rust-bitcoin-unsafe-fast/bitcoin/src/blockdata/script/borrowed.rs

511 lines
21 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: CC0-1.0
use core::fmt;
use internals::ToU64 as _;
use super::witness_version::WitnessVersion;
use super::{
Builder, Instruction, InstructionIndices, Instructions, PushBytes, RedeemScriptSizeError,
ScriptHash, WScriptHash, WitnessScriptSizeError,
};
use crate::consensus::Encodable;
use crate::opcodes::all::*;
use crate::opcodes::{self, Opcode};
use crate::policy::DUST_RELAY_TX_FEE;
use crate::prelude::{sink, DisplayHex, String, ToString};
use crate::taproot::{LeafVersion, TapLeafHash};
use crate::FeeRate;
#[rustfmt::skip] // Keep public re-exports separate.
#[doc(inline)]
pub use primitives::script::Script;
crate::internal_macros::define_extension_trait! {
/// Extension functionality for the [`Script`] type.
pub trait ScriptExt impl for Script {
/// Returns an iterator over script bytes.
#[inline]
fn bytes(&self) -> Bytes<'_> { Bytes(self.as_bytes().iter().copied()) }
/// Creates a new script builder
fn builder() -> Builder { Builder::new() }
/// Returns 160-bit hash of the script for P2SH outputs.
#[inline]
fn script_hash(&self) -> Result<ScriptHash, RedeemScriptSizeError> {
ScriptHash::from_script(self)
}
/// Returns 256-bit hash of the script for P2WSH outputs.
#[inline]
fn wscript_hash(&self) -> Result<WScriptHash, WitnessScriptSizeError> {
WScriptHash::from_script(self)
}
/// Computes leaf hash of tapscript.
#[inline]
fn tapscript_leaf_hash(&self) -> TapLeafHash {
TapLeafHash::from_script(self, LeafVersion::TapScript)
}
/// Returns witness version of the script, if any, assuming the script is a `scriptPubkey`.
///
/// # Returns
///
/// The witness version if this script is found to conform to the SegWit rules:
///
/// > A scriptPubKey (or redeemScript as defined in BIP16/P2SH) that consists of a 1-byte
/// > push opcode (for 0 to 16) followed by a data push between 2 and 40 bytes gets a new
/// > special meaning. The value of the first push is called the "version byte". The following
/// > byte vector pushed is called the "witness program".
#[inline]
fn witness_version(&self) -> Option<WitnessVersion> {
let script_len = self.len();
if !(4..=42).contains(&script_len) {
return None;
}
let ver_opcode = Opcode::from(self.as_bytes()[0]); // Version 0 or PUSHNUM_1-PUSHNUM_16
let push_opbyte = self.as_bytes()[1]; // Second byte push opcode 2-40 bytes
if push_opbyte < OP_PUSHBYTES_2.to_u8() || push_opbyte > OP_PUSHBYTES_40.to_u8() {
return None;
}
// Check that the rest of the script has the correct size
if script_len - 2 != push_opbyte as usize {
return None;
}
WitnessVersion::try_from(ver_opcode).ok()
}
/// Checks whether a script pubkey is a P2SH output.
#[inline]
fn is_p2sh(&self) -> bool {
self.len() == 23
&& self.as_bytes()[0] == OP_HASH160.to_u8()
&& self.as_bytes()[1] == OP_PUSHBYTES_20.to_u8()
&& self.as_bytes()[22] == OP_EQUAL.to_u8()
}
/// Checks whether a script pubkey is a P2PKH output.
#[inline]
fn is_p2pkh(&self) -> bool {
self.len() == 25
&& self.as_bytes()[0] == OP_DUP.to_u8()
&& self.as_bytes()[1] == OP_HASH160.to_u8()
&& self.as_bytes()[2] == OP_PUSHBYTES_20.to_u8()
&& self.as_bytes()[23] == OP_EQUALVERIFY.to_u8()
&& self.as_bytes()[24] == OP_CHECKSIG.to_u8()
}
/// Checks whether a script is push only.
///
/// Note: `OP_RESERVED` (`0x50`) and all the OP_PUSHNUM operations
/// are considered push operations.
#[inline]
fn is_push_only(&self) -> bool {
for inst in self.instructions() {
match inst {
Err(_) => return false,
Ok(Instruction::PushBytes(_)) => {}
Ok(Instruction::Op(op)) if op.to_u8() <= 0x60 => {}
// From Bitcoin Core
// if (opcode > OP_PUSHNUM_16 (0x60)) return false
Ok(Instruction::Op(_)) => return false,
}
}
true
}
/// Checks whether a script pubkey is a bare multisig output.
///
/// In a bare multisig pubkey script the keys are not hashed, the script
/// is of the form:
///
/// `2 <pubkey1> <pubkey2> <pubkey3> 3 OP_CHECKMULTISIG`
#[inline]
fn is_multisig(&self) -> bool {
let required_sigs;
let mut instructions = self.instructions();
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if let Some(pushnum) = op.decode_pushnum() {
required_sigs = pushnum;
} else {
return false;
}
} else {
return false;
}
let mut num_pubkeys: u8 = 0;
while let Some(Ok(instruction)) = instructions.next() {
match instruction {
Instruction::PushBytes(_) => {
num_pubkeys += 1;
}
Instruction::Op(op) => {
if let Some(pushnum) = op.decode_pushnum() {
if pushnum != num_pubkeys {
return false;
}
}
break;
}
}
}
if required_sigs > num_pubkeys {
return false;
}
if let Some(Ok(Instruction::Op(op))) = instructions.next() {
if op != OP_CHECKMULTISIG {
return false;
}
} else {
return false;
}
instructions.next().is_none()
}
/// Checks whether a script pubkey is a Segregated Witness (segwit) program.
#[inline]
fn is_witness_program(&self) -> bool { self.witness_version().is_some() }
/// Checks whether a script pubkey is a P2WSH output.
#[inline]
fn is_p2wsh(&self) -> bool {
self.len() == 34
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.as_bytes()[1] == OP_PUSHBYTES_32.to_u8()
}
/// Checks whether a script pubkey is a P2WPKH output.
#[inline]
fn is_p2wpkh(&self) -> bool {
self.len() == 22
&& self.witness_version() == Some(WitnessVersion::V0)
&& self.as_bytes()[1] == OP_PUSHBYTES_20.to_u8()
}
/// Checks whether a script pubkey is a P2TR output.
#[inline]
fn is_p2tr(&self) -> bool {
self.len() == 34
&& self.witness_version() == Some(WitnessVersion::V1)
&& self.as_bytes()[1] == OP_PUSHBYTES_32.to_u8()
}
/// Check if this is a consensus-valid OP_RETURN output.
///
/// To validate if the OP_RETURN obeys Bitcoin Core's current standardness policy, use
/// [`is_standard_op_return()`](Self::is_standard_op_return) instead.
#[inline]
fn is_op_return(&self) -> bool {
match self.as_bytes().first() {
Some(b) => *b == OP_RETURN.to_u8(),
None => false,
}
}
/// Check if this is an OP_RETURN that obeys Bitcoin Core standardness policy.
///
/// What this function considers to be standard may change without warning pending Bitcoin Core
/// changes.
#[inline]
fn is_standard_op_return(&self) -> bool { self.is_op_return() && self.len() <= 80 }
/// Checks whether a script is trivially known to have no satisfying input.
///
/// This method has potentially confusing semantics and an unclear purpose, so it's going to be
/// removed. Use `is_op_return` if you want `OP_RETURN` semantics.
#[deprecated(since = "0.32.0", note = "use `is_op_return` instead")]
#[inline]
fn is_provably_unspendable(&self) -> bool {
use crate::opcodes::Class::{IllegalOp, ReturnOp};
match self.as_bytes().first() {
Some(b) => {
let first = Opcode::from(*b);
let class = first.classify(opcodes::ClassifyContext::Legacy);
class == ReturnOp || class == IllegalOp
}
None => false,
}
}
/// Get redeemScript following BIP16 rules regarding P2SH spending.
///
/// This does not guarantee that this represents a P2SH input [`Script`].
/// It merely gets the last push of the script.
///
/// Use [`Script::is_p2sh`] on the scriptPubKey to check whether it is actually a P2SH script.
fn redeem_script(&self) -> Option<&Script> {
// Script must consist entirely of pushes.
if self.instructions().any(|i| i.is_err() || i.unwrap().push_bytes().is_none()) {
return None;
}
if let Some(Ok(Instruction::PushBytes(b))) = self.instructions().last() {
Some(Script::from_bytes(b.as_bytes()))
} else {
None
}
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on todays Bitcoin network.
#[deprecated(since = "0.32.0", note = "use `minimal_non_dust` etc. instead")]
fn dust_value(&self) -> crate::Amount { self.minimal_non_dust() }
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function uses the default value of 0.00003 BTC/kB (3 sat/vByte).
///
/// To use a custom value, use [`minimal_non_dust_custom`].
///
/// [`minimal_non_dust_custom`]: Script::minimal_non_dust_custom
fn minimal_non_dust(&self) -> crate::Amount {
self.minimal_non_dust_internal(DUST_RELAY_TX_FEE.into())
}
/// Returns the minimum value an output with this script should have in order to be
/// broadcastable on today's Bitcoin network.
///
/// Dust depends on the -dustrelayfee value of the Bitcoin Core node you are broadcasting to.
/// This function lets you set the fee rate used in dust calculation.
///
/// The current default value in Bitcoin Core (as of v26) is 3 sat/vByte.
///
/// To use the default Bitcoin Core value, use [`minimal_non_dust`].
///
/// [`minimal_non_dust`]: Script::minimal_non_dust
fn minimal_non_dust_custom(&self, dust_relay_fee: FeeRate) -> crate::Amount {
self.minimal_non_dust_internal(dust_relay_fee.to_sat_per_kwu() * 4)
}
/// Counts the sigops for this Script using accurate counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "accurate" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for N sigops where N is the number of pubkeys used in the
/// multisig. However, it will count for 20 sigops if CHECKMULTISIG is not preceded by an
/// OP_PUSHNUM from 1 - 16 (this would be an invalid script)
///
/// Bitcoin Core uses accurate counting for sigops contained within redeemScripts (P2SH)
/// and witnessScripts (P2WSH) only. It uses legacy for sigops in scriptSigs and scriptPubkeys.
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
fn count_sigops(&self) -> usize { self.count_sigops_internal(true) }
/// Counts the sigops for this Script using legacy counting.
///
/// In Bitcoin Core, there are two ways to count sigops, "accurate" and "legacy".
/// This method uses "legacy" counting. This means that OP_CHECKMULTISIG and its
/// verify variant count for 20 sigops.
///
/// Bitcoin Core uses legacy counting for sigops contained within scriptSigs and
/// scriptPubkeys. It uses accurate for redeemScripts (P2SH) and witnessScripts (P2WSH).
///
/// (Note: Taproot scripts don't count toward the sigop count of the block,
/// nor do they have CHECKMULTISIG operations. This function does not count OP_CHECKSIGADD,
/// so do not use this to try and estimate if a Taproot script goes over the sigop budget.)
fn count_sigops_legacy(&self) -> usize { self.count_sigops_internal(false) }
/// Iterates over the script instructions.
///
/// Each returned item is a nested enum covering opcodes, datapushes and errors.
/// At most one error will be returned and then the iterator will end. To instead iterate over
/// the script as sequence of bytes call the [`bytes`](Self::bytes) method.
///
/// To force minimal pushes, use [`instructions_minimal`](Self::instructions_minimal).
#[inline]
fn instructions(&self) -> Instructions {
Instructions { data: self.as_bytes().iter(), enforce_minimal: false }
}
/// Iterates over the script instructions while enforcing minimal pushes.
///
/// This is similar to [`instructions`](Self::instructions) but an error is returned if a push
/// is not minimal.
#[inline]
fn instructions_minimal(&self) -> Instructions {
Instructions { data: self.as_bytes().iter(), enforce_minimal: true }
}
/// Iterates over the script instructions and their indices.
///
/// Unless the script contains an error, the returned item consists of an index pointing to the
/// position in the script where the instruction begins and the decoded instruction - either an
/// opcode or data push.
///
/// To force minimal pushes, use [`Self::instruction_indices_minimal`].
#[inline]
fn instruction_indices(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions())
}
/// Iterates over the script instructions and their indices while enforcing minimal pushes.
///
/// This is similar to [`instruction_indices`](Self::instruction_indices) but an error is
/// returned if a push is not minimal.
#[inline]
fn instruction_indices_minimal(&self) -> InstructionIndices {
InstructionIndices::from_instructions(self.instructions_minimal())
}
/// Writes the human-readable assembly representation of the script to the formatter.
#[deprecated(since = "TBD", note = "use the script's `Display` impl instead")]
fn fmt_asm(&self, f: &mut dyn fmt::Write) -> fmt::Result {
write!(f, "{}", self)
}
/// Returns the human-readable assembly representation of the script.
#[deprecated(since = "TBD", note = "use `to_string()` instead")]
fn to_asm_string(&self) -> String { self.to_string() }
/// Formats the script as lower-case hex.
///
/// This is a more convenient and performant way to write `format!("{:x}", script)`.
/// For better performance you should generally prefer displaying the script but if `String` is
/// required (this is common in tests) this method can be used.
fn to_hex_string(&self) -> String { self.as_bytes().to_lower_hex_string() }
/// Returns the first opcode of the script (if there is any).
fn first_opcode(&self) -> Option<Opcode> {
self.as_bytes().first().copied().map(From::from)
}
}
}
mod sealed {
pub trait Sealed {}
impl Sealed for super::Script {}
}
crate::internal_macros::define_extension_trait! {
pub(crate) trait ScriptExtPriv impl for Script {
fn minimal_non_dust_internal(&self, dust_relay_fee: u64) -> crate::Amount {
// This must never be lower than Bitcoin Core's GetDustThreshold() (as of v0.21) as it may
// otherwise allow users to create transactions which likely can never be broadcast/confirmed.
let sats = dust_relay_fee
.checked_mul(if self.is_op_return() {
0
} else if self.is_witness_program() {
32 + 4 + 1 + (107 / 4) + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
} else {
32 + 4 + 1 + 107 + 4 + // The spend cost copied from Core
8 + // The serialized size of the TxOut's amount field
self.consensus_encode(&mut sink()).expect("sinks don't error").to_u64() // The serialized size of this script_pubkey
})
.expect("dust_relay_fee or script length should not be absurdly large")
/ 1000; // divide by 1000 like in Core to get value as it cancels out DEFAULT_MIN_RELAY_TX_FEE
// Note: We ensure the division happens at the end, since Core performs the division at the end.
// This will make sure none of the implicit floor operations mess with the value.
crate::Amount::from_sat(sats)
}
fn count_sigops_internal(&self, accurate: bool) -> usize {
let mut n = 0;
let mut pushnum_cache = None;
for inst in self.instructions() {
match inst {
Ok(Instruction::Op(opcode)) => {
match opcode {
// p2pk, p2pkh
OP_CHECKSIG | OP_CHECKSIGVERIFY => {
n += 1;
}
OP_CHECKMULTISIG | OP_CHECKMULTISIGVERIFY => {
match (accurate, pushnum_cache) {
(true, Some(pushnum)) => {
// Add the number of pubkeys in the multisig as sigop count
n += usize::from(pushnum);
}
_ => {
// MAX_PUBKEYS_PER_MULTISIG from Bitcoin Core
// https://github.com/bitcoin/bitcoin/blob/v25.0/src/script/script.h#L29-L30
n += 20;
}
}
}
_ => {
pushnum_cache = opcode.decode_pushnum();
}
}
}
Ok(Instruction::PushBytes(_)) => {
pushnum_cache = None;
}
// In Bitcoin Core it does `if (!GetOp(pc, opcode)) break;`
Err(_) => break,
}
}
n
}
/// Iterates the script to find the last opcode.
///
/// Returns `None` is the instruction is data push or if the script is empty.
fn last_opcode(&self) -> Option<Opcode> {
match self.instructions().last() {
Some(Ok(Instruction::Op(op))) => Some(op),
_ => None,
}
}
/// Iterates the script to find the last pushdata.
///
/// Returns `None` if the instruction is an opcode or if the script is empty.
fn last_pushdata(&self) -> Option<&PushBytes> {
match self.instructions().last() {
// Handles op codes up to (but excluding) OP_PUSHNUM_NEG.
Some(Ok(Instruction::PushBytes(bytes))) => Some(bytes),
// OP_16 (0x60) and lower are considered "pushes" by Bitcoin Core (excl. OP_RESERVED).
// However we are only interested in the pushdata so we can ignore them.
_ => None,
}
}
}
}
/// Iterator over bytes of a script
pub struct Bytes<'a>(core::iter::Copied<core::slice::Iter<'a, u8>>);
impl Iterator for Bytes<'_> {
type Item = u8;
#[inline]
fn next(&mut self) -> Option<Self::Item> { self.0.next() }
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) { self.0.size_hint() }
#[inline]
fn nth(&mut self, n: usize) -> Option<Self::Item> { self.0.nth(n) }
}
impl DoubleEndedIterator for Bytes<'_> {
#[inline]
fn next_back(&mut self) -> Option<Self::Item> { self.0.next_back() }
#[inline]
fn nth_back(&mut self, n: usize) -> Option<Self::Item> { self.0.nth_back(n) }
}
impl ExactSizeIterator for Bytes<'_> {}
impl core::iter::FusedIterator for Bytes<'_> {}