rust-bitcoin-unsafe-fast/bitcoin/examples/ecdsa-psbt-simple.rs

249 lines
9.7 KiB
Rust

//! Implements a simple multi-input PSBT signing example
//!
//! The purpose of this section is to construct a PSBT that
//! spends multiple inputs and signs it.
//! We'll cover the following
//! [BIP 174](https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki)
//! roles:
//!
//! - **Creator**: Creates a PSBT with multiple inputs and outputs.
//! - **Updater**: Adds Witness and SegWit V0 data to the PSBT.
//! - **Signer**: Signs the PSBT.
//! - **Finalizer**: Finalizes the PSBT.
//!
//! The example will focus on spending two SegWit V0 inputs:
//!
//! 1. 20,000,000 satoshi UTXO, the first receiving ("external") address.
//! 1. 10,000,000 satoshi UTXO, the first change ("internal") address.
//!
//! We'll be sending this to two outputs:
//!
//! 1. 25,000,000 satoshis to a receivers' address.
//! 1. 4,990,000 satoshis back to us as change.
//!
//! The miner's fee will be 10,000 satoshis.
use std::collections::BTreeMap;
use bitcoin::address::script_pubkey::ScriptBufExt as _;
use bitcoin::bip32::{ChildNumber, DerivationPath, Fingerprint, IntoDerivationPath, Xpriv, Xpub};
use bitcoin::locktime::absolute;
use bitcoin::psbt::Input;
use bitcoin::secp256k1::{Secp256k1, Signing};
use bitcoin::witness::WitnessExt as _;
use bitcoin::{
consensus, transaction, Address, Amount, EcdsaSighashType, Network, OutPoint, Psbt, ScriptBuf,
Sequence, Transaction, TxIn, TxOut, Txid, WPubkeyHash, Witness,
};
// The master xpriv, from which we derive the keys we control.
const XPRIV: &str = "xprv9tuogRdb5YTgcL3P8Waj7REqDuQx4sXcodQaWTtEVFEp6yRKh1CjrWfXChnhgHeLDuXxo2auDZegMiVMGGxwxcrb2PmiGyCngLxvLeGsZRq";
// The derivation path for the keys we control.
// This follows the BIP 84 derivation path for Bitcoin.
const BIP84_DERIVATION_PATH: &str = "m/84'/0'/0'";
// The master fingerprint of the master xpriv.
const MASTER_FINGERPRINT: &str = "9680603f";
// The dummy UTXO amounts we are spending.
const DUMMY_UTXO_AMOUNT_INPUT_1: Amount = Amount::from_sat_unchecked(20_000_000);
const DUMMY_UTXO_AMOUNT_INPUT_2: Amount = Amount::from_sat_unchecked(10_000_000);
// The amounts we are sending to someone, and receiving back as change.
const SPEND_AMOUNT: Amount = Amount::from_sat_unchecked(25_000_000);
const CHANGE_AMOUNT: Amount = Amount::from_sat_unchecked(4_990_000); // 10_000 sat fee.
// Derive the external address xpriv.
fn get_external_address_xpriv<C: Signing>(
secp: &Secp256k1<C>,
master_xpriv: Xpriv,
index: u32,
) -> Xpriv {
let derivation_path =
BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
let child_xpriv = master_xpriv.derive_xpriv(secp, &derivation_path);
let external_index = ChildNumber::ZERO_NORMAL;
let idx = ChildNumber::from_normal_idx(index).expect("valid index number");
child_xpriv.derive_xpriv(secp, &[external_index, idx])
}
// Derive the internal address xpriv.
fn get_internal_address_xpriv<C: Signing>(
secp: &Secp256k1<C>,
master_xpriv: Xpriv,
index: u32,
) -> Xpriv {
let derivation_path =
BIP84_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
let child_xpriv = master_xpriv.derive_xpriv(secp, &derivation_path);
let internal_index = ChildNumber::ONE_NORMAL;
let idx = ChildNumber::from_normal_idx(index).expect("valid index number");
child_xpriv.derive_xpriv(secp, &[internal_index, idx])
}
// The address to send to.
fn receivers_address() -> Address {
"bc1q7cyrfmck2ffu2ud3rn5l5a8yv6f0chkp0zpemf"
.parse::<Address<_>>()
.expect("a valid address")
.require_network(Network::Bitcoin)
.expect("valid address for mainnet")
}
// The dummy unspent transaction outputs that we control.
fn dummy_unspent_transaction_outputs() -> Vec<(OutPoint, TxOut)> {
let script_pubkey_1 = "bc1qrwuu3ydv0jfza4a0ehtfd03m9l4vw3fy0hfm50"
.parse::<Address<_>>()
.expect("a valid address")
.require_network(Network::Bitcoin)
.expect("valid address for mainnet")
.script_pubkey();
let out_point_1 = OutPoint {
txid: Txid::from_byte_array([0xFF; 32]), // Arbitrary invalid dummy value.
vout: 0,
};
let utxo_1 = TxOut { value: DUMMY_UTXO_AMOUNT_INPUT_1, script_pubkey: script_pubkey_1 };
let script_pubkey_2 = "bc1qy7swwpejlw7a2rp774pa8rymh8tw3xvd2x2xkd"
.parse::<Address<_>>()
.expect("a valid address")
.require_network(Network::Bitcoin)
.expect("valid address for mainnet")
.script_pubkey();
let out_point_2 = OutPoint {
txid: Txid::from_byte_array([0xFF; 32]), // Arbitrary invalid dummy value.
vout: 1,
};
let utxo_2 = TxOut { value: DUMMY_UTXO_AMOUNT_INPUT_2, script_pubkey: script_pubkey_2 };
vec![(out_point_1, utxo_1), (out_point_2, utxo_2)]
}
fn main() {
let secp = Secp256k1::new();
// Get the individual xprivs we control. In a real application these would come from a stored secret.
let master_xpriv = XPRIV.parse::<Xpriv>().expect("valid xpriv");
let xpriv_input_1 = get_external_address_xpriv(&secp, master_xpriv, 0);
let xpriv_input_2 = get_internal_address_xpriv(&secp, master_xpriv, 0);
let xpriv_change = get_internal_address_xpriv(&secp, master_xpriv, 1);
// Get the PKs
let pk_input_1 = Xpub::from_xpriv(&secp, &xpriv_input_1).to_public_key();
let pk_input_2 = Xpub::from_xpriv(&secp, &xpriv_input_2).to_public_key();
let pk_inputs = [pk_input_1, pk_input_2];
let pk_change = Xpub::from_xpriv(&secp, &xpriv_change).to_public_key();
// Get the Witness Public Key Hashes (WPKHs)
let wpkhs: Vec<WPubkeyHash> = pk_inputs.iter().map(|pk| pk.wpubkey_hash()).collect();
// Get the unspent outputs that are locked to the key above that we control.
// In a real application these would come from the chain.
let utxos: Vec<TxOut> =
dummy_unspent_transaction_outputs().into_iter().map(|(_, utxo)| utxo).collect();
// Get the addresses to send to.
let address = receivers_address();
// The inputs for the transaction we are constructing.
let inputs: Vec<TxIn> = dummy_unspent_transaction_outputs()
.into_iter()
.map(|(outpoint, _)| TxIn {
previous_output: outpoint,
script_sig: ScriptBuf::default(),
sequence: Sequence::ENABLE_LOCKTIME_AND_RBF,
witness: Witness::default(),
})
.collect();
// The spend output is locked to a key controlled by the receiver.
let spend = TxOut { value: SPEND_AMOUNT, script_pubkey: address.script_pubkey() };
// The change output is locked to a key controlled by us.
let change = TxOut {
value: CHANGE_AMOUNT,
script_pubkey: ScriptBuf::new_p2wpkh(pk_change.wpubkey_hash()), // Change comes back to us.
};
// The transaction we want to sign and broadcast.
let unsigned_tx = Transaction {
version: transaction::Version::TWO, // Post BIP 68.
lock_time: absolute::LockTime::ZERO, // Ignore the locktime.
input: inputs, // Input is 0-indexed.
output: vec![spend, change], // Outputs, order does not matter.
};
// Now we'll start the PSBT workflow.
// Step 1: Creator role; that creates,
// and add inputs and outputs to the PSBT.
let mut psbt = Psbt::from_unsigned_tx(unsigned_tx).expect("could not create PSBT");
// Step 2:Updater role; that adds additional
// information to the PSBT.
let ty = EcdsaSighashType::All.into();
let derivation_paths = [
"m/84'/0'/0'/0/0".parse::<DerivationPath>().expect("valid derivation path"),
"m/84'/0'/0'/1/0".parse::<DerivationPath>().expect("valid derivation path"),
];
let mut bip32_derivations = Vec::new();
for (idx, pk) in pk_inputs.iter().enumerate() {
let mut map = BTreeMap::new();
let fingerprint = MASTER_FINGERPRINT.parse::<Fingerprint>().expect("valid fingerprint");
map.insert(pk.0, (fingerprint, derivation_paths[idx].clone()));
bip32_derivations.push(map);
}
psbt.inputs = vec![
Input {
witness_utxo: Some(utxos[0].clone()),
redeem_script: Some(ScriptBuf::new_p2wpkh(wpkhs[0])),
bip32_derivation: bip32_derivations[0].clone(),
sighash_type: Some(ty),
..Default::default()
},
Input {
witness_utxo: Some(utxos[1].clone()),
redeem_script: Some(ScriptBuf::new_p2wpkh(wpkhs[1])),
bip32_derivation: bip32_derivations[1].clone(),
sighash_type: Some(ty),
..Default::default()
},
];
// Step 3: Signer role; that signs the PSBT.
psbt.sign(&master_xpriv, &secp).expect("valid signature");
// Step 4: Finalizer role; that finalizes the PSBT.
println!("PSBT Inputs: {:#?}", psbt.inputs);
let final_script_witness: Vec<Witness> = psbt
.inputs
.iter()
.enumerate()
.map(|(idx, input)| {
let (_, sig) = input.partial_sigs.iter().next().expect("we have one sig");
Witness::p2wpkh(*sig, pk_inputs[idx].0)
})
.collect();
psbt.inputs.iter_mut().enumerate().for_each(|(idx, input)| {
// Clear all the data fields as per the spec.
input.final_script_witness = Some(final_script_witness[idx].clone());
input.partial_sigs = BTreeMap::new();
input.sighash_type = None;
input.redeem_script = None;
input.witness_script = None;
input.bip32_derivation = BTreeMap::new();
});
// BOOM! Transaction signed and ready to broadcast.
let signed_tx = psbt.extract_tx().expect("valid transaction");
let serialized_signed_tx = consensus::encode::serialize_hex(&signed_tx);
println!("Transaction Details: {:#?}", signed_tx);
// check with:
// bitcoin-cli decoderawtransaction <RAW_TX> true
println!("Raw Transaction: {}", serialized_signed_tx);
}