rust-bitcoin-unsafe-fast/io/src/lib.rs

521 lines
16 KiB
Rust

// SPDX-License-Identifier: CC0-1.0
//! # Rust Bitcoin I/O Library
//!
//! The [`std::io`] module is not exposed in `no-std` Rust so building `no-std` applications which
//! require reading and writing objects via standard traits is not generally possible. Thus, this
//! library exists to export a minimal version of `std::io`'s traits which we use in `rust-bitcoin`
//! so that we can support `no-std` applications.
//!
//! These traits are not one-for-one drop-ins, but are as close as possible while still implementing
//! `std::io`'s traits without unnecessary complexity.
//!
//! For examples of how to use and implement the types and traits in this crate see `io.rs` in the
//! `github.com/rust-bitcoin/rust-bitcoin/bitcoin/examples/` directory.
#![cfg_attr(not(feature = "std"), no_std)]
// Experimental features we need.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
// Coding conventions.
#![warn(missing_docs)]
#![doc(test(attr(warn(unused))))]
// Pedantic lints that we enforce.
#![warn(clippy::return_self_not_must_use)]
// Exclude lints we don't think are valuable.
#![allow(clippy::needless_question_mark)] // https://github.com/rust-bitcoin/rust-bitcoin/pull/2134
#![allow(clippy::manual_range_contains)] // More readable than clippy's format.
#![allow(clippy::uninlined_format_args)] // Allow `format!("{}", x)`instead of enforcing `format!("{x}")`
#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "hashes")]
pub extern crate hashes;
#[cfg(feature = "std")]
mod bridge;
mod error;
#[cfg(feature = "hashes")]
mod hash;
#[cfg(all(not(feature = "std"), feature = "alloc"))]
use alloc::vec::Vec;
use core::cmp;
#[cfg(feature = "std")]
pub use bridge::{FromStd, ToStd};
#[rustfmt::skip] // Keep public re-exports separate.
pub use self::error::{Error, ErrorKind};
#[cfg(feature = "hashes")]
pub use self::hash::hash_reader;
/// Result type returned by functions in this crate.
pub type Result<T> = core::result::Result<T, Error>;
/// A generic trait describing an input stream.
///
/// See [`std::io::Read`] for more information.
pub trait Read {
/// Reads bytes from source into `buf`.
///
/// # Returns
///
/// The number of bytes read if successful or an [`Error`] if reading fails.
fn read(&mut self, buf: &mut [u8]) -> Result<usize>;
/// Reads bytes from source until `buf` is full.
///
/// # Errors
///
/// If the exact number of bytes required to fill `buf` cannot be read.
#[inline]
fn read_exact(&mut self, mut buf: &mut [u8]) -> Result<()> {
while !buf.is_empty() {
match self.read(buf) {
Ok(0) => return Err(ErrorKind::UnexpectedEof.into()),
Ok(len) => buf = &mut buf[len..],
Err(e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
/// Constructs a new adapter which will read at most `limit` bytes.
#[inline]
fn take(&mut self, limit: u64) -> Take<'_, Self> { Take { reader: self, remaining: limit } }
/// Attempts to read up to limit bytes from the reader, allocating space in `buf` as needed.
///
/// `limit` is used to prevent a denial of service attack vector since an unbounded reader will
/// exhaust all memory.
///
/// Similar to [`std::io::Read::read_to_end`] but with the DOS protection.
///
/// # Returns
///
/// The number of bytes read if successful or an [`Error`] if reading fails.
#[doc(alias = "read_to_end")]
#[cfg(feature = "alloc")]
#[inline]
fn read_to_limit(&mut self, buf: &mut Vec<u8>, limit: u64) -> Result<usize> {
self.take(limit).read_to_end(buf)
}
}
/// A trait describing an input stream that uses an internal buffer when reading.
pub trait BufRead: Read {
/// Returns data read from this reader, filling the internal buffer if needed.
///
/// # Errors
///
/// May error if reading fails.
fn fill_buf(&mut self) -> Result<&[u8]>;
/// Marks the buffered data up to amount as consumed.
///
/// # Panics
///
/// May panic if `amount` is greater than amount of data read by `fill_buf`.
fn consume(&mut self, amount: usize);
}
/// Reader adapter which limits the bytes read from an underlying reader.
///
/// Created by calling `[Read::take]`.
#[derive(Debug)]
pub struct Take<'a, R: Read + ?Sized> {
reader: &'a mut R,
remaining: u64,
}
impl<R: Read + ?Sized> Take<'_, R> {
/// Reads all bytes until EOF from the underlying reader into `buf`.
///
/// Allocates space in `buf` as needed.
///
/// # Returns
///
/// The number of bytes read if successful or an [`Error`] if reading fails.
#[cfg(feature = "alloc")]
#[inline]
pub fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize> {
let mut read: usize = 0;
let mut chunk = [0u8; 64];
loop {
match self.read(&mut chunk) {
Ok(0) => break,
Ok(n) => {
buf.extend_from_slice(&chunk[0..n]);
read += n;
}
Err(ref e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
};
}
Ok(read)
}
}
impl<R: Read + ?Sized> Read for Take<'_, R> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let len = cmp::min(buf.len(), self.remaining.try_into().unwrap_or(buf.len()));
let read = self.reader.read(&mut buf[..len])?;
self.remaining -= read.try_into().unwrap_or(self.remaining);
Ok(read)
}
}
// Impl copied from Rust stdlib.
impl<R: BufRead + ?Sized> BufRead for Take<'_, R> {
#[inline]
fn fill_buf(&mut self) -> Result<&[u8]> {
// Don't call into inner reader at all at EOF because it may still block
if self.remaining == 0 {
return Ok(&[]);
}
let buf = self.reader.fill_buf()?;
// Cast length to a u64 instead of casting `remaining` to a `usize`
// (in case `remaining > u32::MAX` and we are on a 32 bit machine).
let cap = cmp::min(buf.len() as u64, self.remaining) as usize;
Ok(&buf[..cap])
}
#[inline]
fn consume(&mut self, amount: usize) {
assert!(amount as u64 <= self.remaining);
self.remaining -= amount as u64;
self.reader.consume(amount);
}
}
impl<T: Read> Read for &'_ mut T {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { (**self).read(buf) }
#[inline]
fn read_exact(&mut self, buf: &mut [u8]) -> Result<()> { (**self).read_exact(buf) }
}
impl<T: BufRead> BufRead for &'_ mut T {
#[inline]
fn fill_buf(&mut self) -> Result<&[u8]> { (**self).fill_buf() }
#[inline]
fn consume(&mut self, amount: usize) { (**self).consume(amount) }
}
impl Read for &[u8] {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let cnt = cmp::min(self.len(), buf.len());
buf[..cnt].copy_from_slice(&self[..cnt]);
*self = &self[cnt..];
Ok(cnt)
}
}
impl BufRead for &[u8] {
#[inline]
fn fill_buf(&mut self) -> Result<&[u8]> { Ok(self) }
// This panics if amount is out of bounds, same as the std version.
#[inline]
fn consume(&mut self, amount: usize) { *self = &self[amount..] }
}
/// Wraps an in memory reader providing the `position` function.
#[derive(Clone, Debug, Default, Eq, PartialEq)]
pub struct Cursor<T> {
inner: T,
pos: u64,
}
impl<T: AsRef<[u8]>> Cursor<T> {
/// Constructs a new `Cursor` by wrapping `inner`.
#[inline]
pub const fn new(inner: T) -> Self { Cursor { inner, pos: 0 } }
/// Returns the position read up to thus far.
#[inline]
pub const fn position(&self) -> u64 { self.pos }
/// Sets the internal position.
///
/// This method allows seeking within the wrapped memory by setting the position.
///
/// Note that setting a position that is larger than the buffer length will cause reads to
/// succeed by reading zero bytes.
#[inline]
pub fn set_position(&mut self, position: u64) { self.pos = position; }
/// Returns the inner buffer.
///
/// This is the whole wrapped buffer, including the bytes already read.
#[inline]
pub fn into_inner(self) -> T { self.inner }
/// Returns a reference to the inner buffer.
///
/// This is the whole wrapped buffer, including the bytes already read.
#[inline]
pub const fn get_ref(&self) -> &T { &self.inner }
/// Returns a mutable reference to the inner buffer.
///
/// This is the whole wrapped buffer, including the bytes already read.
#[inline]
pub fn get_mut(&mut self) -> &mut T { &mut self.inner }
/// Returns a reference to the inner buffer.
///
/// This is the whole wrapped buffer, including the bytes already read.
#[inline]
#[deprecated(since = "TBD", note = "use `get_ref()` instead")]
pub fn inner(&self) -> &T { &self.inner }
}
impl<T: AsRef<[u8]>> Read for Cursor<T> {
#[inline]
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let inner: &[u8] = self.inner.as_ref();
let start_pos = self.pos.try_into().unwrap_or(inner.len());
if start_pos >= self.inner.as_ref().len() {
return Ok(0);
}
let read = core::cmp::min(inner.len().saturating_sub(start_pos), buf.len());
buf[..read].copy_from_slice(&inner[start_pos..start_pos + read]);
self.pos = self.pos.saturating_add(read.try_into().unwrap_or(u64::MAX /* unreachable */));
Ok(read)
}
}
impl<T: AsRef<[u8]>> BufRead for Cursor<T> {
#[inline]
fn fill_buf(&mut self) -> Result<&[u8]> {
let inner: &[u8] = self.inner.as_ref();
Ok(&inner[self.pos as usize..])
}
#[inline]
fn consume(&mut self, amount: usize) {
assert!(amount <= self.inner.as_ref().len());
self.pos += amount as u64;
}
}
/// A generic trait describing an output stream.
///
/// See [`std::io::Write`] for more information.
pub trait Write {
/// Writes `buf` into this writer, returning how many bytes were written.
fn write(&mut self, buf: &[u8]) -> Result<usize>;
/// Flushes this output stream, ensuring that all intermediately buffered contents
/// reach their destination.
fn flush(&mut self) -> Result<()>;
/// Attempts to write an entire buffer into this writer.
#[inline]
fn write_all(&mut self, mut buf: &[u8]) -> Result<()> {
while !buf.is_empty() {
match self.write(buf) {
Ok(0) => return Err(ErrorKind::UnexpectedEof.into()),
Ok(len) => buf = &buf[len..],
Err(e) if e.kind() == ErrorKind::Interrupted => {}
Err(e) => return Err(e),
}
}
Ok(())
}
}
impl<T: Write> Write for &'_ mut T {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> { (**self).write(buf) }
#[inline]
fn write_all(&mut self, buf: &[u8]) -> Result<()> { (**self).write_all(buf) }
#[inline]
fn flush(&mut self) -> Result<()> { (**self).flush() }
}
#[cfg(feature = "alloc")]
impl Write for alloc::vec::Vec<u8> {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
self.extend_from_slice(buf);
Ok(buf.len())
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
impl Write for &mut [u8] {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> {
let cnt = core::cmp::min(self.len(), buf.len());
self[..cnt].copy_from_slice(&buf[..cnt]);
*self = &mut core::mem::take(self)[cnt..];
Ok(cnt)
}
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
/// A sink to which all writes succeed.
///
/// Created using [`sink()`]. See [`std::io::Sink`] for more information.
#[derive(Clone, Copy, Debug, Default)]
pub struct Sink;
impl Write for Sink {
#[inline]
fn write(&mut self, buf: &[u8]) -> Result<usize> { Ok(buf.len()) }
#[inline]
fn write_all(&mut self, _: &[u8]) -> Result<()> { Ok(()) }
#[inline]
fn flush(&mut self) -> Result<()> { Ok(()) }
}
/// Returns a sink to which all writes succeed.
///
/// See [`std::io::sink`] for more information.
#[inline]
pub fn sink() -> Sink { Sink }
/// Wraps a `std` I/O type to implement the traits from this crate.
///
/// All methods are passed through converting the errors.
#[cfg(feature = "std")]
#[inline]
pub const fn from_std<T>(std_io: T) -> FromStd<T> { FromStd::new(std_io) }
/// Wraps a mutable reference to `std` I/O type to implement the traits from this crate.
///
/// All methods are passed through converting the errors.
#[cfg(feature = "std")]
#[inline]
pub fn from_std_mut<T>(std_io: &mut T) -> &mut FromStd<T> { FromStd::new_mut(std_io) }
#[cfg(test)]
mod tests {
#[cfg(all(not(feature = "std"), feature = "alloc"))]
use alloc::{string::ToString, vec};
use super::*;
#[test]
fn buf_read_fill_and_consume_slice() {
let data = [0_u8, 1, 2];
let mut slice = &data[..];
let fill = BufRead::fill_buf(&mut slice).unwrap();
assert_eq!(fill.len(), 3);
assert_eq!(fill, &[0_u8, 1, 2]);
slice.consume(2);
let fill = BufRead::fill_buf(&mut slice).unwrap();
assert_eq!(fill.len(), 1);
assert_eq!(fill, &[2_u8]);
slice.consume(1);
// checks we can attempt to read from a now-empty reader.
let fill = BufRead::fill_buf(&mut slice).unwrap();
assert!(fill.is_empty());
}
#[test]
#[cfg(feature = "alloc")]
fn read_to_limit_greater_than_total_length() {
let s = "16-byte-string!!".to_string();
let mut reader = Cursor::new(&s);
let mut buf = vec![];
// 32 is greater than the reader length.
let read = reader.read_to_limit(&mut buf, 32).expect("failed to read to limit");
assert_eq!(read, s.len());
assert_eq!(&buf, s.as_bytes())
}
#[test]
#[cfg(feature = "alloc")]
fn read_to_limit_less_than_total_length() {
let s = "16-byte-string!!".to_string();
let mut reader = Cursor::new(&s);
let mut buf = vec![];
let read = reader.read_to_limit(&mut buf, 2).expect("failed to read to limit");
assert_eq!(read, 2);
assert_eq!(&buf, "16".as_bytes())
}
#[test]
#[cfg(feature = "std")]
fn set_position_past_end_read_returns_eof() {
const BUF_LEN: usize = 64; // Just a small buffer.
let mut buf = [0_u8; BUF_LEN]; // We never actually write to this buffer.
let v = [1_u8; BUF_LEN];
// Sanity check the stdlib Cursor's behaviour.
let mut c = std::io::Cursor::new(v);
for pos in [BUF_LEN, BUF_LEN + 1, BUF_LEN * 2] {
c.set_position(pos as u64);
let read = c.read(&mut buf).unwrap();
assert_eq!(read, 0);
assert_eq!(buf[0], 0x00); // Double check that buffer state is sane.
}
let mut c = Cursor::new(v);
for pos in [BUF_LEN, BUF_LEN + 1, BUF_LEN * 2] {
c.set_position(pos as u64);
let read = c.read(&mut buf).unwrap();
assert_eq!(read, 0);
assert_eq!(buf[0], 0x00); // Double check that buffer state is sane.
}
}
#[test]
fn read_into_zero_length_buffer() {
use crate::Read as _;
const BUF_LEN: usize = 64;
let data = [1_u8; BUF_LEN];
let mut buf = [0_u8; BUF_LEN];
let mut slice = data.as_ref();
let mut take = Read::take(&mut slice, 32);
let read = take.read(&mut buf[0..0]).unwrap();
assert_eq!(read, 0);
assert_eq!(buf[0], 0x00); // Check the buffer didn't get touched.
}
#[test]
#[cfg(feature = "alloc")]
fn take_and_read_to_end() {
const BUF_LEN: usize = 64;
let data = [1_u8; BUF_LEN];
let mut slice = data.as_ref();
let mut take = Read::take(&mut slice, 32);
let mut v = Vec::new();
let read = take.read_to_end(&mut v).unwrap();
assert_eq!(read, 32);
assert_eq!(data[0..32], v[0..32]);
}
}