = Cursor::new(bytes.clone());
assert!(reader.match_all(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
}
{
let reader = GCSFilterReader::new(0, 0, M, P);
let mut query = Vec::new();
for p in &patterns {
query.push(p.clone());
}
query.push(Vec::from_hex("abcdef").unwrap());
let mut input = Cursor::new(bytes.clone());
assert!(!reader.match_all(&mut input, &mut query.iter().map(|v| v.as_slice())).unwrap());
}
}
#[test]
fn test_bit_stream() {
let mut out = Vec::new();
{
let mut writer = BitStreamWriter::new(&mut out);
writer.write(0, 1).unwrap(); // 0
writer.write(2, 2).unwrap(); // 10
writer.write(6, 3).unwrap(); // 110
writer.write(11, 4).unwrap(); // 1011
writer.write(1, 5).unwrap(); // 00001
writer.write(32, 6).unwrap(); // 100000
writer.write(7, 7).unwrap(); // 0000111
writer.flush().unwrap();
}
let bytes = out;
assert_eq!("01011010110000110000000001110000", format!("{:08b}{:08b}{:08b}{:08b}", bytes[0], bytes[1], bytes[2], bytes[3]));
{
let mut input = Cursor::new(bytes);
let mut reader = BitStreamReader::new(&mut input);
assert_eq!(reader.read(1).unwrap(), 0);
assert_eq!(reader.read(2).unwrap(), 2);
assert_eq!(reader.read(3).unwrap(), 6);
assert_eq!(reader.read(4).unwrap(), 11);
assert_eq!(reader.read(5).unwrap(), 1);
assert_eq!(reader.read(6).unwrap(), 32);
assert_eq!(reader.read(7).unwrap(), 7);
// 4 bits remained
assert!(reader.read(5).is_err());
}
}
}