rust-bitcoin-unsafe-fast/bitcoin/examples/taproot-psbt-simple.rs

250 lines
9.6 KiB
Rust

//! Implements a simple multi-input PSBT signing example
//!
//! The purpose of this section is to construct a PSBT that spends multiple inputs and signs it.
//! We'll cover the following [BIP 174](https://github.com/bitcoin/bips/blob/master/bip-0174.mediawiki)
//! roles:
//!
//! - **Creator**: Creates a PSBT with multiple inputs and outputs.
//! - **Updater**: Adds Witness and Taproot data to the PSBT.
//! - **Signer**: Signs the PSBT.
//! - **Finalizer**: Finalizes the PSBT.
//!
//! The example will focus on spending two Taproot inputs:
//!
//! 1. 20,000,000 satoshi UTXO, the first receiving ("external") address.
//! 1. 10,000,000 satoshi UTXO, the first change ("internal") address.
//!
//! We'll be sending this to two outputs:
//!
//! 1. 25,000,000 satoshis to a receivers' address.
//! 1. 4,990,000 satoshis back to us as change.
//!
//! The miner's fee will be 10,000 satoshis.
use std::collections::BTreeMap;
use bitcoin::address::script_pubkey::ScriptBufExt as _;
use bitcoin::bip32::{ChildNumber, DerivationPath, Fingerprint, IntoDerivationPath, Xpriv, Xpub};
use bitcoin::key::UntweakedPublicKey;
use bitcoin::locktime::absolute;
use bitcoin::psbt::Input;
use bitcoin::secp256k1::{Secp256k1, Signing};
use bitcoin::witness::WitnessExt as _;
use bitcoin::{
consensus, transaction, Address, Amount, Network, OutPoint, Psbt, ScriptBuf, Sequence,
TapLeafHash, TapSighashType, Transaction, TxIn, TxOut, Txid, Witness, XOnlyPublicKey,
};
// The master xpriv, from which we derive the keys we control.
const XPRIV: &str = "xprv9tuogRdb5YTgcL3P8Waj7REqDuQx4sXcodQaWTtEVFEp6yRKh1CjrWfXChnhgHeLDuXxo2auDZegMiVMGGxwxcrb2PmiGyCngLxvLeGsZRq";
// The derivation path for the keys we control.
// This follows the BIP 86 derivation path for Bitcoin.
const BIP86_DERIVATION_PATH: &str = "m/86'/0'/0'";
// The master fingerprint of the master xpriv.
const MASTER_FINGERPRINT: &str = "9680603f";
// The dummy UTXO amounts we are spending.
const DUMMY_UTXO_AMOUNT_INPUT_1: Amount = Amount::from_sat_unchecked(20_000_000);
const DUMMY_UTXO_AMOUNT_INPUT_2: Amount = Amount::from_sat_unchecked(10_000_000);
// The amounts we are sending to someone, and receiving back as change.
const SPEND_AMOUNT: Amount = Amount::from_sat_unchecked(25_000_000);
const CHANGE_AMOUNT: Amount = Amount::from_sat_unchecked(4_990_000); // 10_000 sat fee.
// Derive the external address xpriv.
fn get_external_address_xpriv<C: Signing>(
secp: &Secp256k1<C>,
master_xpriv: Xpriv,
index: u32,
) -> Xpriv {
let derivation_path =
BIP86_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
let child_xpriv = master_xpriv.derive_xpriv(secp, &derivation_path);
let external_index = ChildNumber::ZERO_NORMAL;
let idx = ChildNumber::from_normal_idx(index).expect("valid index number");
child_xpriv.derive_xpriv(secp, &[external_index, idx])
}
// Derive the internal address xpriv.
fn get_internal_address_xpriv<C: Signing>(
secp: &Secp256k1<C>,
master_xpriv: Xpriv,
index: u32,
) -> Xpriv {
let derivation_path =
BIP86_DERIVATION_PATH.into_derivation_path().expect("valid derivation path");
let child_xpriv = master_xpriv.derive_xpriv(secp, &derivation_path);
let internal_index = ChildNumber::ONE_NORMAL;
let idx = ChildNumber::from_normal_idx(index).expect("valid index number");
child_xpriv.derive_xpriv(secp, &[internal_index, idx])
}
// Get the Taproot Key Origin.
fn get_tap_key_origin(
x_only_key: UntweakedPublicKey,
master_fingerprint: Fingerprint,
path: DerivationPath,
) -> BTreeMap<XOnlyPublicKey, (Vec<TapLeafHash>, (Fingerprint, DerivationPath))> {
let mut map = BTreeMap::new();
map.insert(x_only_key, (vec![], (master_fingerprint, path)));
map
}
// The address to send to.
fn receivers_address() -> Address {
"bc1p0dq0tzg2r780hldthn5mrznmpxsxc0jux5f20fwj0z3wqxxk6fpqm7q0va"
.parse::<Address<_>>()
.expect("a valid address")
.require_network(Network::Bitcoin)
.expect("valid address for mainnet")
}
// The dummy unspent transaction outputs that we control.
fn dummy_unspent_transaction_outputs() -> Vec<(OutPoint, TxOut)> {
let script_pubkey_1 = "bc1p80lanj0xee8q667aqcnn0xchlykllfsz3gu5skfv9vjsytaujmdqtv52vu"
.parse::<Address<_>>()
.unwrap()
.require_network(Network::Bitcoin)
.unwrap()
.script_pubkey();
let out_point_1 = OutPoint {
txid: Txid::from_byte_array([0xFF; 32]), // Arbitrary invalid dummy value.
vout: 0,
};
let utxo_1 = TxOut { value: DUMMY_UTXO_AMOUNT_INPUT_1, script_pubkey: script_pubkey_1 };
let script_pubkey_2 = "bc1pfd0jmmdnp278vppcw68tkkmquxtq50xchy7f6wdmjtjm7fgsr8dszdcqce"
.parse::<Address<_>>()
.unwrap()
.require_network(Network::Bitcoin)
.unwrap()
.script_pubkey();
let out_point_2 = OutPoint {
txid: Txid::from_byte_array([0xFF; 32]), // Arbitrary invalid dummy value.
vout: 1,
};
let utxo_2 = TxOut { value: DUMMY_UTXO_AMOUNT_INPUT_2, script_pubkey: script_pubkey_2 };
vec![(out_point_1, utxo_1), (out_point_2, utxo_2)]
}
fn main() {
let secp = Secp256k1::new();
// Get the individual xprivs we control. In a real application these would come from a stored secret.
let master_xpriv = XPRIV.parse::<Xpriv>().expect("valid xpriv");
let xpriv_input_1 = get_external_address_xpriv(&secp, master_xpriv, 0);
let xpriv_input_2 = get_internal_address_xpriv(&secp, master_xpriv, 0);
let xpriv_change = get_internal_address_xpriv(&secp, master_xpriv, 1);
// Get the PKs
let (pk_input_1, _) = Xpub::from_xpriv(&secp, &xpriv_input_1).public_key.x_only_public_key();
let (pk_input_2, _) = Xpub::from_xpriv(&secp, &xpriv_input_2).public_key.x_only_public_key();
let (pk_change, _) = Xpub::from_xpriv(&secp, &xpriv_change).public_key.x_only_public_key();
// Get the Tap Key Origins
// Map of tap root X-only keys to origin info and leaf hashes contained in it.
let origin_input_1 = get_tap_key_origin(
pk_input_1,
MASTER_FINGERPRINT.parse::<Fingerprint>().unwrap(),
"m/86'/0'/0'/0/0".parse::<DerivationPath>().unwrap(),
);
let origin_input_2 = get_tap_key_origin(
pk_input_2,
MASTER_FINGERPRINT.parse::<Fingerprint>().unwrap(),
"m/86'/0'/0'/1/0".parse::<DerivationPath>().unwrap(),
);
let origins = [origin_input_1, origin_input_2];
// Get the unspent outputs that are locked to the key above that we control.
// In a real application these would come from the chain.
let utxos: Vec<TxOut> =
dummy_unspent_transaction_outputs().into_iter().map(|(_, utxo)| utxo).collect();
// Get the addresses to send to.
let address = receivers_address();
// The inputs for the transaction we are constructing.
let inputs: Vec<TxIn> = dummy_unspent_transaction_outputs()
.into_iter()
.map(|(outpoint, _)| TxIn {
previous_output: outpoint,
script_sig: ScriptBuf::default(),
sequence: Sequence::ENABLE_LOCKTIME_AND_RBF,
witness: Witness::default(),
})
.collect();
// The spend output is locked to a key controlled by the receiver.
let spend = TxOut { value: SPEND_AMOUNT, script_pubkey: address.script_pubkey() };
// The change output is locked to a key controlled by us.
let change = TxOut {
value: CHANGE_AMOUNT,
script_pubkey: ScriptBuf::new_p2tr(&secp, pk_change, None), // Change comes back to us.
};
// The transaction we want to sign and broadcast.
let unsigned_tx = Transaction {
version: transaction::Version::TWO, // Post BIP 68.
lock_time: absolute::LockTime::ZERO, // Ignore the locktime.
input: inputs, // Input is 0-indexed.
output: vec![spend, change], // Outputs, order does not matter.
};
// Now we'll start the PSBT workflow.
// Step 1: Creator role; that creates,
// and add inputs and outputs to the PSBT.
let mut psbt = Psbt::from_unsigned_tx(unsigned_tx).expect("could not create PSBT");
// Step 2:Updater role; that adds additional
// information to the PSBT.
let ty = TapSighashType::All.into();
psbt.inputs = vec![
Input {
witness_utxo: Some(utxos[0].clone()),
tap_key_origins: origins[0].clone(),
tap_internal_key: Some(pk_input_1),
sighash_type: Some(ty),
..Default::default()
},
Input {
witness_utxo: Some(utxos[1].clone()),
tap_key_origins: origins[1].clone(),
tap_internal_key: Some(pk_input_2),
sighash_type: Some(ty),
..Default::default()
},
];
// Step 3: Signer role; that signs the PSBT.
psbt.sign(&master_xpriv, &secp).expect("valid signature");
// Step 4: Finalizer role; that finalizes the PSBT.
psbt.inputs.iter_mut().for_each(|input| {
let script_witness = Witness::p2tr_key_spend(&input.tap_key_sig.unwrap());
input.final_script_witness = Some(script_witness);
// Clear all the data fields as per the spec.
input.partial_sigs = BTreeMap::new();
input.sighash_type = None;
input.redeem_script = None;
input.witness_script = None;
input.bip32_derivation = BTreeMap::new();
});
// BOOM! Transaction signed and ready to broadcast.
let signed_tx = psbt.extract_tx().expect("valid transaction");
let serialized_signed_tx = consensus::encode::serialize_hex(&signed_tx);
println!("Transaction Details: {:#?}", signed_tx);
// check with:
// bitcoin-cli decoderawtransaction <RAW_TX> true
println!("Raw Transaction: {}", serialized_signed_tx);
}