rust-bitcoin-unsafe-fast/hashes/src/sha256t.rs

252 lines
8.5 KiB
Rust

// SPDX-License-Identifier: CC0-1.0
//! SHA256t implementation (tagged SHA256).
use core::cmp;
use core::marker::PhantomData;
use core::ops::Index;
use core::slice::SliceIndex;
use crate::{sha256, FromSliceError};
type HashEngine = sha256::HashEngine;
/// Trait representing a tag that can be used as a context for SHA256t hashes.
pub trait Tag {
/// Returns a hash engine that is pre-tagged and is ready to be used for the data.
fn engine() -> sha256::HashEngine;
}
/// Output of the SHA256t hash function.
#[repr(transparent)]
pub struct Hash<T: Tag>([u8; 32], PhantomData<T>);
#[cfg(feature = "schemars")]
impl<T: Tag> schemars::JsonSchema for Hash<T> {
fn schema_name() -> String { "Hash".to_owned() }
fn json_schema(gen: &mut schemars::gen::SchemaGenerator) -> schemars::schema::Schema {
let mut schema: schemars::schema::SchemaObject = <String>::json_schema(gen).into();
schema.string = Some(Box::new(schemars::schema::StringValidation {
max_length: Some(32 * 2),
min_length: Some(32 * 2),
pattern: Some("[0-9a-fA-F]+".to_owned()),
}));
schema.into()
}
}
impl<T: Tag> Hash<T> {
fn internal_new(arr: [u8; 32]) -> Self { Hash(arr, Default::default()) }
fn internal_engine() -> HashEngine { T::engine() }
/// Zero cost conversion between a fixed length byte array shared reference and
/// a shared reference to this Hash type.
pub fn from_bytes_ref(bytes: &[u8; 32]) -> &Self {
// Safety: Sound because Self is #[repr(transparent)] containing [u8; 32]
unsafe { &*(bytes as *const _ as *const Self) }
}
/// Zero cost conversion between a fixed length byte array exclusive reference and
/// an exclusive reference to this Hash type.
pub fn from_bytes_mut(bytes: &mut [u8; 32]) -> &mut Self {
// Safety: Sound because Self is #[repr(transparent)] containing [u8; 32]
unsafe { &mut *(bytes as *mut _ as *mut Self) }
}
}
impl<T: Tag> Copy for Hash<T> {}
impl<T: Tag> Clone for Hash<T> {
fn clone(&self) -> Self { *self }
}
impl<T: Tag> PartialEq for Hash<T> {
fn eq(&self, other: &Hash<T>) -> bool { self.0 == other.0 }
}
impl<T: Tag> Eq for Hash<T> {}
impl<T: Tag> Default for Hash<T> {
fn default() -> Self { Hash([0; 32], PhantomData) }
}
impl<T: Tag> PartialOrd for Hash<T> {
fn partial_cmp(&self, other: &Hash<T>) -> Option<cmp::Ordering> {
Some(cmp::Ord::cmp(self, other))
}
}
impl<T: Tag> Ord for Hash<T> {
fn cmp(&self, other: &Hash<T>) -> cmp::Ordering { cmp::Ord::cmp(&self.0, &other.0) }
}
impl<T: Tag> core::hash::Hash for Hash<T> {
fn hash<H: core::hash::Hasher>(&self, h: &mut H) { self.0.hash(h) }
}
crate::internal_macros::hash_trait_impls!(256, false, T: Tag);
fn from_engine<T: Tag>(e: sha256::HashEngine) -> Hash<T> {
use crate::Hash as _;
Hash::from_byte_array(sha256::Hash::from_engine(e).to_byte_array())
}
/// Macro used to define a newtype tagged hash.
///
/// This macro creates two types:
///
/// * a tag struct
/// * a hash wrapper
///
/// The syntax is:
///
/// ```
/// # use bitcoin_hashes::sha256t_hash_newtype;
/// sha256t_hash_newtype! {
/// /// Optional documentation details here.
/// /// Summary is always generated.
/// pub struct FooTag = hash_str("foo");
///
/// /// A foo hash.
/// // Direction works just like the hash_newtype! macro.
/// #[hash_newtype(backward)]
/// pub struct FooHash(_);
/// }
/// ```
///
/// The structs must be defined in this order - tag first, then hash type. `hash_str` marker
/// says the midstate should be generated by hashing the supplied string in a way described in
/// BIP-341. Alternatively, you can supply `hash_bytes` to hash raw bytes. If you have the midstate
/// already pre-computed and prefer **compiler** performance to readability you may use
/// `raw(MIDSTATE_BYTES, HASHED_BYTES_LENGTH)` instead.
///
/// Both visibility modifiers and attributes are optional and passed to inner structs (excluding
/// `#[hash_newtype(...)]`). The attributes suffer same compiler performance limitations as in
/// [`hash_newtype`] macro.
///
/// The macro accepts multiple inputs so you can define multiple hash newtypes in one macro call.
/// Just make sure to enter the structs in order `Tag0`, `Hash0`, `Tag1`, `Hash1`...
///
/// [`hash_newtype`]: crate::hash_newtype
#[macro_export]
macro_rules! sha256t_hash_newtype {
($($(#[$($tag_attr:tt)*])* $tag_vis:vis struct $tag:ident = $constructor:tt($($tag_value:tt)+); $(#[$($hash_attr:tt)*])* $hash_vis:vis struct $hash_name:ident($(#[$($field_attr:tt)*])* _);)+) => {
$(
$crate::sha256t_hash_newtype_tag!($tag_vis, $tag, stringify!($hash_name), $(#[$($tag_attr)*])*);
impl $crate::sha256t::Tag for $tag {
#[inline]
fn engine() -> $crate::sha256::HashEngine {
const MIDSTATE: ($crate::sha256::Midstate, usize) = $crate::sha256t_hash_newtype_tag_constructor!($constructor, $($tag_value)+);
#[allow(unused)]
const _LENGTH_CHECK: () = [(); 1][MIDSTATE.1 % 64];
$crate::sha256::HashEngine::from_midstate(MIDSTATE.0, MIDSTATE.1)
}
}
$crate::hash_newtype! {
$(#[$($hash_attr)*])*
$hash_vis struct $hash_name($(#[$($field_attr)*])* $crate::sha256t::Hash<$tag>);
}
)+
}
}
// Workaround macros being unavailable in attributes.
#[doc(hidden)]
#[macro_export]
macro_rules! sha256t_hash_newtype_tag {
($vis:vis, $tag:ident, $name:expr, $(#[$($attr:meta)*])*) => {
#[doc = "The tag used for [`"]
#[doc = $name]
#[doc = "`].\n\n"]
$(#[$($attr)*])*
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
$vis struct $tag;
};
}
#[doc(hidden)]
#[macro_export]
macro_rules! sha256t_hash_newtype_tag_constructor {
(hash_str, $value:expr) => {
($crate::sha256::Midstate::hash_tag($value.as_bytes()), 64)
};
(hash_bytes, $value:expr) => {
($crate::sha256::Midstate::hash_tag($value), 64)
};
(raw, $bytes:expr, $len:expr) => {
($crate::sha256::Midstate::from_byte_array($bytes), $len)
};
}
#[cfg(test)]
mod tests {
#[cfg(feature = "alloc")]
use crate::Hash;
use crate::{sha256, sha256t};
const TEST_MIDSTATE: [u8; 32] = [
156, 224, 228, 230, 124, 17, 108, 57, 56, 179, 202, 242, 195, 15, 80, 137, 211, 243, 147,
108, 71, 99, 110, 96, 125, 179, 62, 234, 221, 198, 240, 201,
];
// The digest created by sha256 hashing `&[0]` starting with `TEST_MIDSTATE`.
#[cfg(feature = "alloc")]
const HASH_ZERO_BACKWARD: &str =
"29589d5122ec666ab5b4695070b6debc63881a4f85d88d93ddc90078038213ed";
// And the same thing, forward.
#[cfg(feature = "alloc")]
const HASH_ZERO_FORWARD: &str =
"ed1382037800c9dd938dd8854f1a8863bcdeb6705069b4b56a66ec22519d5829";
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Default, Hash)]
pub struct TestHashTag;
impl sha256t::Tag for TestHashTag {
fn engine() -> sha256::HashEngine {
// The TapRoot TapLeaf midstate.
let midstate = sha256::Midstate::from_byte_array(TEST_MIDSTATE);
sha256::HashEngine::from_midstate(midstate, 64)
}
}
// We support manually implementing `Tag` and creating a tagged hash from it.
#[cfg(feature = "alloc")]
pub type TestHash = sha256t::Hash<TestHashTag>;
#[test]
#[cfg(feature = "alloc")]
fn manually_created_sha256t_hash_type() {
assert_eq!(TestHash::hash(&[0]).to_string(), HASH_ZERO_FORWARD);
}
// We also provide a macro to create the tag and the hash type.
sha256t_hash_newtype! {
/// Test detailed explanation.
struct NewTypeTagBackward = raw(TEST_MIDSTATE, 64);
/// A test hash.
#[hash_newtype(backward)]
struct NewTypeHashBackward(_);
}
#[test]
#[cfg(feature = "alloc")]
fn macro_created_sha256t_hash_type_backward() {
assert_eq!(NewTypeHashBackward::hash(&[0]).to_string(), HASH_ZERO_BACKWARD);
}
// We also provide a macro to create the tag and the hash type.
sha256t_hash_newtype! {
/// Test detailed explanation.
struct NewTypeTagForward = raw(TEST_MIDSTATE, 64);
/// A test hash.
#[hash_newtype(forward)]
struct NewTypeHashForward(_);
}
#[test]
#[cfg(feature = "alloc")]
fn macro_created_sha256t_hash_type_prints_forward() {
assert_eq!(NewTypeHashForward::hash(&[0]).to_string(), HASH_ZERO_FORWARD);
}
}