rust-bitcoin-unsafe-fast/bitcoin/src/blockdata/script/borrowed.rs

721 lines
28 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: CC0-1.0
use core::fmt;
use core::ops::{
Bound, Index, Range, RangeFrom, RangeFull, RangeInclusive, RangeTo, RangeToInclusive,
};
use secp256k1::{Secp256k1, Verification};
use super::witness_version::WitnessVersion;
use super::{
bytes_to_asm_fmt, Builder, Instruction, InstructionIndices, Instructions, PushBytes,
RedeemScriptSizeError, ScriptBuf, ScriptHash, WScriptHash, WitnessScriptSizeError,
};
use crate::consensus::Encodable;
use crate::key::{PublicKey, UntweakedPublicKey, WPubkeyHash};
use crate::opcodes::all::*;
use crate::opcodes::{self, Opcode};
use crate::policy::DUST_RELAY_TX_FEE;
use crate::prelude::{sink, Box, DisplayHex, String, ToOwned, Vec};
use crate::taproot::{LeafVersion, TapLeafHash, TapNodeHash};
use crate::FeeRate;
/// Bitcoin script slice.
///
/// *[See also the `bitcoin::script` module](super).*
///
/// `Script` is a script slice, the most primitive script type. It's usually seen in its borrowed
/// form `&Script`. It is always encoded as a series of bytes representing the opcodes and data
/// pushes.
///
/// ## Validity
///
/// `Script` does not have any validity invariants - it's essentially just a marked slice of
/// bytes. This is similar to [`Path`](std::path::Path) vs [`OsStr`](std::ffi::OsStr) where they
/// are trivially cast-able to each-other and `Path` doesn't guarantee being a usable FS path but
/// having a newtype still has value because of added methods, readability and basic type checking.
///
/// Although at least data pushes could be checked not to overflow the script, bad scripts are
/// allowed to be in a transaction (outputs just become unspendable) and there even are such
/// transactions in the chain. Thus we must allow such scripts to be placed in the transaction.
///
/// ## Slicing safety
///
/// Slicing is similar to how `str` works: some ranges may be incorrect and indexing by
/// `usize` is not supported. However, as opposed to `std`, we have no way of checking
/// correctness without causing linear complexity so there are **no panics on invalid
/// ranges!** If you supply an invalid range, you'll get a garbled script.
///
/// The range is considered valid if it's at a boundary of instruction. Care must be taken
/// especially with push operations because you could get a reference to arbitrary
/// attacker-supplied bytes that look like a valid script.
///
/// It is recommended to use `.instructions()` method to get an iterator over script
/// instructions and work with that instead.
///
/// ## Memory safety
///
/// The type is `#[repr(transparent)]` for internal purposes only!
/// No consumer crate may rely on the representation of the struct!
///
/// ## References
///
///
/// ### Bitcoin Core References
///
/// * [CScript definition](https://github.com/bitcoin/bitcoin/blob/d492dc1cdaabdc52b0766bf4cba4bd73178325d0/src/script/script.h#L410)
///
#[derive(PartialOrd, Ord, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct Script(pub(in crate::blockdata::script) [u8]);
impl ToOwned for Script {
type Owned = ScriptBuf;
fn to_owned(&self) -> Self::Owned { ScriptBuf(self.0.to_owned()) }
}
impl Script {
/// Creates a new empty script.
#[inline]
pub fn new() -> &'static Script { Script::from_bytes(&[]) }
/// Treat byte slice as `Script`
#[inline]
pub fn from_bytes(bytes: &[u8]) -> &Script {
// SAFETY: copied from `std`
// The pointer was just created from a reference which is still alive.
// Casting slice pointer to a transparent struct wrapping that slice is sound (same
// layout).
unsafe { &*(bytes as *const [u8] as *const Script) }
}
/// Treat mutable byte slice as `Script`
#[inline]
pub fn from_bytes_mut(bytes: &mut [u8]) -> &mut Script {
// SAFETY: copied from `std`
// The pointer was just created from a reference which is still alive.
// Casting slice pointer to a transparent struct wrapping that slice is sound (same
// layout).
// Function signature prevents callers from accessing `bytes` while the returned reference
// is alive.
unsafe { &mut *(bytes as *mut [u8] as *mut Script) }
}
/// Returns the script data as a byte slice.
#[inline]
pub fn as_bytes(&self) -> &[u8] { &self.0 }
/// Returns the script data as a mutable byte slice.
#[inline]
pub fn as_mut_bytes(&mut self) -> &mut [u8] { &mut self.0 }
/// Creates a new script builder
pub fn builder() -> Builder { Builder::new() }
/// Returns 160-bit hash of the script for P2SH outputs.
#[inline]
pub fn script_hash(&self) -> Result<ScriptHash, RedeemScriptSizeError> {
ScriptHash::from_script(self)
}
/// Returns 256-bit hash of the script for P2WSH outputs.
#[inline]
pub fn wscript_hash(&self) -> Result<WScriptHash, WitnessScriptSizeError> {
WScriptHash::from_script(self)
}
/// Computes leaf hash of tapscript.
#[inline]
pub fn tapscript_leaf_hash(&self) -> TapLeafHash {
TapLeafHash::from_script(self, LeafVersion::TapScript)
}
/// Returns the length in bytes of the script.
#[inline]
pub fn len(&self) -> usize { self.0.len() }
/// Returns whether the script is the empty script.
#[inline]
pub fn is_empty(&self) -> bool { self.0.is_empty() }
/// Returns a copy of the script data.
#[inline]
pub fn to_bytes(&self) -> Vec<u8> { self.0.to_owned() }
/// Returns an iterator over script bytes.
#[inline]
pub fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) }
/// Computes the P2WSH output corresponding to this witnessScript (aka the "witness redeem
/// script").
#[inline]
pub fn to_p2wsh(&self) -> Result<ScriptBuf, WitnessScriptSizeError> {
self.wscript_hash().map(ScriptBuf::new_p2wsh)
}
/// Computes P2TR output with a given internal key and a single script spending path equal to
/// the current script, assuming that the script is a Tapscript.
#[inline]
pub fn to_p2tr<C: Verification>(
&self,
secp: &Secp256k1<C>,
internal_key: UntweakedPublicKey,
) -> ScriptBuf {
let leaf_hash = self.tapscript_leaf_hash();
let merkle_root = TapNodeHash::from(leaf_hash);
ScriptBuf::new_p2tr(secp, internal_key, Some(merkle_root))
}
/// Returns witness version of the script, if any, assuming the script is a `scriptPubkey`.
///
/// # Returns
///
/// The witness version if this script is found to conform to the SegWit rules:
///
/// > A scriptPubKey (or redeemScript as defined in BIP16/P2SH) that consists of a 1-byte
/// > push opcode (for 0 to 16) followed by a data push between 2 and 40 bytes gets a new
/// > special meaning. The value of the first push is called the "version byte". The following
/// > byte vector pushed is called the "witness program".
#[inline]
pub fn witness_version(&self) -> Option<WitnessVersion> {
let script_len = self.0.len();
if !(4..=42).contains(&script_len) {
return None;
}
let ver_opcode = Opcode::from(self.0[0]); // Version 0 or PUSHNUM_1-PUSHNUM_16
let push_opbyte = self.0[1]; // Second byte push opcode 2-40 bytes
if push_opbyte < OP_PUSHBYTES_2.to_u8() || push_opbyte > OP_PUSHBYTES_40.to_u8() {
return None;
}
// Check that the rest of the script has the correct size
if script_len - 2 != push_opbyte as usize {
return None;
}
WitnessVersion::try_from(ver_opcode).ok()
}
/// Checks whether a script pubkey is a P2SH output.
#[inline]
pub fn is_p2sh(&self) -> bool {
self.0.len() == 23
&& self.0[0] == OP_HASH160.to_u8()
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
&& self.0[22] == OP_EQUAL.to_u8()
}
/// Checks whether a script pubkey is a P2PKH output.
#[inline]
pub fn is_p2pkh(&self) -> bool {
self.0.len() == 25
&& self.0[0] == OP_DUP.to_u8()
&& self.0[1] == OP_HASH160.to_u8()
&& self.0[2] == OP_PUSHBYTES_20.to_u8()
&& self.0[23] == OP_EQUALVERIFY.to_u8()
&& self.0[24] == OP_CHECKSIG.to_u8()
}
/// Checks whether a script is push only.
///
/// Note: `OP_RESERVED` (`0x50`) and all the OP_PUSHNUM operations
/// are considered push operations.
#[inline]
pub fn is_push_only(&self) -> bool {
for inst in self.instructions() {
match inst {
Err(_) => return false,
Ok(Instruction::PushBytes(_)) => {}
Ok(Instruction::Op(op)) if op.to_u8() <= 0x60 => {}
// From Bitcoin Core
// if (opcode > OP_PUSHNUM_16 (0x60)) return false
Ok(Instruction::Op(_)) => return false,
}
}
true
}
/// Checks whether a script pubkey is a P2PK output.
///
/// You can obtain the public key, if its valid,
/// by calling [`p2pk_public_key()`](Self::p2pk_public_key)
#[inline]
pub fn is_p2pk(&self) -> bool { self.p2pk_pubkey_bytes().is_some() }
/// Returns the public key if this script is P2PK with a **valid** public key.
///
/// This may return `None` even when [`is_p2pk()`](Self::is_p2pk) returns true.
/// This happens when the public key is invalid (e.g. the point not being on the curve).
/// In this situation the script is unspendable.
#[inline]
pub fn p2pk_public_key(&self) -> Option<PublicKey> {
PublicKey::from_slice(self.p2pk_pubkey_bytes()?).ok()
}
/// Returns the bytes of the (possibly invalid) public key if this script is P2PK.
#[inline]
pub(in crate::blockdata::script) fn p2pk_pubkey_bytes(&self) -> Option<&[u8]> {
match self.len() {
67 if self.0[0] == OP_PUSHBYTES_65.to_u8() && self.0[66] == OP_CHECKSIG.to_u8() =>
Some(&self.0[1..66]),
35 if self.0[0] == OP_PUSHBYTES_33.to_u8() && self.0[34] == OP_CHECKSIG.to_u8() =>
Some(&self.0[1..34]),
_ => None,
}
}
/// Checks whether a script pubkey is a bare multisig output.
///
/// In a bare multisig pubkey script the keys are not hashed, the script
/// is of the form:
///
/// `2 <pubkey1> <pubkey2> <pubkey3> 3 OP_CHECKMULTISIG`
#[inline]
pub fn is_multisig(&self) -> bool {
let required_sigs;
let mut instructions = self.instructions();
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if let Some(pushnum) = op.decode_pushnum() {
required_sigs = pushnum;
} else {
return false;
}
} else {
return false;
}
let mut num_pubkeys: u8 = 0;
while let Some(Ok(instruction)) = instructions.next() {
match instruction {
Instruction::PushBytes(_) => {
num_pubkeys += 1;
}
Instruction::Op(op) => {
if let Some(pushnum) = op.decode_pushnum() {
if pushnum != num_pubkeys {
return false;
}
}
break;
}
}
}
if required_sigs > num_pubkeys {
return false;
}
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if op != OP_CHECKMULTISIG {
return false;
}
} else {
return false;
}
instructions.next().is_none()
}
/// Checks whether a script pubkey is a Segregated Witness (segwit) program.
#[inline]
pub fn is_witness_program(&self) -> bool { self.witness_version().is_some() }
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
pub fn is_p2wsh(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
pub fn is_p2wpkh(&self) -> bool {
self.0.len() == 22
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.0[1] == OP_PUSHBYTES_20.to_u8()
}
/// Checks whether a script pubkey is a P2TR output.
#[inline]
pub fn is_p2tr(&self) -> bool {
self.0.len() == 34
&& self.witness_version() == Some(WitnessVersion::V1)
&& self.0[1] == OP_PUSHBYTES_32.to_u8()
}
/// Check if this is a consensus-valid OP_RETURN output.
///
/// To validate if the OP_RETURN obeys Bitcoin Core's current standardness policy, use
/// [`is_standard_op_return()`](Self::is_standard_op_return) instead.
#[inline]
pub fn is_op_return(&self) -> bool {
match self.0.first() {
Some(b) => *b == OP_RETURN.to_u8(),
None => false,
}
}
/// Check if this is an OP_RETURN that obeys Bitcoin Core standardness policy.
///
/// What this function considers to be standard may change without warning pending Bitcoin Core
/// changes.
#[inline]
pub fn is_standard_op_return(&self) -> bool { self.is_op_return() && self.0.len() <= 80 }
/// Checks whether a script is trivially known to have no satisfying input.
///
/// This method has potentially confusing semantics and an unclear purpose, so it's going to be
/// removed. Use `is_op_return` if you want `OP_RETURN` semantics.
#[deprecated(
since = "0.32.0",
note = "The method has potentially confusing semantics and is going to be removed, you might want `is_op_return`"
)]
#[inline]
pub fn is_provably_unspendable(&self) -> bool {
use crate::opcodes::Class::{IllegalOp, ReturnOp};
match self.0.first() {
Some(b) => {
let first = Opcode::from(*b);
let class = first.classify(opcodes::ClassifyContext::Legacy);
class == ReturnOp || class == IllegalOp
}
None => false,
}
}
/// Computes the P2SH output corresponding to this redeem script.
pub fn to_p2sh(&self) -> Result<ScriptBuf, RedeemScriptSizeError> {
self.script_hash().map(ScriptBuf::new_p2sh)
}
/// Returns the script code used for spending a P2WPKH output if this script is a script pubkey
/// for a P2WPKH output. The `scriptCode` is described in [BIP143].
///
/// [BIP143]: <https://github.com/bitcoin/bips/blob/99701f68a88ce33b2d0838eb84e115cef505b4c2/bip-0143.mediawiki>
pub fn p2wpkh_script_code(&self) -> Option<ScriptBuf> {
if self.is_p2wpkh() {
// The `self` script is 0x00, 0x14, <pubkey_hash>
let bytes = &self.0[2..];
let wpkh = WPubkeyHash::from_slice(bytes).expect("length checked in is_p2wpkh()");
Some(ScriptBuf::p2wpkh_script_code(wpkh))
} else {
None
}
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on todays Bitcoin network.
#[deprecated(since = "0.32.0", note = "use minimal_non_dust and friends")]
pub fn dust_value(&self) -> crate::Amount { self.minimal_non_dust() }
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function uses the default value of 0.00003 BTC/kB (3 sat/vByte).
///
/// To use a custom value, use [`minimal_non_dust_custom`].
///
/// [`minimal_non_dust_custom`]: Script::minimal_non_dust_custom
pub fn minimal_non_dust(&self) -> crate::Amount {
self.minimal_non_dust_inner(DUST_RELAY_TX_FEE.into())
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function lets you set the fee rate used in dust calculation.
///
/// The current default value in Bitcoin Core (as of v26) is 3 sat/vByte.
///
/// To use the default Bitcoin Core value, use [`minimal_non_dust`].
///
/// [`minimal_non_dust`]: Script::minimal_non_dust
pub fn minimal_non_dust_custom(&self, dust_relay_fee: FeeRate) -> crate::Amount {
self.minimal_non_dust_inner(dust_relay_fee.to_sat_per_kwu() * 4)
}
fn minimal_non_dust_inner(&self, dust_relay_fee: u64) -> crate::Amount {
// This must never be lower than Bitcoin Core's GetDustThreshold() (as of v0.21) as it may
// otherwise allow users to create transactions which likely can never be broadcast/confirmed.
let sats = dust_relay_fee
.checked_mul(if self.is_op_return() {
0
} else if self.is_witness_program() {
32 + 4 + 1 + (107 / 4) + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error") as u64 // The serialized size of this script_pubkey
} else {
32 + 4 + 1 + 107 + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error") as u64 // The serialized size of this script_pubkey
})
.expect("dust_relay_fee or script length should not be absurdly large")
/ 1000; // divide by 1000 like in Core to get value as it cancels out DEFAULT_MIN_RELAY_TX_FEE
// Note: We ensure the division happens at the end, since Core performs the division at the end.
// This will make sure none of the implicit floor operations mess with the value.
crate::Amount::from_sat(sats)
}
/// Counts the sigops for this Script using accurate counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "accurate" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for N sigops where N is the number of pubkeys used in the
/// multisig. However, it will count for 20 sigops if CHECKMULTISIG is not preceded by an
/// OP_PUSHNUM from 1 - 16 (this would be an invalid script)
///
/// Bitcoin Core uses accurate counting for sigops contained within redeemScripts (P2SH)
/// and witnessScripts (P2WSH) only. It uses legacy for sigops in scriptSigs and scriptPubkeys.
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
pub fn count_sigops(&self) -> usize { self.count_sigops_internal(true) }
/// Counts the sigops for this Script using legacy counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "legacy" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for 20 sigops.
///
/// Bitcoin Core uses legacy counting for sigops contained within scriptSigs and
/// scriptPubkeys. It uses accurate for redeemScripts (P2SH) and witnessScripts (P2WSH).
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
pub fn count_sigops_legacy(&self) -> usize { self.count_sigops_internal(false) }
fn count_sigops_internal(&self, accurate: bool) -> usize {
let mut n = 0;
let mut pushnum_cache = None;
for inst in self.instructions() {
match inst {
Ok(Instruction::Op(opcode)) => {
match opcode {
// p2pk, p2pkh
OP_CHECKSIG | OP_CHECKSIGVERIFY => {
n += 1;
}
OP_CHECKMULTISIG | OP_CHECKMULTISIGVERIFY => {
match (accurate, pushnum_cache) {
(true, Some(pushnum)) => {
// Add the number of pubkeys in the multisig as sigop count
n += usize::from(pushnum);
}
_ => {
// MAX_PUBKEYS_PER_MULTISIG from Bitcoin Core
// https://github.com/bitcoin/bitcoin/blob/v25.0/src/script/script.h#L29-L30
n += 20;
}
}
}
_ => {
pushnum_cache = opcode.decode_pushnum();
}
}
}
Ok(Instruction::PushBytes(_)) => {
pushnum_cache = None;
}
// In Bitcoin Core it does `if (!GetOp(pc, opcode)) break;`
Err(_) => break,
}
}
n
}
/// Iterates over the script instructions.
///
/// Each returned item is a nested enum covering opcodes, datapushes and errors.
/// At most one error will be returned and then the iterator will end. To instead iterate over
/// the script as sequence of bytes call the [`bytes`](Self::bytes) method.
///
/// To force minimal pushes, use [`instructions_minimal`](Self::instructions_minimal).
#[inline]
pub fn instructions(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: false }
}
/// Iterates over the script instructions while enforcing minimal pushes.
///
/// This is similar to [`instructions`](Self::instructions) but an error is returned if a push
/// is not minimal.
#[inline]
pub fn instructions_minimal(&self) -> Instructions {
Instructions { data: self.0.iter(), enforce_minimal: true }
}
/// Iterates over the script instructions and their indices.
///
/// Unless the script contains an error, the returned item consists of an index pointing to the
/// position in the script where the instruction begins and the decoded instruction - either an
/// opcode or data push.
///
/// To force minimal pushes, use [`Self::instruction_indices_minimal`].
#[inline]
pub fn instruction_indices(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions())
}
/// Iterates over the script instructions and their indices while enforcing minimal pushes.
///
/// This is similar to [`instruction_indices`](Self::instruction_indices) but an error is
/// returned if a push is not minimal.
#[inline]
pub fn instruction_indices_minimal(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions_minimal())
}
/// Writes the human-readable assembly representation of the script to the formatter.
pub fn fmt_asm(&self, f: &mut dyn fmt::Write) -> fmt::Result {
bytes_to_asm_fmt(self.as_ref(), f)
}
/// Returns the human-readable assembly representation of the script.
pub fn to_asm_string(&self) -> String {
let mut buf = String::new();
self.fmt_asm(&mut buf).unwrap();
buf
}
/// Formats the script as lower-case hex.
///
/// This is a more convenient and performant way to write `format!("{:x}", script)`.
/// For better performance you should generally prefer displaying the script but if `String` is
/// required (this is common in tests) this method can be used.
pub fn to_hex_string(&self) -> String { self.as_bytes().to_lower_hex_string() }
/// Returns the first opcode of the script (if there is any).
pub fn first_opcode(&self) -> Option<Opcode> {
self.as_bytes().first().copied().map(From::from)
}
/// Iterates the script to find the last opcode.
///
/// Returns `None` is the instruction is data push or if the script is empty.
pub(in crate::blockdata::script) fn last_opcode(&self) -> Option<Opcode> {
match self.instructions().last() {
Some(Ok(Instruction::Op(op))) => Some(op),
_ => None,
}
}
/// Iterates the script to find the last pushdata.
///
/// Returns `None` if the instruction is an opcode or if the script is empty.
pub(crate) fn last_pushdata(&self) -> Option<&PushBytes> {
match self.instructions().last() {
// Handles op codes up to (but excluding) OP_PUSHNUM_NEG.
Some(Ok(Instruction::PushBytes(bytes))) => Some(bytes),
// OP_16 (0x60) and lower are considered "pushes" by Bitcoin Core (excl. OP_RESERVED).
// However we are only interested in the pushdata so we can ignore them.
_ => None,
}
}
/// Converts a [`Box<Script>`](Box) into a [`ScriptBuf`] without copying or allocating.
#[must_use = "`self` will be dropped if the result is not used"]
pub fn into_script_buf(self: Box<Self>) -> ScriptBuf {
let rw = Box::into_raw(self) as *mut [u8];
// SAFETY: copied from `std`
// The pointer was just created from a box without deallocating
// Casting a transparent struct wrapping a slice to the slice pointer is sound (same
// layout).
let inner = unsafe { Box::from_raw(rw) };
ScriptBuf(Vec::from(inner))
}
}
/// Iterator over bytes of a script
pub struct Bytes<'a>(core::iter::Copied<core::slice::Iter<'a, u8>>);
impl Iterator for Bytes<'_> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<Self::Item> { self.0.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.0.size_hint() }
#[inline]
fn nth(&mut self, n: usize) -> Option<Self::Item> { self.0.nth(n) }
}
impl DoubleEndedIterator for Bytes<'_> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> { self.0.next_back() }
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> { self.0.nth_back(n) }
}
impl ExactSizeIterator for Bytes<'_> {}
impl core::iter::FusedIterator for Bytes<'_> {}
macro_rules! delegate_index {
($($type:ty),* $(,)?) => {
$(
/// Script subslicing operation - read [slicing safety](#slicing-safety)!
impl Index<$type> for Script {
type Output = Self;
#[inline]
fn index(&self, index: $type) -> &Self::Output {
Self::from_bytes(&self.0[index])
}
}
)*
}
}
delegate_index!(
Range<usize>,
RangeFrom<usize>,
RangeTo<usize>,
RangeFull,
RangeInclusive<usize>,
RangeToInclusive<usize>,
(Bound<usize>, Bound<usize>)
);
#[cfg(test)]
mod tests {
use super::*;
use crate::script::witness_program::WitnessProgram;
#[test]
fn shortest_witness_program() {
let bytes = [0x00; 2]; // Arbitrary bytes, witprog must be between 2 and 40.
let version = WitnessVersion::V15; // Arbitrary version number, intentionally not 0 or 1.
let p = WitnessProgram::new(version, &bytes).expect("failed to create witness program");
let script = ScriptBuf::new_witness_program(&p);
assert_eq!(script.witness_version(), Some(version));
}
#[test]
fn longest_witness_program() {
let bytes = [0x00; 40]; // Arbitrary bytes, witprog must be between 2 and 40.
let version = WitnessVersion::V16; // Arbitrary version number, intentionally not 0 or 1.
let p = WitnessProgram::new(version, &bytes).expect("failed to create witness program");
let script = ScriptBuf::new_witness_program(&p);
assert_eq!(script.witness_version(), Some(version));
}
}