rust-bitcoin-unsafe-fast/src/util/uint.rs

768 lines
28 KiB
Rust

// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Big unsigned integer types
//!
//! Implementation of a various large-but-fixed sized unsigned integer types.
//! The functions here are designed to be fast.
//!
macro_rules! construct_uint {
($name:ident, $n_words:expr) => (
/// Little-endian large integer type
#[derive(Copy, Clone, PartialEq, Eq, Hash, Default)]
pub struct $name(pub [u64; $n_words]);
impl_array_newtype!($name, u64, $n_words);
impl $name {
/// Conversion to u32
#[inline]
pub fn low_u32(&self) -> u32 {
let &$name(ref arr) = self;
arr[0] as u32
}
/// Conversion to u64
#[inline]
pub fn low_u64(&self) -> u64 {
let &$name(ref arr) = self;
arr[0] as u64
}
/// Return the least number of bits needed to represent the number
#[inline]
pub fn bits(&self) -> usize {
let &$name(ref arr) = self;
for i in 1..$n_words {
if arr[$n_words - i] > 0 { return (0x40 * ($n_words - i + 1)) - arr[$n_words - i].leading_zeros() as usize; }
}
0x40 - arr[0].leading_zeros() as usize
}
/// Multiplication by u32
pub fn mul_u32(self, other: u32) -> $name {
let $name(ref arr) = self;
let mut carry = [0u64; $n_words];
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
let not_last_word = i < $n_words - 1;
let upper = other as u64 * (arr[i] >> 32);
let lower = other as u64 * (arr[i] & 0xFFFFFFFF);
if not_last_word {
carry[i + 1] += upper >> 32;
}
let (sum, overflow) = lower.overflowing_add(upper << 32);
ret[i] = sum;
if overflow && not_last_word {
carry[i + 1] += 1;
}
}
$name(ret) + $name(carry)
}
/// Create an object from a given unsigned 64-bit integer
#[inline]
pub fn from_u64(init: u64) -> Option<$name> {
let mut ret = [0; $n_words];
ret[0] = init;
Some($name(ret))
}
/// Create an object from a given signed 64-bit integer
#[inline]
pub fn from_i64(init: i64) -> Option<$name> {
if init >= 0 {
$name::from_u64(init as u64)
} else {
None
}
}
/// Creates big integer value from a byte array using
/// big-endian encoding
pub fn from_be_bytes(bytes: [u8; $n_words * 8]) -> $name {
Self::_from_be_slice(&bytes)
}
/// Creates big integer value from a byte slice using
/// big-endian encoding
pub fn from_be_slice(bytes: &[u8]) -> Result<$name, ParseLengthError> {
if bytes.len() != $n_words * 8 {
Err(ParseLengthError { actual: bytes.len(), expected: $n_words*8 })
} else {
Ok(Self::_from_be_slice(bytes))
}
}
fn _from_be_slice(bytes: &[u8]) -> $name {
use super::endian::slice_to_u64_be;
let mut slice = [0u64; $n_words];
slice.iter_mut()
.rev()
.zip(bytes.chunks(8))
.for_each(|(word, bytes)| *word = slice_to_u64_be(bytes));
$name(slice)
}
/// Convert a big integer into a byte array using big-endian encoding
pub fn to_be_bytes(&self) -> [u8; $n_words * 8] {
use super::endian::u64_to_array_be;
let mut res = [0; $n_words * 8];
for i in 0..$n_words {
let start = i * 8;
res[start..start+8].copy_from_slice(&u64_to_array_be(self.0[$n_words - (i+1)]));
}
res
}
// divmod like operation, returns (quotient, remainder)
#[inline]
fn div_rem(self, other: Self) -> (Self, Self) {
let mut sub_copy = self;
let mut shift_copy = other;
let mut ret = [0u64; $n_words];
let my_bits = self.bits();
let your_bits = other.bits();
// Check for division by 0
assert!(your_bits != 0);
// Early return in case we are dividing by a larger number than us
if my_bits < your_bits {
return ($name(ret), sub_copy);
}
// Bitwise long division
let mut shift = my_bits - your_bits;
shift_copy = shift_copy << shift;
loop {
if sub_copy >= shift_copy {
ret[shift / 64] |= 1 << (shift % 64);
sub_copy = sub_copy - shift_copy;
}
shift_copy = shift_copy >> 1;
if shift == 0 {
break;
}
shift -= 1;
}
($name(ret), sub_copy)
}
}
impl PartialOrd for $name {
#[inline]
fn partial_cmp(&self, other: &$name) -> Option<::core::cmp::Ordering> {
Some(self.cmp(&other))
}
}
impl Ord for $name {
#[inline]
fn cmp(&self, other: &$name) -> ::core::cmp::Ordering {
// We need to manually implement ordering because we use little-endian
// and the auto derive is a lexicographic ordering(i.e. memcmp)
// which with numbers is equivalent to big-endian
for i in 0..$n_words {
if self[$n_words - 1 - i] < other[$n_words - 1 - i] { return ::core::cmp::Ordering::Less; }
if self[$n_words - 1 - i] > other[$n_words - 1 - i] { return ::core::cmp::Ordering::Greater; }
}
::core::cmp::Ordering::Equal
}
}
impl ::core::ops::Add<$name> for $name {
type Output = $name;
fn add(self, other: $name) -> $name {
let $name(ref me) = self;
let $name(ref you) = other;
let mut ret = [0u64; $n_words];
let mut carry = [0u64; $n_words];
let mut b_carry = false;
for i in 0..$n_words {
ret[i] = me[i].wrapping_add(you[i]);
if i < $n_words - 1 && ret[i] < me[i] {
carry[i + 1] = 1;
b_carry = true;
}
}
if b_carry { $name(ret) + $name(carry) } else { $name(ret) }
}
}
impl ::core::ops::Sub<$name> for $name {
type Output = $name;
#[inline]
fn sub(self, other: $name) -> $name {
self + !other + $crate::util::BitArray::one()
}
}
impl ::core::ops::Mul<$name> for $name {
type Output = $name;
fn mul(self, other: $name) -> $name {
use $crate::util::BitArray;
let mut me = $name::zero();
// TODO: be more efficient about this
for i in 0..(2 * $n_words) {
let to_mul = (other >> (32 * i)).low_u32();
me = me + (self.mul_u32(to_mul) << (32 * i));
}
me
}
}
impl ::core::ops::Div<$name> for $name {
type Output = $name;
fn div(self, other: $name) -> $name {
self.div_rem(other).0
}
}
impl ::core::ops::Rem<$name> for $name {
type Output = $name;
fn rem(self, other: $name) -> $name {
self.div_rem(other).1
}
}
impl $crate::util::BitArray for $name {
#[inline]
fn bit(&self, index: usize) -> bool {
let &$name(ref arr) = self;
arr[index / 64] & (1 << (index % 64)) != 0
}
#[inline]
fn bit_slice(&self, start: usize, end: usize) -> $name {
(*self >> start).mask(end - start)
}
#[inline]
fn mask(&self, n: usize) -> $name {
let &$name(ref arr) = self;
let mut ret = [0; $n_words];
for i in 0..$n_words {
if n >= 0x40 * (i + 1) {
ret[i] = arr[i];
} else {
ret[i] = arr[i] & ((1 << (n - 0x40 * i)) - 1);
break;
}
}
$name(ret)
}
#[inline]
fn trailing_zeros(&self) -> usize {
let &$name(ref arr) = self;
for i in 0..($n_words - 1) {
if arr[i] > 0 { return (0x40 * i) + arr[i].trailing_zeros() as usize; }
}
(0x40 * ($n_words - 1)) + arr[$n_words - 1].trailing_zeros() as usize
}
fn zero() -> $name { Default::default() }
fn one() -> $name {
$name({ let mut ret = [0; $n_words]; ret[0] = 1; ret })
}
}
impl ::core::ops::BitAnd<$name> for $name {
type Output = $name;
#[inline]
fn bitand(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] & arr2[i];
}
$name(ret)
}
}
impl ::core::ops::BitXor<$name> for $name {
type Output = $name;
#[inline]
fn bitxor(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] ^ arr2[i];
}
$name(ret)
}
}
impl ::core::ops::BitOr<$name> for $name {
type Output = $name;
#[inline]
fn bitor(self, other: $name) -> $name {
let $name(ref arr1) = self;
let $name(ref arr2) = other;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = arr1[i] | arr2[i];
}
$name(ret)
}
}
impl ::core::ops::Not for $name {
type Output = $name;
#[inline]
fn not(self) -> $name {
let $name(ref arr) = self;
let mut ret = [0u64; $n_words];
for i in 0..$n_words {
ret[i] = !arr[i];
}
$name(ret)
}
}
impl ::core::ops::Shl<usize> for $name {
type Output = $name;
fn shl(self, shift: usize) -> $name {
let $name(ref original) = self;
let mut ret = [0u64; $n_words];
let word_shift = shift / 64;
let bit_shift = shift % 64;
for i in 0..$n_words {
// Shift
if bit_shift < 64 && i + word_shift < $n_words {
ret[i + word_shift] += original[i] << bit_shift;
}
// Carry
if bit_shift > 0 && i + word_shift + 1 < $n_words {
ret[i + word_shift + 1] += original[i] >> (64 - bit_shift);
}
}
$name(ret)
}
}
impl ::core::ops::Shr<usize> for $name {
type Output = $name;
fn shr(self, shift: usize) -> $name {
let $name(ref original) = self;
let mut ret = [0u64; $n_words];
let word_shift = shift / 64;
let bit_shift = shift % 64;
for i in word_shift..$n_words {
// Shift
ret[i - word_shift] += original[i] >> bit_shift;
// Carry
if bit_shift > 0 && i < $n_words - 1 {
ret[i - word_shift] += original[i + 1] << (64 - bit_shift);
}
}
$name(ret)
}
}
impl ::core::fmt::Debug for $name {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
let &$name(ref data) = self;
write!(f, "0x")?;
for ch in data.iter().rev() {
write!(f, "{:016x}", ch)?;
}
Ok(())
}
}
display_from_debug!($name);
impl $crate::consensus::Encodable for $name {
#[inline]
fn consensus_encode<S: $crate::io::Write>(
&self,
mut s: S,
) -> Result<usize, $crate::io::Error> {
let &$name(ref data) = self;
let mut len = 0;
for word in data.iter() {
len += word.consensus_encode(&mut s)?;
}
Ok(len)
}
}
impl $crate::consensus::Decodable for $name {
fn consensus_decode<D: $crate::io::Read>(
mut d: D,
) -> Result<$name, $crate::consensus::encode::Error> {
use $crate::consensus::Decodable;
let mut ret: [u64; $n_words] = [0; $n_words];
for i in 0..$n_words {
ret[i] = Decodable::consensus_decode(&mut d)?;
}
Ok($name(ret))
}
}
#[cfg(feature = "serde")]
impl $crate::serde::Serialize for $name {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: $crate::serde::Serializer,
{
use $crate::hashes::hex::ToHex;
let bytes = self.to_be_bytes();
if serializer.is_human_readable() {
serializer.serialize_str(&bytes.to_hex())
} else {
serializer.serialize_bytes(&bytes)
}
}
}
#[cfg(feature = "serde")]
impl<'de> $crate::serde::Deserialize<'de> for $name {
fn deserialize<D: $crate::serde::Deserializer<'de>>(
deserializer: D,
) -> Result<Self, D::Error> {
use ::core::fmt;
use $crate::hashes::hex::FromHex;
use $crate::serde::de;
struct Visitor;
impl<'de> de::Visitor<'de> for Visitor {
type Value = $name;
fn expecting(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{} bytes or a hex string with {} characters", $n_words * 8, $n_words * 8 * 2)
}
fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
where
E: de::Error,
{
let bytes = $crate::prelude::Vec::from_hex(s)
.map_err(|_| de::Error::invalid_value(de::Unexpected::Str(s), &self))?;
$name::from_be_slice(&bytes)
.map_err(|_| de::Error::invalid_length(bytes.len() * 2, &self))
}
fn visit_bytes<E>(self, bytes: &[u8]) -> Result<Self::Value, E>
where
E: de::Error,
{
$name::from_be_slice(bytes)
.map_err(|_| de::Error::invalid_length(bytes.len(), &self))
}
}
if deserializer.is_human_readable() {
deserializer.deserialize_str(Visitor)
} else {
deserializer.deserialize_bytes(Visitor)
}
}
}
);
}
construct_uint!(Uint256, 4);
construct_uint!(Uint128, 2);
/// Invalid slice length
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Copy, Hash)]
/// Invalid slice length
pub struct ParseLengthError {
/// The length of the slice de-facto
pub actual: usize,
/// The required length of the slice
pub expected: usize,
}
impl ::core::fmt::Display for ParseLengthError {
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
write!(f, "Invalid length: got {}, expected {}", self.actual, self.expected)
}
}
#[cfg(feature = "std")]
impl ::std::error::Error for ParseLengthError {}
impl Uint256 {
/// Increment by 1
#[inline]
pub fn increment(&mut self) {
let &mut Uint256(ref mut arr) = self;
arr[0] += 1;
if arr[0] == 0 {
arr[1] += 1;
if arr[1] == 0 {
arr[2] += 1;
if arr[2] == 0 {
arr[3] += 1;
}
}
}
}
/// Decay to a uint128
#[inline]
pub fn low_128(&self) -> Uint128 {
let &Uint256(data) = self;
Uint128([data[0], data[1]])
}
}
#[cfg(test)]
mod tests {
use consensus::{deserialize, serialize};
use util::uint::{Uint256, Uint128};
use util::BitArray;
#[test]
pub fn uint256_bits_test() {
assert_eq!(Uint256::from_u64(255).unwrap().bits(), 8);
assert_eq!(Uint256::from_u64(256).unwrap().bits(), 9);
assert_eq!(Uint256::from_u64(300).unwrap().bits(), 9);
assert_eq!(Uint256::from_u64(60000).unwrap().bits(), 16);
assert_eq!(Uint256::from_u64(70000).unwrap().bits(), 17);
// Try to read the following lines out loud quickly
let mut shl = Uint256::from_u64(70000).unwrap();
shl = shl << 100;
assert_eq!(shl.bits(), 117);
shl = shl << 100;
assert_eq!(shl.bits(), 217);
shl = shl << 100;
assert_eq!(shl.bits(), 0);
// Bit set check
assert!(!Uint256::from_u64(10).unwrap().bit(0));
assert!(Uint256::from_u64(10).unwrap().bit(1));
assert!(!Uint256::from_u64(10).unwrap().bit(2));
assert!(Uint256::from_u64(10).unwrap().bit(3));
assert!(!Uint256::from_u64(10).unwrap().bit(4));
}
#[test]
pub fn uint256_display_test() {
assert_eq!(format!("{}", Uint256::from_u64(0xDEADBEEF).unwrap()),
"0x00000000000000000000000000000000000000000000000000000000deadbeef");
assert_eq!(format!("{}", Uint256::from_u64(u64::max_value()).unwrap()),
"0x000000000000000000000000000000000000000000000000ffffffffffffffff");
let max_val = Uint256([0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF,
0xFFFFFFFFFFFFFFFF]);
assert_eq!(format!("{}", max_val),
"0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
}
#[test]
pub fn uint256_comp_test() {
let small = Uint256([10u64, 0, 0, 0]);
let big = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let bigger = Uint256([0x9C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let biggest = Uint256([0x5C8C3EE70C644118u64, 0x0209E7378231E632, 0, 1]);
assert!(small < big);
assert!(big < bigger);
assert!(bigger < biggest);
assert!(bigger <= biggest);
assert!(biggest <= biggest);
assert!(bigger >= big);
assert!(bigger >= small);
assert!(small <= small);
}
#[test]
pub fn uint_from_be_bytes() {
assert_eq!(Uint128::from_be_bytes([0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed]),
Uint128([0xdeafbabe2bedfeed, 0x1badcafedeadbeef]));
assert_eq!(Uint256::from_be_bytes([0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed,
0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0]),
Uint256([0x11fed2bad1c0ffe0, 0xbaadf00ddefaceda, 0xdeafbabe2bedfeed, 0x1badcafedeadbeef]));
}
#[test]
pub fn uint_to_be_bytes() {
assert_eq!(Uint128([0xdeafbabe2bedfeed, 0x1badcafedeadbeef]).to_be_bytes(),
[0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed]);
assert_eq!(Uint256([0x11fed2bad1c0ffe0, 0xbaadf00ddefaceda, 0xdeafbabe2bedfeed, 0x1badcafedeadbeef]).to_be_bytes(),
[0x1b, 0xad, 0xca, 0xfe, 0xde, 0xad, 0xbe, 0xef, 0xde, 0xaf, 0xba, 0xbe, 0x2b, 0xed, 0xfe, 0xed,
0xba, 0xad, 0xf0, 0x0d, 0xde, 0xfa, 0xce, 0xda, 0x11, 0xfe, 0xd2, 0xba, 0xd1, 0xc0, 0xff, 0xe0]);
}
#[test]
pub fn uint256_arithmetic_test() {
let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
let copy = init;
let add = init + copy;
assert_eq!(add, Uint256([0xBD5B7DDFBD5B7DDEu64, 1, 0, 0]));
// Bitshifts
let shl = add << 88;
assert_eq!(shl, Uint256([0u64, 0xDFBD5B7DDE000000, 0x1BD5B7D, 0]));
let shr = shl >> 40;
assert_eq!(shr, Uint256([0x7DDE000000000000u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Increment
let mut incr = shr;
incr.increment();
assert_eq!(incr, Uint256([0x7DDE000000000001u64, 0x0001BD5B7DDFBD5B, 0, 0]));
// Subtraction
let sub = incr - init;
assert_eq!(sub, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
// Multiplication
let mult = sub.mul_u32(300);
assert_eq!(mult, Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]));
// Division
assert_eq!(Uint256::from_u64(105).unwrap() /
Uint256::from_u64(5).unwrap(),
Uint256::from_u64(21).unwrap());
let div = mult / Uint256::from_u64(300).unwrap();
assert_eq!(div, Uint256([0x9F30411021524112u64, 0x0001BD5B7DDFBD5A, 0, 0]));
assert_eq!(Uint256::from_u64(105).unwrap() % Uint256::from_u64(5).unwrap(),
Uint256::from_u64(0).unwrap());
assert_eq!(Uint256::from_u64(35498456).unwrap() % Uint256::from_u64(3435).unwrap(),
Uint256::from_u64(1166).unwrap());
let rem_src = mult * Uint256::from_u64(39842).unwrap() + Uint256::from_u64(9054).unwrap();
assert_eq!(rem_src % Uint256::from_u64(39842).unwrap(),
Uint256::from_u64(9054).unwrap());
// TODO: bit inversion
}
#[test]
pub fn mul_u32_test() {
let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
let u96_res = u64_val.mul_u32(0xFFFFFFFF);
let u128_res = u96_res.mul_u32(0xFFFFFFFF);
let u160_res = u128_res.mul_u32(0xFFFFFFFF);
let u192_res = u160_res.mul_u32(0xFFFFFFFF);
let u224_res = u192_res.mul_u32(0xFFFFFFFF);
let u256_res = u224_res.mul_u32(0xFFFFFFFF);
assert_eq!(u96_res, Uint256([0xffffffff21524111u64, 0xDEADBEEE, 0, 0]));
assert_eq!(u128_res, Uint256([0x21524111DEADBEEFu64, 0xDEADBEEE21524110, 0, 0]));
assert_eq!(u160_res, Uint256([0xBD5B7DDD21524111u64, 0x42A4822200000001, 0xDEADBEED, 0]));
assert_eq!(u192_res, Uint256([0x63F6C333DEADBEEFu64, 0xBD5B7DDFBD5B7DDB, 0xDEADBEEC63F6C334, 0]));
assert_eq!(u224_res, Uint256([0x7AB6FBBB21524111u64, 0xFFFFFFFBA69B4558, 0x854904485964BAAA, 0xDEADBEEB]));
assert_eq!(u256_res, Uint256([0xA69B4555DEADBEEFu64, 0xA69B455CD41BB662, 0xD41BB662A69B4550, 0xDEADBEEAA69B455C]));
}
#[test]
pub fn multiplication_test() {
let u64_val = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
let u128_res = u64_val * u64_val;
assert_eq!(u128_res, Uint256([0x048D1354216DA321u64, 0xC1B1CD13A4D13D46, 0, 0]));
let u256_res = u128_res * u128_res;
assert_eq!(u256_res, Uint256([0xF4E166AAD40D0A41u64, 0xF5CF7F3618C2C886u64,
0x4AFCFF6F0375C608u64, 0x928D92B4D7F5DF33u64]));
}
#[test]
pub fn uint256_bitslice_test() {
let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
let add = init + (init << 64);
assert_eq!(add.bit_slice(64, 128), init);
assert_eq!(add.mask(64), init);
}
#[test]
pub fn uint256_extreme_bitshift_test() {
// Shifting a u64 by 64 bits gives an undefined value, so make sure that
// we're doing the Right Thing here
let init = Uint256::from_u64(0xDEADBEEFDEADBEEF).unwrap();
assert_eq!(init << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0, 0]));
let add = (init << 64) + init;
assert_eq!(add, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add << 0, Uint256([0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0, 0]));
assert_eq!(add >> 64, Uint256([0xDEADBEEFDEADBEEF, 0, 0, 0]));
assert_eq!(add << 64, Uint256([0, 0xDEADBEEFDEADBEEF, 0xDEADBEEFDEADBEEF, 0]));
}
#[test]
pub fn uint256_serialize_test() {
let start1 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0, 0]);
let start2 = Uint256([0x8C8C3EE70C644118u64, 0x0209E7378231E632, 0xABCD, 0xFFFF]);
let serial1 = serialize(&start1);
let serial2 = serialize(&start2);
let end1: Result<Uint256, _> = deserialize(&serial1);
let end2: Result<Uint256, _> = deserialize(&serial2);
assert_eq!(end1.ok(), Some(start1));
assert_eq!(end2.ok(), Some(start2));
}
#[cfg(feature = "serde")]
#[test]
pub fn uint256_serde_test() {
let check = |uint, hex| {
let json = format!("\"{}\"", hex);
assert_eq!(::serde_json::to_string(&uint).unwrap(), json);
assert_eq!(::serde_json::from_str::<Uint256>(&json).unwrap(), uint);
let bin_encoded = ::bincode::serialize(&uint).unwrap();
let bin_decoded: Uint256 = ::bincode::deserialize(&bin_encoded).unwrap();
assert_eq!(bin_decoded, uint);
};
check(
Uint256::from_u64(0).unwrap(),
"0000000000000000000000000000000000000000000000000000000000000000",
);
check(
Uint256::from_u64(0xDEADBEEF).unwrap(),
"00000000000000000000000000000000000000000000000000000000deadbeef",
);
check(
Uint256([0xaa11, 0xbb22, 0xcc33, 0xdd44]),
"000000000000dd44000000000000cc33000000000000bb22000000000000aa11",
);
check(
Uint256([u64::max_value(), u64::max_value(), u64::max_value(), u64::max_value()]),
"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
);
check(
Uint256([ 0xA69B4555DEADBEEF, 0xA69B455CD41BB662, 0xD41BB662A69B4550, 0xDEADBEEAA69B455C ]),
"deadbeeaa69b455cd41bb662a69b4550a69b455cd41bb662a69b4555deadbeef",
);
assert!(::serde_json::from_str::<Uint256>("\"fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffg\"").is_err()); // invalid char
assert!(::serde_json::from_str::<Uint256>("\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"").is_err()); // invalid length
assert!(::serde_json::from_str::<Uint256>("\"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff\"").is_err()); // invalid length
}
}