2018-07-09 11:17:44 +00:00
|
|
|
|
#ifndef SECP256K1_H
|
|
|
|
|
#define SECP256K1_H
|
2015-10-26 14:54:21 +00:00
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
#ifdef __cplusplus
|
2015-10-26 14:54:21 +00:00
|
|
|
|
extern "C" {
|
2018-07-09 11:17:44 +00:00
|
|
|
|
#endif
|
2015-10-26 14:54:21 +00:00
|
|
|
|
|
|
|
|
|
#include <stddef.h>
|
|
|
|
|
|
|
|
|
|
/* These rules specify the order of arguments in API calls:
|
|
|
|
|
*
|
|
|
|
|
* 1. Context pointers go first, followed by output arguments, combined
|
|
|
|
|
* output/input arguments, and finally input-only arguments.
|
|
|
|
|
* 2. Array lengths always immediately the follow the argument whose length
|
|
|
|
|
* they describe, even if this violates rule 1.
|
|
|
|
|
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
|
|
|
|
|
* later go first. This means: signatures, public nonces, private nonces,
|
|
|
|
|
* messages, public keys, secret keys, tweaks.
|
|
|
|
|
* 4. Arguments that are not data pointers go last, from more complex to less
|
|
|
|
|
* complex: function pointers, algorithm names, messages, void pointers,
|
|
|
|
|
* counts, flags, booleans.
|
|
|
|
|
* 5. Opaque data pointers follow the function pointer they are to be passed to.
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/** Opaque data structure that holds context information (precomputed tables etc.).
|
|
|
|
|
*
|
|
|
|
|
* The purpose of context structures is to cache large precomputed data tables
|
|
|
|
|
* that are expensive to construct, and also to maintain the randomization data
|
|
|
|
|
* for blinding.
|
|
|
|
|
*
|
|
|
|
|
* Do not create a new context object for each operation, as construction is
|
|
|
|
|
* far slower than all other API calls (~100 times slower than an ECDSA
|
|
|
|
|
* verification).
|
|
|
|
|
*
|
|
|
|
|
* A constructed context can safely be used from multiple threads
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* simultaneously, but API calls that take a non-const pointer to a context
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* need exclusive access to it. In particular this is the case for
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* secp256k1_context_destroy, secp256k1_context_preallocated_destroy,
|
|
|
|
|
* and secp256k1_context_randomize.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*
|
|
|
|
|
* Regarding randomization, either do it once at creation time (in which case
|
|
|
|
|
* you do not need any locking for the other calls), or use a read-write lock.
|
|
|
|
|
*/
|
|
|
|
|
typedef struct secp256k1_context_struct secp256k1_context;
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
/** Opaque data structure that holds rewriteable "scratch space"
|
|
|
|
|
*
|
|
|
|
|
* The purpose of this structure is to replace dynamic memory allocations,
|
|
|
|
|
* because we target architectures where this may not be available. It is
|
|
|
|
|
* essentially a resizable (within specified parameters) block of bytes,
|
|
|
|
|
* which is initially created either by memory allocation or TODO as a pointer
|
|
|
|
|
* into some fixed rewritable space.
|
|
|
|
|
*
|
|
|
|
|
* Unlike the context object, this cannot safely be shared between threads
|
|
|
|
|
* without additional synchronization logic.
|
|
|
|
|
*/
|
|
|
|
|
typedef struct secp256k1_scratch_space_struct secp256k1_scratch_space;
|
|
|
|
|
|
2015-10-26 14:54:21 +00:00
|
|
|
|
/** Opaque data structure that holds a parsed and valid public key.
|
|
|
|
|
*
|
|
|
|
|
* The exact representation of data inside is implementation defined and not
|
|
|
|
|
* guaranteed to be portable between different platforms or versions. It is
|
|
|
|
|
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
|
2018-07-09 11:17:44 +00:00
|
|
|
|
* If you need to convert to a format suitable for storage, transmission, or
|
|
|
|
|
* comparison, use secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
typedef struct {
|
|
|
|
|
unsigned char data[64];
|
|
|
|
|
} secp256k1_pubkey;
|
|
|
|
|
|
|
|
|
|
/** Opaque data structured that holds a parsed ECDSA signature.
|
|
|
|
|
*
|
|
|
|
|
* The exact representation of data inside is implementation defined and not
|
|
|
|
|
* guaranteed to be portable between different platforms or versions. It is
|
|
|
|
|
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
|
2018-07-09 11:17:44 +00:00
|
|
|
|
* If you need to convert to a format suitable for storage, transmission, or
|
|
|
|
|
* comparison, use the secp256k1_ecdsa_signature_serialize_* and
|
|
|
|
|
* secp256k1_ecdsa_signature_parse_* functions.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
typedef struct {
|
|
|
|
|
unsigned char data[64];
|
|
|
|
|
} secp256k1_ecdsa_signature;
|
|
|
|
|
|
|
|
|
|
/** A pointer to a function to deterministically generate a nonce.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
|
|
|
|
|
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
|
|
|
|
|
* In: msg32: the 32-byte message hash being verified (will not be NULL)
|
|
|
|
|
* key32: pointer to a 32-byte secret key (will not be NULL)
|
|
|
|
|
* algo16: pointer to a 16-byte array describing the signature
|
|
|
|
|
* algorithm (will be NULL for ECDSA for compatibility).
|
|
|
|
|
* data: Arbitrary data pointer that is passed through.
|
|
|
|
|
* attempt: how many iterations we have tried to find a nonce.
|
|
|
|
|
* This will almost always be 0, but different attempt values
|
|
|
|
|
* are required to result in a different nonce.
|
|
|
|
|
*
|
|
|
|
|
* Except for test cases, this function should compute some cryptographic hash of
|
|
|
|
|
* the message, the algorithm, the key and the attempt.
|
|
|
|
|
*/
|
|
|
|
|
typedef int (*secp256k1_nonce_function)(
|
|
|
|
|
unsigned char *nonce32,
|
|
|
|
|
const unsigned char *msg32,
|
|
|
|
|
const unsigned char *key32,
|
|
|
|
|
const unsigned char *algo16,
|
|
|
|
|
void *data,
|
|
|
|
|
unsigned int attempt
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
# if !defined(SECP256K1_GNUC_PREREQ)
|
|
|
|
|
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
|
|
|
|
|
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
|
|
|
|
|
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
|
|
|
|
|
# endif
|
|
|
|
|
# endif
|
|
|
|
|
|
|
|
|
|
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
|
|
|
|
|
# if SECP256K1_GNUC_PREREQ(2,7)
|
|
|
|
|
# define SECP256K1_INLINE __inline__
|
|
|
|
|
# elif (defined(_MSC_VER))
|
|
|
|
|
# define SECP256K1_INLINE __inline
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_INLINE
|
|
|
|
|
# endif
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_INLINE inline
|
|
|
|
|
# endif
|
|
|
|
|
|
|
|
|
|
#ifndef SECP256K1_API
|
|
|
|
|
# if defined(_WIN32)
|
|
|
|
|
# ifdef SECP256K1_BUILD
|
|
|
|
|
# define SECP256K1_API __declspec(dllexport)
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_API
|
|
|
|
|
# endif
|
|
|
|
|
# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
|
|
|
|
|
# define SECP256K1_API __attribute__ ((visibility ("default")))
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_API
|
|
|
|
|
# endif
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
/**Warning attributes
|
|
|
|
|
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
|
|
|
|
|
* some paranoid null checks. */
|
|
|
|
|
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
|
|
|
|
|
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_WARN_UNUSED_RESULT
|
|
|
|
|
# endif
|
|
|
|
|
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
|
|
|
|
|
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
|
|
|
|
|
# else
|
|
|
|
|
# define SECP256K1_ARG_NONNULL(_x)
|
|
|
|
|
# endif
|
|
|
|
|
|
|
|
|
|
/** All flags' lower 8 bits indicate what they're for. Do not use directly. */
|
|
|
|
|
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
|
|
|
|
|
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
|
|
|
|
|
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
|
|
|
|
|
/** The higher bits contain the actual data. Do not use directly. */
|
|
|
|
|
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
|
|
|
|
|
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
|
|
|
|
|
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
|
|
|
|
|
|
2019-05-28 12:23:28 +00:00
|
|
|
|
/** Flags to pass to secp256k1_context_create, secp256k1_context_preallocated_size, and
|
|
|
|
|
* secp256k1_context_preallocated_create. */
|
2015-10-26 14:54:21 +00:00
|
|
|
|
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
|
|
|
|
|
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
|
|
|
|
|
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
|
|
|
|
|
|
|
|
|
|
/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
|
|
|
|
|
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
|
|
|
|
|
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
/** Prefix byte used to tag various encoded curvepoints for specific purposes */
|
|
|
|
|
#define SECP256K1_TAG_PUBKEY_EVEN 0x02
|
|
|
|
|
#define SECP256K1_TAG_PUBKEY_ODD 0x03
|
|
|
|
|
#define SECP256K1_TAG_PUBKEY_UNCOMPRESSED 0x04
|
|
|
|
|
#define SECP256K1_TAG_PUBKEY_HYBRID_EVEN 0x06
|
|
|
|
|
#define SECP256K1_TAG_PUBKEY_HYBRID_ODD 0x07
|
|
|
|
|
|
2018-11-06 21:36:43 +00:00
|
|
|
|
/** A simple secp256k1 context object with no precomputed tables. These are useful for
|
|
|
|
|
* type serialization/parsing functions which require a context object to maintain
|
|
|
|
|
* API consistency, but currently do not require expensive precomputations or dynamic
|
|
|
|
|
* allocations.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API extern const secp256k1_context *secp256k1_context_no_precomp;
|
|
|
|
|
|
2019-05-28 12:23:28 +00:00
|
|
|
|
/** Create a secp256k1 context object (in dynamically allocated memory).
|
|
|
|
|
*
|
|
|
|
|
* This function uses malloc to allocate memory. It is guaranteed that malloc is
|
|
|
|
|
* called at most once for every call of this function. If you need to avoid dynamic
|
|
|
|
|
* memory allocation entirely, see the functions in secp256k1_preallocated.h.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*
|
|
|
|
|
* Returns: a newly created context object.
|
|
|
|
|
* In: flags: which parts of the context to initialize.
|
2018-07-09 11:17:44 +00:00
|
|
|
|
*
|
|
|
|
|
* See also secp256k1_context_randomize.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API secp256k1_context* secp256k1_context_create(
|
|
|
|
|
unsigned int flags
|
|
|
|
|
) SECP256K1_WARN_UNUSED_RESULT;
|
|
|
|
|
|
2019-05-28 12:23:28 +00:00
|
|
|
|
/** Copy a secp256k1 context object (into dynamically allocated memory).
|
|
|
|
|
*
|
|
|
|
|
* This function uses malloc to allocate memory. It is guaranteed that malloc is
|
|
|
|
|
* called at most once for every call of this function. If you need to avoid dynamic
|
|
|
|
|
* memory allocation entirely, see the functions in secp256k1_preallocated.h.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*
|
|
|
|
|
* Returns: a newly created context object.
|
|
|
|
|
* Args: ctx: an existing context to copy (cannot be NULL)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API secp256k1_context* secp256k1_context_clone(
|
|
|
|
|
const secp256k1_context* ctx
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
|
|
|
|
|
|
2019-05-28 12:23:28 +00:00
|
|
|
|
/** Destroy a secp256k1 context object (created in dynamically allocated memory).
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*
|
|
|
|
|
* The context pointer may not be used afterwards.
|
2019-05-28 12:23:28 +00:00
|
|
|
|
*
|
|
|
|
|
* The context to destroy must have been created using secp256k1_context_create
|
|
|
|
|
* or secp256k1_context_clone. If the context has instead been created using
|
|
|
|
|
* secp256k1_context_preallocated_create or secp256k1_context_preallocated_clone, the
|
|
|
|
|
* behaviour is undefined. In that case, secp256k1_context_preallocated_destroy must
|
|
|
|
|
* be used instead.
|
|
|
|
|
*
|
|
|
|
|
* Args: ctx: an existing context to destroy, constructed using
|
|
|
|
|
* secp256k1_context_create or secp256k1_context_clone
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API void secp256k1_context_destroy(
|
|
|
|
|
secp256k1_context* ctx
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
/** Set a callback function to be called when an illegal argument is passed to
|
|
|
|
|
* an API call. It will only trigger for violations that are mentioned
|
|
|
|
|
* explicitly in the header.
|
|
|
|
|
*
|
|
|
|
|
* The philosophy is that these shouldn't be dealt with through a
|
|
|
|
|
* specific return value, as calling code should not have branches to deal with
|
|
|
|
|
* the case that this code itself is broken.
|
|
|
|
|
*
|
|
|
|
|
* On the other hand, during debug stage, one would want to be informed about
|
|
|
|
|
* such mistakes, and the default (crashing) may be inadvisable.
|
|
|
|
|
* When this callback is triggered, the API function called is guaranteed not
|
|
|
|
|
* to cause a crash, though its return value and output arguments are
|
|
|
|
|
* undefined.
|
|
|
|
|
*
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* When this function has not been called (or called with fn==NULL), then the
|
|
|
|
|
* default handler will be used. The library provides a default handler which
|
|
|
|
|
* writes the message to stderr and calls abort. This default handler can be
|
|
|
|
|
* replaced at link time if the preprocessor macro
|
|
|
|
|
* USE_EXTERNAL_DEFAULT_CALLBACKS is defined, which is the case if the build
|
|
|
|
|
* has been configured with --enable-external-default-callbacks. Then the
|
|
|
|
|
* following two symbols must be provided to link against:
|
|
|
|
|
* - void secp256k1_default_illegal_callback_fn(const char* message, void* data);
|
|
|
|
|
* - void secp256k1_default_error_callback_fn(const char* message, void* data);
|
|
|
|
|
* The library can call these default handlers even before a proper callback data
|
|
|
|
|
* pointer could have been set using secp256k1_context_set_illegal_callback or
|
|
|
|
|
* secp256k1_context_set_illegal_callback, e.g., when the creation of a context
|
|
|
|
|
* fails. In this case, the corresponding default handler will be called with
|
|
|
|
|
* the data pointer argument set to NULL.
|
|
|
|
|
*
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* Args: ctx: an existing context object (cannot be NULL)
|
|
|
|
|
* In: fun: a pointer to a function to call when an illegal argument is
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* passed to the API, taking a message and an opaque pointer.
|
|
|
|
|
* (NULL restores the default handler.)
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* data: the opaque pointer to pass to fun above.
|
2019-05-28 12:23:28 +00:00
|
|
|
|
*
|
|
|
|
|
* See also secp256k1_context_set_error_callback.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API void secp256k1_context_set_illegal_callback(
|
|
|
|
|
secp256k1_context* ctx,
|
|
|
|
|
void (*fun)(const char* message, void* data),
|
|
|
|
|
const void* data
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1);
|
|
|
|
|
|
|
|
|
|
/** Set a callback function to be called when an internal consistency check
|
|
|
|
|
* fails. The default is crashing.
|
|
|
|
|
*
|
|
|
|
|
* This can only trigger in case of a hardware failure, miscompilation,
|
|
|
|
|
* memory corruption, serious bug in the library, or other error would can
|
|
|
|
|
* otherwise result in undefined behaviour. It will not trigger due to mere
|
|
|
|
|
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
|
|
|
|
|
* for that). After this callback returns, anything may happen, including
|
|
|
|
|
* crashing.
|
|
|
|
|
*
|
|
|
|
|
* Args: ctx: an existing context object (cannot be NULL)
|
2016-01-14 18:35:54 +00:00
|
|
|
|
* In: fun: a pointer to a function to call when an internal error occurs,
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* taking a message and an opaque pointer (NULL restores the
|
|
|
|
|
* default handler, see secp256k1_context_set_illegal_callback
|
|
|
|
|
* for details).
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* data: the opaque pointer to pass to fun above.
|
2019-05-28 12:23:28 +00:00
|
|
|
|
*
|
|
|
|
|
* See also secp256k1_context_set_illegal_callback.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API void secp256k1_context_set_error_callback(
|
|
|
|
|
secp256k1_context* ctx,
|
|
|
|
|
void (*fun)(const char* message, void* data),
|
|
|
|
|
const void* data
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1);
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
/** Create a secp256k1 scratch space object.
|
|
|
|
|
*
|
|
|
|
|
* Returns: a newly created scratch space.
|
|
|
|
|
* Args: ctx: an existing context object (cannot be NULL)
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* In: size: amount of memory to be available as scratch space. Some extra
|
|
|
|
|
* (<100 bytes) will be allocated for extra accounting.
|
2018-07-09 11:17:44 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT secp256k1_scratch_space* secp256k1_scratch_space_create(
|
|
|
|
|
const secp256k1_context* ctx,
|
2019-05-28 12:23:28 +00:00
|
|
|
|
size_t size
|
2018-07-09 11:17:44 +00:00
|
|
|
|
) SECP256K1_ARG_NONNULL(1);
|
|
|
|
|
|
|
|
|
|
/** Destroy a secp256k1 scratch space.
|
|
|
|
|
*
|
|
|
|
|
* The pointer may not be used afterwards.
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* Args: ctx: a secp256k1 context object.
|
|
|
|
|
* scratch: space to destroy
|
2018-07-09 11:17:44 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API void secp256k1_scratch_space_destroy(
|
2019-05-28 12:23:28 +00:00
|
|
|
|
const secp256k1_context* ctx,
|
2018-07-09 11:17:44 +00:00
|
|
|
|
secp256k1_scratch_space* scratch
|
2019-05-28 12:23:28 +00:00
|
|
|
|
) SECP256K1_ARG_NONNULL(1);
|
2018-07-09 11:17:44 +00:00
|
|
|
|
|
2015-10-26 14:54:21 +00:00
|
|
|
|
/** Parse a variable-length public key into the pubkey object.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 if the public key was fully valid.
|
|
|
|
|
* 0 if the public key could not be parsed or is invalid.
|
|
|
|
|
* Args: ctx: a secp256k1 context object.
|
|
|
|
|
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
|
|
|
|
|
* parsed version of input. If not, its value is undefined.
|
|
|
|
|
* In: input: pointer to a serialized public key
|
|
|
|
|
* inputlen: length of the array pointed to by input
|
|
|
|
|
*
|
|
|
|
|
* This function supports parsing compressed (33 bytes, header byte 0x02 or
|
|
|
|
|
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
|
|
|
|
|
* byte 0x06 or 0x07) format public keys.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey* pubkey,
|
|
|
|
|
const unsigned char *input,
|
|
|
|
|
size_t inputlen
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Serialize a pubkey object into a serialized byte sequence.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 always.
|
2016-01-14 18:35:54 +00:00
|
|
|
|
* Args: ctx: a secp256k1 context object.
|
|
|
|
|
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
|
|
|
|
|
* compressed==1) byte array to place the serialized key
|
|
|
|
|
* in.
|
|
|
|
|
* In/Out: outputlen: a pointer to an integer which is initially set to the
|
|
|
|
|
* size of output, and is overwritten with the written
|
|
|
|
|
* size.
|
|
|
|
|
* In: pubkey: a pointer to a secp256k1_pubkey containing an
|
|
|
|
|
* initialized public key.
|
|
|
|
|
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
|
|
|
|
|
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ec_pubkey_serialize(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *output,
|
|
|
|
|
size_t *outputlen,
|
|
|
|
|
const secp256k1_pubkey* pubkey,
|
|
|
|
|
unsigned int flags
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
|
|
|
|
|
|
|
|
|
/** Parse an ECDSA signature in compact (64 bytes) format.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 when the signature could be parsed, 0 otherwise.
|
|
|
|
|
* Args: ctx: a secp256k1 context object
|
|
|
|
|
* Out: sig: a pointer to a signature object
|
|
|
|
|
* In: input64: a pointer to the 64-byte array to parse
|
|
|
|
|
*
|
|
|
|
|
* The signature must consist of a 32-byte big endian R value, followed by a
|
|
|
|
|
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
|
|
|
|
|
* encoding is invalid. R and S with value 0 are allowed in the encoding.
|
|
|
|
|
*
|
|
|
|
|
* After the call, sig will always be initialized. If parsing failed or R or
|
|
|
|
|
* S are zero, the resulting sig value is guaranteed to fail validation for any
|
|
|
|
|
* message and public key.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_ecdsa_signature* sig,
|
|
|
|
|
const unsigned char *input64
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Parse a DER ECDSA signature.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 when the signature could be parsed, 0 otherwise.
|
|
|
|
|
* Args: ctx: a secp256k1 context object
|
|
|
|
|
* Out: sig: a pointer to a signature object
|
|
|
|
|
* In: input: a pointer to the signature to be parsed
|
|
|
|
|
* inputlen: the length of the array pointed to be input
|
|
|
|
|
*
|
|
|
|
|
* This function will accept any valid DER encoded signature, even if the
|
|
|
|
|
* encoded numbers are out of range.
|
|
|
|
|
*
|
|
|
|
|
* After the call, sig will always be initialized. If parsing failed or the
|
|
|
|
|
* encoded numbers are out of range, signature validation with it is
|
|
|
|
|
* guaranteed to fail for every message and public key.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_ecdsa_signature* sig,
|
|
|
|
|
const unsigned char *input,
|
|
|
|
|
size_t inputlen
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Serialize an ECDSA signature in DER format.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 if enough space was available to serialize, 0 otherwise
|
|
|
|
|
* Args: ctx: a secp256k1 context object
|
|
|
|
|
* Out: output: a pointer to an array to store the DER serialization
|
|
|
|
|
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
|
|
|
|
|
* should be set to the length of output. After the call
|
|
|
|
|
* it will be set to the length of the serialization (even
|
|
|
|
|
* if 0 was returned).
|
|
|
|
|
* In: sig: a pointer to an initialized signature object
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *output,
|
|
|
|
|
size_t *outputlen,
|
|
|
|
|
const secp256k1_ecdsa_signature* sig
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
|
|
|
|
|
|
|
|
|
/** Serialize an ECDSA signature in compact (64 byte) format.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1
|
|
|
|
|
* Args: ctx: a secp256k1 context object
|
|
|
|
|
* Out: output64: a pointer to a 64-byte array to store the compact serialization
|
|
|
|
|
* In: sig: a pointer to an initialized signature object
|
|
|
|
|
*
|
|
|
|
|
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *output64,
|
|
|
|
|
const secp256k1_ecdsa_signature* sig
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Verify an ECDSA signature.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1: correct signature
|
|
|
|
|
* 0: incorrect or unparseable signature
|
|
|
|
|
* Args: ctx: a secp256k1 context object, initialized for verification.
|
|
|
|
|
* In: sig: the signature being verified (cannot be NULL)
|
|
|
|
|
* msg32: the 32-byte message hash being verified (cannot be NULL)
|
|
|
|
|
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
|
|
|
|
|
*
|
|
|
|
|
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
|
|
|
|
|
* form are accepted.
|
|
|
|
|
*
|
|
|
|
|
* If you need to accept ECDSA signatures from sources that do not obey this
|
|
|
|
|
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
|
|
|
|
|
* validation, but be aware that doing so results in malleable signatures.
|
|
|
|
|
*
|
|
|
|
|
* For details, see the comments for that function.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
const secp256k1_ecdsa_signature *sig,
|
|
|
|
|
const unsigned char *msg32,
|
|
|
|
|
const secp256k1_pubkey *pubkey
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
|
|
|
|
|
|
|
|
|
/** Convert a signature to a normalized lower-S form.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 if sigin was not normalized, 0 if it already was.
|
|
|
|
|
* Args: ctx: a secp256k1 context object
|
|
|
|
|
* Out: sigout: a pointer to a signature to fill with the normalized form,
|
|
|
|
|
* or copy if the input was already normalized. (can be NULL if
|
|
|
|
|
* you're only interested in whether the input was already
|
|
|
|
|
* normalized).
|
|
|
|
|
* In: sigin: a pointer to a signature to check/normalize (cannot be NULL,
|
|
|
|
|
* can be identical to sigout)
|
|
|
|
|
*
|
|
|
|
|
* With ECDSA a third-party can forge a second distinct signature of the same
|
|
|
|
|
* message, given a single initial signature, but without knowing the key. This
|
|
|
|
|
* is done by negating the S value modulo the order of the curve, 'flipping'
|
|
|
|
|
* the sign of the random point R which is not included in the signature.
|
|
|
|
|
*
|
|
|
|
|
* Forgery of the same message isn't universally problematic, but in systems
|
|
|
|
|
* where message malleability or uniqueness of signatures is important this can
|
|
|
|
|
* cause issues. This forgery can be blocked by all verifiers forcing signers
|
|
|
|
|
* to use a normalized form.
|
|
|
|
|
*
|
|
|
|
|
* The lower-S form reduces the size of signatures slightly on average when
|
|
|
|
|
* variable length encodings (such as DER) are used and is cheap to verify,
|
|
|
|
|
* making it a good choice. Security of always using lower-S is assured because
|
|
|
|
|
* anyone can trivially modify a signature after the fact to enforce this
|
|
|
|
|
* property anyway.
|
|
|
|
|
*
|
|
|
|
|
* The lower S value is always between 0x1 and
|
|
|
|
|
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
|
|
|
|
|
* inclusive.
|
|
|
|
|
*
|
|
|
|
|
* No other forms of ECDSA malleability are known and none seem likely, but
|
|
|
|
|
* there is no formal proof that ECDSA, even with this additional restriction,
|
|
|
|
|
* is free of other malleability. Commonly used serialization schemes will also
|
|
|
|
|
* accept various non-unique encodings, so care should be taken when this
|
|
|
|
|
* property is required for an application.
|
|
|
|
|
*
|
|
|
|
|
* The secp256k1_ecdsa_sign function will by default create signatures in the
|
|
|
|
|
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
|
|
|
|
|
* signatures come from a system that cannot enforce this property,
|
|
|
|
|
* secp256k1_ecdsa_signature_normalize must be called before verification.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_ecdsa_signature *sigout,
|
|
|
|
|
const secp256k1_ecdsa_signature *sigin
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
|
|
|
|
|
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
|
|
|
|
|
* extra entropy.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
|
|
|
|
|
|
|
|
|
|
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
|
|
|
|
|
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default;
|
|
|
|
|
|
|
|
|
|
/** Create an ECDSA signature.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1: signature created
|
|
|
|
|
* 0: the nonce generation function failed, or the private key was invalid.
|
|
|
|
|
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
|
|
|
|
|
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
|
|
|
|
|
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
|
|
|
|
|
* seckey: pointer to a 32-byte secret key (cannot be NULL)
|
|
|
|
|
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
|
|
|
|
|
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
|
|
|
|
|
*
|
|
|
|
|
* The created signature is always in lower-S form. See
|
|
|
|
|
* secp256k1_ecdsa_signature_normalize for more details.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API int secp256k1_ecdsa_sign(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_ecdsa_signature *sig,
|
|
|
|
|
const unsigned char *msg32,
|
|
|
|
|
const unsigned char *seckey,
|
|
|
|
|
secp256k1_nonce_function noncefp,
|
|
|
|
|
const void *ndata
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
|
|
|
|
|
|
|
|
|
|
/** Verify an ECDSA secret key.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1: secret key is valid
|
|
|
|
|
* 0: secret key is invalid
|
|
|
|
|
* Args: ctx: pointer to a context object (cannot be NULL)
|
|
|
|
|
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
const unsigned char *seckey
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
|
|
|
|
|
|
|
|
|
|
/** Compute the public key for a secret key.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1: secret was valid, public key stores
|
|
|
|
|
* 0: secret was invalid, try again
|
|
|
|
|
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
|
|
|
|
|
* Out: pubkey: pointer to the created public key (cannot be NULL)
|
|
|
|
|
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey *pubkey,
|
|
|
|
|
const unsigned char *seckey
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
/** Negates a private key in place.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 always
|
|
|
|
|
* Args: ctx: pointer to a context object
|
|
|
|
|
* In/Out: seckey: pointer to the 32-byte private key to be negated (cannot be NULL)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_negate(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *seckey
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
|
|
|
|
|
|
|
|
|
|
/** Negates a public key in place.
|
|
|
|
|
*
|
|
|
|
|
* Returns: 1 always
|
|
|
|
|
* Args: ctx: pointer to a context object
|
|
|
|
|
* In/Out: pubkey: pointer to the public key to be negated (cannot be NULL)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_negate(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey *pubkey
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
|
|
|
|
|
|
2015-10-26 14:54:21 +00:00
|
|
|
|
/** Tweak a private key by adding tweak to it.
|
|
|
|
|
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
|
|
|
|
|
* uniformly random 32-byte arrays, or if the resulting private key
|
|
|
|
|
* would be invalid (only when the tweak is the complement of the
|
|
|
|
|
* private key). 1 otherwise.
|
|
|
|
|
* Args: ctx: pointer to a context object (cannot be NULL).
|
|
|
|
|
* In/Out: seckey: pointer to a 32-byte private key.
|
|
|
|
|
* In: tweak: pointer to a 32-byte tweak.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *seckey,
|
|
|
|
|
const unsigned char *tweak
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Tweak a public key by adding tweak times the generator to it.
|
|
|
|
|
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
|
|
|
|
|
* uniformly random 32-byte arrays, or if the resulting public key
|
|
|
|
|
* would be invalid (only when the tweak is the complement of the
|
|
|
|
|
* corresponding private key). 1 otherwise.
|
|
|
|
|
* Args: ctx: pointer to a context object initialized for validation
|
|
|
|
|
* (cannot be NULL).
|
|
|
|
|
* In/Out: pubkey: pointer to a public key object.
|
|
|
|
|
* In: tweak: pointer to a 32-byte tweak.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey *pubkey,
|
|
|
|
|
const unsigned char *tweak
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Tweak a private key by multiplying it by a tweak.
|
|
|
|
|
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
|
|
|
|
|
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
|
|
|
|
|
* Args: ctx: pointer to a context object (cannot be NULL).
|
|
|
|
|
* In/Out: seckey: pointer to a 32-byte private key.
|
|
|
|
|
* In: tweak: pointer to a 32-byte tweak.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
unsigned char *seckey,
|
|
|
|
|
const unsigned char *tweak
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
|
|
|
|
/** Tweak a public key by multiplying it by a tweak value.
|
|
|
|
|
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
|
|
|
|
|
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
|
|
|
|
|
* Args: ctx: pointer to a context object initialized for validation
|
|
|
|
|
* (cannot be NULL).
|
|
|
|
|
* In/Out: pubkey: pointer to a public key obkect.
|
|
|
|
|
* In: tweak: pointer to a 32-byte tweak.
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey *pubkey,
|
|
|
|
|
const unsigned char *tweak
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
/** Updates the context randomization to protect against side-channel leakage.
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* Returns: 1: randomization successfully updated or nothing to randomize
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* 0: error
|
|
|
|
|
* Args: ctx: pointer to a context object (cannot be NULL)
|
|
|
|
|
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
|
2018-07-09 11:17:44 +00:00
|
|
|
|
*
|
|
|
|
|
* While secp256k1 code is written to be constant-time no matter what secret
|
|
|
|
|
* values are, it's possible that a future compiler may output code which isn't,
|
|
|
|
|
* and also that the CPU may not emit the same radio frequencies or draw the same
|
|
|
|
|
* amount power for all values.
|
|
|
|
|
*
|
|
|
|
|
* This function provides a seed which is combined into the blinding value: that
|
|
|
|
|
* blinding value is added before each multiplication (and removed afterwards) so
|
|
|
|
|
* that it does not affect function results, but shields against attacks which
|
|
|
|
|
* rely on any input-dependent behaviour.
|
|
|
|
|
*
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* This function has currently an effect only on contexts initialized for signing
|
|
|
|
|
* because randomization is currently used only for signing. However, this is not
|
|
|
|
|
* guaranteed and may change in the future. It is safe to call this function on
|
|
|
|
|
* contexts not initialized for signing; then it will have no effect and return 1.
|
|
|
|
|
*
|
2018-07-09 11:17:44 +00:00
|
|
|
|
* You should call this after secp256k1_context_create or
|
2019-05-28 12:23:28 +00:00
|
|
|
|
* secp256k1_context_clone (and secp256k1_context_preallocated_create or
|
|
|
|
|
* secp256k1_context_clone, resp.), and you may call this repeatedly afterwards.
|
2015-10-26 14:54:21 +00:00
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
|
|
|
|
|
secp256k1_context* ctx,
|
|
|
|
|
const unsigned char *seed32
|
|
|
|
|
) SECP256K1_ARG_NONNULL(1);
|
|
|
|
|
|
|
|
|
|
/** Add a number of public keys together.
|
|
|
|
|
* Returns: 1: the sum of the public keys is valid.
|
|
|
|
|
* 0: the sum of the public keys is not valid.
|
|
|
|
|
* Args: ctx: pointer to a context object
|
2016-01-14 18:35:54 +00:00
|
|
|
|
* Out: out: pointer to a public key object for placing the resulting public key
|
2015-10-26 14:54:21 +00:00
|
|
|
|
* (cannot be NULL)
|
|
|
|
|
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
|
|
|
|
|
* n: the number of public keys to add together (must be at least 1)
|
|
|
|
|
*/
|
|
|
|
|
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
|
|
|
|
|
const secp256k1_context* ctx,
|
|
|
|
|
secp256k1_pubkey *out,
|
|
|
|
|
const secp256k1_pubkey * const * ins,
|
2016-01-14 18:35:54 +00:00
|
|
|
|
size_t n
|
2015-10-26 14:54:21 +00:00
|
|
|
|
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
|
|
|
|
|
|
2018-07-09 11:17:44 +00:00
|
|
|
|
#ifdef __cplusplus
|
2015-10-26 14:54:21 +00:00
|
|
|
|
}
|
|
|
|
|
#endif
|
2018-07-09 11:17:44 +00:00
|
|
|
|
|
|
|
|
|
#endif /* SECP256K1_H */
|