rust-bitcoin-unsafe-fast/base58/src/lib.rs

348 lines
12 KiB
Rust

// SPDX-License-Identifier: CC0-1.0
//! Bitcoin base58 encoding and decoding.
//!
//! This crate can be used in a no-std environment but requires an allocator.
// NB: This crate is empty if `alloc` is not enabled.
#![cfg(feature = "alloc")]
#![no_std]
// Experimental features we need.
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#![cfg_attr(bench, feature(test))]
// Coding conventions.
#![warn(missing_docs)]
#![warn(deprecated_in_future)]
#![doc(test(attr(warn(unused))))]
// Instead of littering the codebase for non-fuzzing and bench code just globally allow.
#![cfg_attr(fuzzing, allow(dead_code, unused_imports))]
#![cfg_attr(bench, allow(dead_code, unused_imports))]
// Exclude lints we don't think are valuable.
#![allow(clippy::needless_question_mark)] // https://github.com/rust-bitcoin/rust-bitcoin/pull/2134
#![allow(clippy::manual_range_contains)] // More readable than clippy's format.
extern crate alloc;
#[cfg(bench)]
extern crate test;
#[cfg(feature = "std")]
extern crate std;
static BASE58_CHARS: &[u8] = b"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
pub mod error;
#[cfg(not(feature = "std"))]
pub use alloc::{string::String, vec::Vec};
use core::fmt;
#[cfg(feature = "std")]
pub use std::{string::String, vec::Vec};
use hashes::sha256d;
use internals::array_vec::ArrayVec;
use crate::error::{IncorrectChecksumError, TooShortError};
#[rustfmt::skip] // Keep public re-exports separate.
#[doc(inline)]
pub use self::error::{Error, InvalidCharacterError};
#[rustfmt::skip]
static BASE58_DIGITS: [Option<u8>; 128] = [
None, None, None, None, None, None, None, None, // 0-7
None, None, None, None, None, None, None, None, // 8-15
None, None, None, None, None, None, None, None, // 16-23
None, None, None, None, None, None, None, None, // 24-31
None, None, None, None, None, None, None, None, // 32-39
None, None, None, None, None, None, None, None, // 40-47
None, Some(0), Some(1), Some(2), Some(3), Some(4), Some(5), Some(6), // 48-55
Some(7), Some(8), None, None, None, None, None, None, // 56-63
None, Some(9), Some(10), Some(11), Some(12), Some(13), Some(14), Some(15), // 64-71
Some(16), None, Some(17), Some(18), Some(19), Some(20), Some(21), None, // 72-79
Some(22), Some(23), Some(24), Some(25), Some(26), Some(27), Some(28), Some(29), // 80-87
Some(30), Some(31), Some(32), None, None, None, None, None, // 88-95
None, Some(33), Some(34), Some(35), Some(36), Some(37), Some(38), Some(39), // 96-103
Some(40), Some(41), Some(42), Some(43), None, Some(44), Some(45), Some(46), // 104-111
Some(47), Some(48), Some(49), Some(50), Some(51), Some(52), Some(53), Some(54), // 112-119
Some(55), Some(56), Some(57), None, None, None, None, None, // 120-127
];
/// Decodes a base58-encoded string into a byte vector.
pub fn decode(data: &str) -> Result<Vec<u8>, InvalidCharacterError> {
// 11/15 is just over log_256(58)
let mut scratch = Vec::with_capacity(1 + data.len() * 11 / 15);
// Build in base 256
for d58 in data.bytes() {
// Compute "X = X * 58 + next_digit" in base 256
if usize::from(d58) >= BASE58_DIGITS.len() {
return Err(InvalidCharacterError::new(d58));
}
let mut carry = match BASE58_DIGITS[usize::from(d58)] {
Some(d58) => u32::from(d58),
None => {
return Err(InvalidCharacterError::new(d58));
}
};
if scratch.is_empty() {
for _ in 0..scratch.capacity() {
scratch.push(carry as u8);
carry /= 256;
}
} else {
for d256 in scratch.iter_mut() {
carry += u32::from(*d256) * 58;
*d256 = carry as u8; // cast loses data intentionally
carry /= 256;
}
}
assert_eq!(carry, 0);
}
// Copy leading zeroes directly
let mut ret: Vec<u8> = data.bytes().take_while(|&x| x == BASE58_CHARS[0]).map(|_| 0).collect();
// Copy rest of string
ret.extend(scratch.into_iter().rev().skip_while(|&x| x == 0));
Ok(ret)
}
/// Decodes a base58check-encoded string into a byte vector verifying the checksum.
pub fn decode_check(data: &str) -> Result<Vec<u8>, Error> {
let mut ret: Vec<u8> = decode(data)?;
if ret.len() < 4 {
return Err(TooShortError { length: ret.len() }.into());
}
let check_start = ret.len() - 4;
let hash_check = sha256d::Hash::hash(&ret[..check_start]).as_byte_array()[..4]
.try_into()
.expect("4 byte slice");
let data_check = ret[check_start..].try_into().expect("4 byte slice");
let expected = u32::from_le_bytes(hash_check);
let actual = u32::from_le_bytes(data_check);
if actual != expected {
return Err(IncorrectChecksumError { incorrect: actual, expected }.into());
}
ret.truncate(check_start);
Ok(ret)
}
const SHORT_OPT_BUFFER_LEN: usize = 128;
/// Encodes `data` as a base58 string (see also `base58::encode_check()`).
pub fn encode(data: &[u8]) -> String {
let reserve_len = encoded_reserve_len(data.len());
let mut res = String::with_capacity(reserve_len);
if reserve_len <= SHORT_OPT_BUFFER_LEN {
format_iter(
&mut res,
data.iter().copied(),
&mut ArrayVec::<u8, SHORT_OPT_BUFFER_LEN>::new(),
)
} else {
format_iter(&mut res, data.iter().copied(), &mut Vec::with_capacity(reserve_len))
}
.expect("string doesn't error");
res
}
/// Encodes `data` as a base58 string including the checksum.
///
/// The checksum is the first four bytes of the sha256d of the data, concatenated onto the end.
pub fn encode_check(data: &[u8]) -> String {
let mut res = String::with_capacity(encoded_check_reserve_len(data.len()));
encode_check_to_writer(&mut res, data).expect("string doesn't fail");
res
}
/// Encodes a slice as base58, including the checksum, into a formatter.
///
/// The checksum is the first four bytes of the sha256d of the data, concatenated onto the end.
pub fn encode_check_to_fmt(fmt: &mut fmt::Formatter, data: &[u8]) -> fmt::Result {
encode_check_to_writer(fmt, data)
}
fn encode_check_to_writer(fmt: &mut impl fmt::Write, data: &[u8]) -> fmt::Result {
let checksum = sha256d::Hash::hash(data);
let iter = data.iter().cloned().chain(checksum.as_byte_array()[0..4].iter().cloned());
let reserve_len = encoded_check_reserve_len(data.len());
if reserve_len <= SHORT_OPT_BUFFER_LEN {
format_iter(fmt, iter, &mut ArrayVec::<u8, SHORT_OPT_BUFFER_LEN>::new())
} else {
format_iter(fmt, iter, &mut Vec::with_capacity(reserve_len))
}
}
/// Returns the length to reserve when encoding base58 without checksum
const fn encoded_reserve_len(unencoded_len: usize) -> usize {
// log2(256) / log2(58) ~ 1.37 = 137 / 100
unencoded_len * 137 / 100
}
/// Returns the length to reserve when encoding base58 with checksum
const fn encoded_check_reserve_len(unencoded_len: usize) -> usize {
encoded_reserve_len(unencoded_len + 4)
}
trait Buffer: Sized {
fn push(&mut self, val: u8);
fn slice(&self) -> &[u8];
fn slice_mut(&mut self) -> &mut [u8];
}
impl Buffer for Vec<u8> {
fn push(&mut self, val: u8) { Vec::push(self, val) }
fn slice(&self) -> &[u8] { self }
fn slice_mut(&mut self) -> &mut [u8] { self }
}
impl<const N: usize> Buffer for ArrayVec<u8, N> {
fn push(&mut self, val: u8) { ArrayVec::push(self, val) }
fn slice(&self) -> &[u8] { self.as_slice() }
fn slice_mut(&mut self) -> &mut [u8] { self.as_mut_slice() }
}
fn format_iter<I, W>(writer: &mut W, data: I, buf: &mut impl Buffer) -> Result<(), fmt::Error>
where
I: Iterator<Item = u8> + Clone,
W: fmt::Write,
{
let mut leading_zero_count = 0;
let mut leading_zeroes = true;
// Build string in little endian with 0-58 in place of characters...
for d256 in data {
let mut carry = u32::from(d256);
if leading_zeroes && carry == 0 {
leading_zero_count += 1;
} else {
leading_zeroes = false;
}
for ch in buf.slice_mut() {
let new_ch = u32::from(*ch) * 256 + carry;
*ch = (new_ch % 58) as u8; // cast loses data intentionally
carry = new_ch / 58;
}
while carry > 0 {
buf.push((carry % 58) as u8); // cast loses data intentionally
carry /= 58;
}
}
// ... then reverse it and convert to chars
for _ in 0..leading_zero_count {
buf.push(0);
}
for ch in buf.slice().iter().rev() {
writer.write_char(char::from(BASE58_CHARS[usize::from(*ch)]))?;
}
Ok(())
}
#[cfg(test)]
mod tests {
use alloc::vec;
use hex::test_hex_unwrap as hex;
use super::*;
#[test]
fn test_base58_encode() {
// Basics
assert_eq!(&encode(&[0][..]), "1");
assert_eq!(&encode(&[1][..]), "2");
assert_eq!(&encode(&[58][..]), "21");
assert_eq!(&encode(&[13, 36][..]), "211");
// Leading zeroes
assert_eq!(&encode(&[0, 13, 36][..]), "1211");
assert_eq!(&encode(&[0, 0, 0, 0, 13, 36][..]), "1111211");
// Long input (>128 bytes => has to use heap)
let res = encode(
"BitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBit\
coinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoinBitcoin"
.as_bytes(),
);
let exp =
"ZqC5ZdfpZRi7fjA8hbhX5pEE96MdH9hEaC1YouxscPtbJF16qVWksHWR4wwvx7MotFcs2ChbJqK8KJ9X\
wZznwWn1JFDhhTmGo9v6GjAVikzCsBWZehu7bm22xL8b5zBR5AsBygYRwbFJsNwNkjpyFuDKwmsUTKvkULCvucPJrN5\
QUdxpGakhqkZFL7RU4yT";
assert_eq!(&res, exp);
// Addresses
let addr = hex!("00f8917303bfa8ef24f292e8fa1419b20460ba064d");
assert_eq!(&encode_check(&addr[..]), "1PfJpZsjreyVrqeoAfabrRwwjQyoSQMmHH");
}
#[test]
fn test_base58_decode() {
// Basics
assert_eq!(decode("1").ok(), Some(vec![0u8]));
assert_eq!(decode("2").ok(), Some(vec![1u8]));
assert_eq!(decode("21").ok(), Some(vec![58u8]));
assert_eq!(decode("211").ok(), Some(vec![13u8, 36]));
// Leading zeroes
assert_eq!(decode("1211").ok(), Some(vec![0u8, 13, 36]));
assert_eq!(decode("111211").ok(), Some(vec![0u8, 0, 0, 13, 36]));
// Addresses
assert_eq!(
decode_check("1PfJpZsjreyVrqeoAfabrRwwjQyoSQMmHH").ok(),
Some(hex!("00f8917303bfa8ef24f292e8fa1419b20460ba064d"))
);
// Non Base58 char.
assert_eq!(decode("¢").unwrap_err(), InvalidCharacterError::new(194));
}
#[test]
fn test_base58_roundtrip() {
let s = "xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs";
let v: Vec<u8> = decode_check(s).unwrap();
assert_eq!(encode_check(&v[..]), s);
assert_eq!(decode_check(&encode_check(&v[..])).ok(), Some(v));
// Check that empty slice passes roundtrip.
assert_eq!(decode_check(&encode_check(&[])), Ok(vec![]));
// Check that `len > 4` is enforced.
assert_eq!(decode_check(&encode(&[1, 2, 3])), Err(TooShortError { length: 3 }.into()));
}
}
#[cfg(bench)]
mod benches {
use test::{black_box, Bencher};
#[bench]
pub fn bench_encode_check_50(bh: &mut Bencher) {
let data: alloc::vec::Vec<_> = (0u8..50).collect();
bh.iter(|| {
let r = super::encode_check(&data);
black_box(&r);
});
}
#[bench]
pub fn bench_encode_check_xpub(bh: &mut Bencher) {
let data: alloc::vec::Vec<_> = (0u8..78).collect(); // lenght of xpub
bh.iter(|| {
let r = super::encode_check(&data);
black_box(&r);
});
}
}