rust-bitcoin-unsafe-fast/src/util/key.rs

641 lines
22 KiB
Rust

// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Bitcoin keys.
//!
//! This module provides keys used in Bitcoin that can be roundtrip
//! (de)serialized.
use crate::prelude::*;
use core::{ops, str::FromStr};
use core::fmt::{self, Write};
pub use secp256k1::{self, Secp256k1, XOnlyPublicKey, KeyPair};
use crate::io;
use crate::network::constants::Network;
use crate::hashes::{Hash, hash160, hex, hex::FromHex};
use crate::hash_types::{PubkeyHash, WPubkeyHash};
use crate::util::base58;
/// A key-related error.
#[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
pub enum Error {
/// Base58 encoding error
Base58(base58::Error),
/// secp256k1-related error
Secp256k1(secp256k1::Error),
/// Invalid key prefix error
InvalidKeyPrefix(u8),
/// Hex decoding error
Hex(hex::Error)
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::Base58(ref e) => write_err!(f, "key base58 error"; e),
Error::Secp256k1(ref e) => write_err!(f, "key secp256k1 error"; e),
Error::InvalidKeyPrefix(ref b) => write!(f, "key prefix invalid: {}", b),
Error::Hex(ref e) => write_err!(f, "key hex decoding error"; e)
}
}
}
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
impl std::error::Error for Error {
fn source(&self) -> Option<&(dyn std::error::Error + 'static)> {
use self::Error::*;
match self {
Base58(e) => Some(e),
Secp256k1(e) => Some(e),
InvalidKeyPrefix(_) => None,
Hex(e) => Some(e),
}
}
}
#[doc(hidden)]
impl From<base58::Error> for Error {
fn from(e: base58::Error) -> Error {
Error::Base58(e)
}
}
#[doc(hidden)]
impl From<secp256k1::Error> for Error {
fn from(e: secp256k1::Error) -> Error {
Error::Secp256k1(e)
}
}
#[doc(hidden)]
impl From<hex::Error> for Error {
fn from(e: hex::Error) -> Self {
Error::Hex(e)
}
}
/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
/// Whether this public key should be serialized as compressed
pub compressed: bool,
/// The actual ECDSA key
pub inner: secp256k1::PublicKey,
}
impl PublicKey {
/// Constructs compressed ECDSA public key from the provided generic Secp256k1 public key
pub fn new(key: secp256k1::PublicKey) -> PublicKey {
PublicKey {
compressed: true,
inner: key,
}
}
/// Constructs uncompressed (legacy) ECDSA public key from the provided generic Secp256k1
/// public key
pub fn new_uncompressed(key: secp256k1::PublicKey) -> PublicKey {
PublicKey {
compressed: false,
inner: key,
}
}
/// Returns bitcoin 160-bit hash of the public key
pub fn pubkey_hash(&self) -> PubkeyHash {
if self.compressed {
PubkeyHash::hash(&self.inner.serialize())
} else {
PubkeyHash::hash(&self.inner.serialize_uncompressed())
}
}
/// Returns bitcoin 160-bit hash of the public key for witness program
pub fn wpubkey_hash(&self) -> Option<WPubkeyHash> {
if self.compressed {
Some(WPubkeyHash::from_inner(
hash160::Hash::hash(&self.inner.serialize()).into_inner()
))
} else {
// We can't create witness pubkey hashes for an uncompressed
// public keys
None
}
}
/// Write the public key into a writer
pub fn write_into<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
if self.compressed {
writer.write_all(&self.inner.serialize())
} else {
writer.write_all(&self.inner.serialize_uncompressed())
}
}
/// Read the public key from a reader
///
/// This internally reads the first byte before reading the rest, so
/// use of a `BufReader` is recommended.
pub fn read_from<R: io::Read>(mut reader: R) -> Result<Self, io::Error> {
let mut bytes = [0; 65];
reader.read_exact(&mut bytes[0..1])?;
let bytes = if bytes[0] < 4 { &mut bytes[..33] } else { &mut bytes[..65] };
reader.read_exact(&mut bytes[1..])?;
Self::from_slice(bytes).map_err(|e| {
// Need a static string for core2
#[cfg(feature = "std")]
let reason = e;
#[cfg(not(feature = "std"))]
let reason = match e {
Error::Base58(_) => "base58 error",
Error::Secp256k1(_) => "secp256k1 error",
Error::InvalidKeyPrefix(_) => "invalid key prefix",
Error::Hex(_) => "hex decoding error"
};
io::Error::new(io::ErrorKind::InvalidData, reason)
})
}
/// Serialize the public key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
let mut buf = Vec::new();
self.write_into(&mut buf).expect("vecs don't error");
buf
}
/// Deserialize a public key from a slice
pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
let compressed = match data.len() {
33 => true,
65 => false,
len => {
return Err(base58::Error::InvalidLength(len).into());
},
};
if !compressed && data[0] != 0x04 {
return Err(Error::InvalidKeyPrefix(data[0]))
}
Ok(PublicKey {
compressed,
inner: secp256k1::PublicKey::from_slice(data)?,
})
}
/// Computes the public key as supposed to be used with this secret
pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
sk.public_key(secp)
}
}
impl fmt::Display for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.compressed {
for ch in &self.inner.serialize()[..] {
write!(f, "{:02x}", ch)?;
}
} else {
for ch in &self.inner.serialize_uncompressed()[..] {
write!(f, "{:02x}", ch)?;
}
}
Ok(())
}
}
impl FromStr for PublicKey {
type Err = Error;
fn from_str(s: &str) -> Result<PublicKey, Error> {
match s.len() {
66 => PublicKey::from_slice(&<[u8; 33]>::from_hex(s)?),
130 => PublicKey::from_slice(&<[u8; 65]>::from_hex(s)?),
len => return Err(Error::Hex(hex::Error::InvalidLength(66, len)))
}
}
}
/// A Bitcoin ECDSA private key
#[derive(Copy, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "std", derive(Debug))]
pub struct PrivateKey {
/// Whether this private key should be serialized as compressed
pub compressed: bool,
/// The network on which this key should be used
pub network: Network,
/// The actual ECDSA key
pub inner: secp256k1::SecretKey,
}
impl PrivateKey {
/// Constructs compressed ECDSA private key from the provided generic Secp256k1 private key
/// and the specified network
pub fn new(key: secp256k1::SecretKey, network: Network) -> PrivateKey {
PrivateKey {
compressed: true,
network,
inner: key,
}
}
/// Constructs uncompressed (legacy) ECDSA private key from the provided generic Secp256k1
/// private key and the specified network
pub fn new_uncompressed(key: secp256k1::SecretKey, network: Network) -> PrivateKey {
PrivateKey {
compressed: false,
network,
inner: key,
}
}
/// Creates a public key from this private key
pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
PublicKey {
compressed: self.compressed,
inner: secp256k1::PublicKey::from_secret_key(secp, &self.inner)
}
}
/// Serialize the private key to bytes
pub fn to_bytes(&self) -> Vec<u8> {
self.inner[..].to_vec()
}
/// Deserialize a private key from a slice
pub fn from_slice(data: &[u8], network: Network) -> Result<PrivateKey, Error> {
Ok(PrivateKey::new(secp256k1::SecretKey::from_slice(data)?, network))
}
/// Format the private key to WIF format.
pub fn fmt_wif(&self, fmt: &mut dyn fmt::Write) -> fmt::Result {
let mut ret = [0; 34];
ret[0] = match self.network {
Network::Bitcoin => 128,
Network::Testnet | Network::Signet | Network::Regtest => 239,
};
ret[1..33].copy_from_slice(&self.inner[..]);
let privkey = if self.compressed {
ret[33] = 1;
base58::check_encode_slice(&ret[..])
} else {
base58::check_encode_slice(&ret[..33])
};
fmt.write_str(&privkey)
}
/// Get WIF encoding of this private key.
pub fn to_wif(&self) -> String {
let mut buf = String::new();
buf.write_fmt(format_args!("{}", self)).unwrap();
buf.shrink_to_fit();
buf
}
/// Parse WIF encoded private key.
pub fn from_wif(wif: &str) -> Result<PrivateKey, Error> {
let data = base58::from_check(wif)?;
let compressed = match data.len() {
33 => false,
34 => true,
_ => {
return Err(Error::Base58(base58::Error::InvalidLength(data.len())));
}
};
let network = match data[0] {
128 => Network::Bitcoin,
239 => Network::Testnet,
x => {
return Err(Error::Base58(base58::Error::InvalidAddressVersion(x)));
}
};
Ok(PrivateKey {
compressed,
network,
inner: secp256k1::SecretKey::from_slice(&data[1..33])?,
})
}
}
impl fmt::Display for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.fmt_wif(f)
}
}
#[cfg(not(feature = "std"))]
impl fmt::Debug for PrivateKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "[private key data]")
}
}
impl FromStr for PrivateKey {
type Err = Error;
fn from_str(s: &str) -> Result<PrivateKey, Error> {
PrivateKey::from_wif(s)
}
}
impl ops::Index<ops::RangeFull> for PrivateKey {
type Output = [u8];
fn index(&self, _: ops::RangeFull) -> &[u8] {
&self.inner[..]
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl ::serde::Serialize for PrivateKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
s.collect_str(self)
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de> ::serde::Deserialize<'de> for PrivateKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PrivateKey, D::Error> {
struct WifVisitor;
impl<'de> ::serde::de::Visitor<'de> for WifVisitor {
type Value = PrivateKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("an ASCII WIF string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(s) = ::core::str::from_utf8(v) {
PrivateKey::from_str(s).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PrivateKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(WifVisitor)
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl ::serde::Serialize for PublicKey {
fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
if s.is_human_readable() {
s.collect_str(self)
} else {
if self.compressed {
s.serialize_bytes(&self.inner.serialize()[..])
} else {
s.serialize_bytes(&self.inner.serialize_uncompressed()[..])
}
}
}
}
#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de> ::serde::Deserialize<'de> for PublicKey {
fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
if d.is_human_readable() {
struct HexVisitor;
impl<'de> ::serde::de::Visitor<'de> for HexVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("an ASCII hex string")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
if let Ok(hex) = ::core::str::from_utf8(v) {
PublicKey::from_str(hex).map_err(E::custom)
} else {
Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
}
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_str(v).map_err(E::custom)
}
}
d.deserialize_str(HexVisitor)
} else {
struct BytesVisitor;
impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
type Value = PublicKey;
fn expecting(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
formatter.write_str("a bytestring")
}
fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
where
E: ::serde::de::Error,
{
PublicKey::from_slice(v).map_err(E::custom)
}
}
d.deserialize_bytes(BytesVisitor)
}
}
}
#[cfg(test)]
mod tests {
use crate::io;
use super::{PrivateKey, PublicKey};
use secp256k1::Secp256k1;
use std::str::FromStr;
use crate::hashes::hex::ToHex;
use crate::network::constants::Network::Testnet;
use crate::network::constants::Network::Bitcoin;
use crate::util::address::Address;
#[test]
fn test_key_derivation() {
// testnet compressed
let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(sk.network, Testnet);
assert_eq!(sk.compressed, true);
assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let secp = Secp256k1::new();
let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");
// test string conversion
assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
let sk_str =
PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
assert_eq!(&sk.to_wif(), &sk_str.to_wif());
// mainnet uncompressed
let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
assert_eq!(sk.network, Bitcoin);
assert_eq!(sk.compressed, false);
assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");
let secp = Secp256k1::new();
let mut pk = sk.public_key(&secp);
assert_eq!(pk.compressed, false);
assert_eq!(&pk.to_string(), "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133");
assert_eq!(pk, PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap());
let addr = Address::p2pkh(&pk, sk.network);
assert_eq!(&addr.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
pk.compressed = true;
assert_eq!(&pk.to_string(), "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af");
assert_eq!(pk, PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap());
}
#[test]
fn test_pubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.pubkey_hash().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.pubkey_hash().to_hex(), "ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a");
}
#[test]
fn test_wpubkey_hash() {
let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
assert_eq!(pk.wpubkey_hash().unwrap().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
assert_eq!(upk.wpubkey_hash(), None);
}
#[cfg(feature = "serde")]
#[test]
fn test_key_serde() {
use serde_test::{Configure, Token, assert_tokens};
static KEY_WIF: &'static str = "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy";
static PK_STR: &'static str = "039b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef";
static PK_STR_U: &'static str = "\
04\
9b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef\
87288ed73ce47fc4f5c79d19ebfa57da7cff3aff6e819e4ee971d86b5e61875d\
";
static PK_BYTES: [u8; 33] = [
0x03,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
];
static PK_BYTES_U: [u8; 65] = [
0x04,
0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4,
0xf5, 0xc7, 0x9d, 0x19, 0xeb, 0xfa, 0x57, 0xda,
0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81, 0x9e, 0x4e,
0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
];
let s = Secp256k1::new();
let sk = PrivateKey::from_str(&KEY_WIF).unwrap();
let pk = PublicKey::from_private_key(&s, &sk);
let pk_u = PublicKey {
inner: pk.inner,
compressed: false,
};
assert_tokens(&sk, &[Token::BorrowedStr(KEY_WIF)]);
assert_tokens(&pk.compact(), &[Token::BorrowedBytes(&PK_BYTES[..])]);
assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
assert_tokens(&pk_u.compact(), &[Token::BorrowedBytes(&PK_BYTES_U[..])]);
assert_tokens(&pk_u.readable(), &[Token::BorrowedStr(PK_STR_U)]);
}
fn random_key(mut seed: u8) -> PublicKey {
loop {
let mut data = [0; 65];
for byte in &mut data[..] {
*byte = seed;
// totally a rng
seed = seed.wrapping_mul(41).wrapping_add(43);
}
if data[0] % 2 == 0 {
data[0] = 4;
if let Ok(key) = PublicKey::from_slice(&data[..]) {
return key;
}
} else {
data[0] = 2 + (data[0] >> 7);
if let Ok(key) = PublicKey::from_slice(&data[..33]) {
return key;
}
}
}
}
#[test]
fn pubkey_read_write() {
const N_KEYS: usize = 20;
let keys: Vec<_> = (0..N_KEYS).map(|i| random_key(i as u8)).collect();
let mut v = vec![];
for k in &keys {
k.write_into(&mut v).expect("writing into vec");
}
let mut dec_keys = vec![];
let mut cursor = io::Cursor::new(&v);
for _ in 0..N_KEYS {
dec_keys.push(PublicKey::read_from(&mut cursor).expect("reading from vec"));
}
assert_eq!(keys, dec_keys);
// sanity checks
assert!(PublicKey::read_from(&mut cursor).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 33][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[2; 32][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[0; 65][..])).is_err());
assert!(PublicKey::read_from(io::Cursor::new(&[4; 64][..])).is_err());
}
}