rust-bitcoin-unsafe-fast/internals/src/hex/display.rs

307 lines
10 KiB
Rust

//! Helpers for displaying bytes as hex strings.
//!
//! This module provides a trait for displaying things as hex as well as an implementation for
//! `&[u8]`.
use core::borrow::Borrow;
use core::fmt;
use super::buf_encoder::{BufEncoder, OutBytes};
use super::Case;
#[cfg(feature = "alloc")]
use crate::prelude::*;
use crate::hex::buf_encoder::FixedLenBuf;
/// Extension trait for types that can be displayed as hex.
///
/// Types that have a single, obvious text representation being hex should **not** implement this
/// trait and simply implement `Display` instead.
///
/// This trait should be generally implemented for references only. We would prefer to use GAT but
/// that is beyond our MSRV. As a lint we require the `IsRef` trait which is implemented for all
/// references.
pub trait DisplayHex: Copy + sealed::IsRef {
/// The type providing [`fmt::Display`] implementation.
///
/// This is usually a wrapper type holding a reference to `Self`.
type Display: fmt::LowerHex + fmt::UpperHex;
/// Display `Self` as a continuous sequence of ASCII hex chars.
fn as_hex(self) -> Self::Display;
/// Create a lower-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Lower)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
fn to_lower_hex_string(self) -> String { self.to_hex_string(Case::Lower) }
/// Create an upper-hex-encoded string.
///
/// A shorthand for `to_hex_string(Case::Upper)`, so that `Case` doesn't need to be imported.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
fn to_upper_hex_string(self) -> String { self.to_hex_string(Case::Upper) }
/// Create a hex-encoded string.
///
/// This may be faster than `.display_hex().to_string()` because it uses `reserve_suggestion`.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
fn to_hex_string(self, case: Case) -> String {
let mut string = String::new();
self.append_hex_to_string(case, &mut string);
string
}
/// Appends hex-encoded content to an existing `String`.
///
/// This may be faster than `write!(string, "{:x}", self.display_hex())` because it uses
/// `reserve_sugggestion`.
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(cfg(feature = "alloc")))]
fn append_hex_to_string(self, case: Case, string: &mut String) {
use fmt::Write;
string.reserve(self.hex_reserve_suggestion());
match case {
Case::Lower => write!(string, "{:x}", self.as_hex()),
Case::Upper => write!(string, "{:X}", self.as_hex()),
}
.unwrap_or_else(|_| {
let name = core::any::type_name::<Self::Display>();
// We don't expect `std` to ever be buggy, so the bug is most likely in the `Display`
// impl of `Self::Display`.
panic!("The implementation of Display for {} returned an error when it shouldn't", name)
})
}
/// Hints how much bytes to reserve when creating a `String`.
///
/// Implementors that know the number of produced bytes upfront should override this.
/// Defaults to 0.
///
// We prefix the name with `hex_` to avoid potential collision with other methods.
fn hex_reserve_suggestion(self) -> usize { 0 }
}
mod sealed {
/// Trait marking a shared reference.
pub trait IsRef: Copy {}
impl<T: ?Sized> IsRef for &'_ T {}
}
impl<'a> DisplayHex for &'a [u8] {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
#[cfg(feature = "alloc")]
#[cfg_attr(docsrs, doc(feature = "alloc"))]
impl<'a> DisplayHex for &'a alloc::vec::Vec<u8> {
type Display = DisplayByteSlice<'a>;
#[inline]
fn as_hex(self) -> Self::Display { DisplayByteSlice { bytes: self } }
#[inline]
fn hex_reserve_suggestion(self) -> usize {
// Since the string wouldn't fit into address space if this overflows (actually even for
// smaller amounts) it's better to panic right away. It should also give the optimizer
// better opportunities.
self.len().checked_mul(2).expect("the string wouldn't fit into address space")
}
}
/// Displays byte slice as hex.
///
/// Created by [`<&[u8] as DisplayHex>::display_hex`](DisplayHex::display_hex).
pub struct DisplayByteSlice<'a> {
// pub because we want to keep lengths in sync
pub(crate) bytes: &'a [u8],
}
impl<'a> DisplayByteSlice<'a> {
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
let mut buf = [0u8; 1024];
let mut encoder = super::BufEncoder::new(&mut buf);
let mut chunks = self.bytes.chunks_exact(512);
for chunk in &mut chunks {
encoder.put_bytes(chunk, case);
f.write_str(encoder.as_str())?;
encoder.clear();
}
encoder.put_bytes(chunks.remainder(), case);
f.write_str(encoder.as_str())
}
}
impl<'a> fmt::LowerHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(f, Case::Lower)
}
}
impl<'a> fmt::UpperHex for DisplayByteSlice<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(f, Case::Upper)
}
}
/// Displays byte array as hex.
///
/// Created by [`<&[u8; LEN] as DisplayHex>::display_hex`](DisplayHex::display_hex).
pub struct DisplayArray<A: Clone + IntoIterator, B: FixedLenBuf> where A::Item: Borrow<u8> {
array: A,
_buffer_marker: core::marker::PhantomData<B>,
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> DisplayArray<A, B> where A::Item: Borrow<u8> {
/// Creates the wrapper.
pub fn new(array: A) -> Self {
DisplayArray {
array,
_buffer_marker: Default::default(),
}
}
fn display(&self, f: &mut fmt::Formatter, case: Case) -> fmt::Result {
let mut buf = B::uninit();
let mut encoder = super::BufEncoder::new(&mut buf);
encoder.put_bytes(self.array.clone(), case);
f.pad_integral(true, "0x", encoder.as_str())
}
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> fmt::LowerHex for DisplayArray<A, B> where A::Item: Borrow<u8> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(f, Case::Lower)
}
}
impl<A: Clone + IntoIterator, B: FixedLenBuf> fmt::UpperHex for DisplayArray<A, B> where A::Item: Borrow<u8> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.display(f, Case::Upper)
}
}
/// Format known-length array as hex.
///
/// This supports all formatting options of formatter and may be faster than calling
/// `display_as_hex()` on an arbitrary `&[u8]`. Note that the implementation intentionally keeps
/// leading zeros even when not requested. This is designed to display values such as hashes and
/// keys and removing leading zeros would be confusing.
///
/// ## Parameters
///
/// * `$formatter` - a [`fmt::Formatter`].
/// * `$len` known length of `$bytes`, must be a const expression.
/// * `$bytes` - bytes to be encoded, most likely a reference to an array.
/// * `$case` - value of type [`Case`] determining whether to format as lower or upper case.
///
/// ## Panics
///
/// This macro panics if `$len` is not equal to `$bytes.len()`. It also fails to compile if `$len`
/// is more than half of `usize::MAX`.
#[macro_export]
macro_rules! fmt_hex_exact {
($formatter:expr, $len:expr, $bytes:expr, $case:expr) => {{
// statically check $len
#[allow(deprecated)]
const _: () = [()][($len > usize::max_value() / 2) as usize];
assert_eq!($bytes.len(), $len);
let mut buf = [0u8; $len * 2];
let buf = $crate::hex::buf_encoder::AsOutBytes::as_mut_out_bytes(&mut buf);
$crate::hex::display::fmt_hex_exact_fn($formatter, buf, $bytes, $case)
}};
}
pub use fmt_hex_exact;
// Implementation detail of `write_hex_exact` macro to de-duplicate the code
#[doc(hidden)]
#[inline]
pub fn fmt_hex_exact_fn<I>(
f: &mut fmt::Formatter,
buf: &mut OutBytes,
bytes: I,
case: Case,
) -> fmt::Result
where I: IntoIterator, I::Item: Borrow<u8>
{
let mut encoder = BufEncoder::new(buf);
encoder.put_bytes(bytes, case);
f.pad_integral(true, "0x", encoder.as_str())
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use super::*;
#[cfg(feature = "alloc")]
mod alloc {
use super::*;
fn check_encoding(bytes: &[u8]) {
use core::fmt::Write;
let s1 = bytes.to_lower_hex_string();
let mut s2 = String::with_capacity(bytes.len() * 2);
for b in bytes {
write!(s2, "{:02x}", b).unwrap();
}
assert_eq!(s1, s2);
}
#[test]
fn empty() { check_encoding(b""); }
#[test]
fn single() { check_encoding(b"*"); }
#[test]
fn two() { check_encoding(b"*x"); }
#[test]
fn just_below_boundary() { check_encoding(&[42; 512]); }
#[test]
fn just_above_boundary() { check_encoding(&[42; 513]); }
#[test]
fn just_above_double_boundary() { check_encoding(&[42; 1025]); }
#[test]
fn fmt_exact_macro() {
use crate::alloc::string::ToString;
struct Dummy([u8; 32]);
impl fmt::Display for Dummy {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt_hex_exact!(f, 32, &self.0, Case::Lower)
}
}
assert_eq!(Dummy([42; 32]).to_string(), "2a".repeat(32));
}
}
}