2015-10-26 14:54:21 +00:00
/**********************************************************************
* Copyright ( c ) 2013 , 2014 Pieter Wuille *
* Distributed under the MIT software license , see the accompanying *
* file COPYING or http : //www.opensource.org/licenses/mit-license.php.*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef _SECP256K1_GROUP_
# define _SECP256K1_GROUP_
# include "num.h"
# include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe x ;
secp256k1_fe y ;
int infinity ; /* whether this represents the point at infinity */
} secp256k1_ge ;
# define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
# define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe x ; /* actual X: x/z^2 */
secp256k1_fe y ; /* actual Y: y/z^3 */
secp256k1_fe z ;
int infinity ; /* whether this represents the point at infinity */
} secp256k1_gej ;
# define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
# define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x ;
secp256k1_fe_storage y ;
} secp256k1_ge_storage ;
# define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
# define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy ( secp256k1_ge * r , const secp256k1_fe * x , const secp256k1_fe * y ) ;
2016-01-14 18:35:54 +00:00
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p . The return value
* is true iff a coordinate with the given X coordinate exists .
*/
static int secp256k1_ge_set_xquad_var ( secp256k1_ge * r , const secp256k1_fe * x ) ;
2015-10-26 14:54:21 +00:00
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y . Return value indicates whether the result is valid . */
static int secp256k1_ge_set_xo_var ( secp256k1_ge * r , const secp256k1_fe * x , int odd ) ;
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity ( const secp256k1_ge * a ) ;
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var ( const secp256k1_ge * a ) ;
static void secp256k1_ge_neg ( secp256k1_ge * r , const secp256k1_ge * a ) ;
/** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej ( secp256k1_ge * r , secp256k1_gej * a ) ;
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var ( size_t len , secp256k1_ge * r , const secp256k1_gej * a , const secp256k1_callback * cb ) ;
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates ( with known z - ratios ) . zr must contain the known z - ratios such
* that mul ( a [ i ] . z , zr [ i + 1 ] ) = = a [ i + 1 ] . z . zr [ 0 ] is ignored . */
static void secp256k1_ge_set_table_gej_var ( size_t len , secp256k1_ge * r , const secp256k1_gej * a , const secp256k1_fe * zr ) ;
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z " denominator " . zr must contain the known z - ratios such
* that mul ( a [ i ] . z , zr [ i + 1 ] ) = = a [ i + 1 ] . z . zr [ 0 ] is ignored . The x and y
* coordinates of the result are stored in r , the common z coordinate is
* stored in globalz . */
static void secp256k1_ge_globalz_set_table_gej ( size_t len , secp256k1_ge * r , secp256k1_fe * globalz , const secp256k1_gej * a , const secp256k1_fe * zr ) ;
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity ( secp256k1_gej * r ) ;
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge ( secp256k1_gej * r , const secp256k1_ge * a ) ;
/** Compare the X coordinate of a group element (jacobian). */
static int secp256k1_gej_eq_x_var ( const secp256k1_fe * x , const secp256k1_gej * a ) ;
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg ( secp256k1_gej * r , const secp256k1_gej * a ) ;
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity ( const secp256k1_gej * a ) ;
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero . Constant time . */
static void secp256k1_gej_double_nonzero ( secp256k1_gej * r , const secp256k1_gej * a , secp256k1_fe * rzr ) ;
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var ( secp256k1_gej * r , const secp256k1_gej * a , secp256k1_fe * rzr ) ;
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var ( secp256k1_gej * r , const secp256k1_gej * a , const secp256k1_gej * b , secp256k1_fe * rzr ) ;
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge ( secp256k1_gej * r , const secp256k1_gej * a , const secp256k1_ge * b ) ;
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var . It is identical to secp256k1_gej_add_ge but without constant - time
guarantee , and b is allowed to be infinity . If rzr is non - NULL , r - > z = a - > z * * rzr ( a cannot be infinity in that case ) . */
static void secp256k1_gej_add_ge_var ( secp256k1_gej * r , const secp256k1_gej * a , const secp256k1_ge * b , secp256k1_fe * rzr ) ;
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var ( secp256k1_gej * r , const secp256k1_gej * a , const secp256k1_ge * b , const secp256k1_fe * bzinv ) ;
# ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda ( secp256k1_ge * r , const secp256k1_ge * a ) ;
# endif
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear ( secp256k1_gej * r ) ;
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear ( secp256k1_ge * r ) ;
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage ( secp256k1_ge_storage * r , const secp256k1_ge * a ) ;
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage ( secp256k1_ge * r , const secp256k1_ge_storage * a ) ;
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_ge_storage_cmov ( secp256k1_ge_storage * r , const secp256k1_ge_storage * a , int flag ) ;
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale ( secp256k1_gej * r , const secp256k1_fe * b ) ;
# endif