This library is intended to be the highest quality publicly available library for cryptography on the secp256k1 curve. However, the primary focus of its development has been for usage in the Bitcoin system and usage unlike Bitcoin's may be less well tested, verified, or suffer from a less well thought out interface. Correct usage requires some care and consideration that the library is fit for your application's purpose.
* This is an experimental feature that has not received enough scrutiny to satisfy the standard of quality of this library but is made available for testing and review by the community.
* Modular inverses (both field elements and scalars) based on [safegcd](https://gcd.cr.yp.to/index.html) with some modifications, and a variable-time variant (by Peter Dettman).
* Intended to be completely free of timing sidechannels for secret-key operations (on reasonable hardware/toolchains)
* Access the table with branch-free conditional moves so memory access is uniform.
* No data-dependent branches
* Optional runtime blinding which attempts to frustrate differential power analysis.
* The precomputed tables add and eventually subtract points for which no known scalar (secret key) is known, preventing even an attacker with control over the secret key used to control the data internally.
To compile optional modules (such as Schnorr signatures), you need to run `./configure` with additional flags (such as `--enable-module-schnorrsig`). Run `./configure --help` to see the full list of available flags.
Usage examples
-----------
Usage examples can be found in the [examples](examples) directory. To compile them you need to configure with `--enable-examples`.
If configured with `--enable-benchmark` (which is the default), binaries for benchmarking the libsecp256k1 functions will be present in the root directory after the build.
To print the benchmark result to the command line:
$ ./bench_name
To create a CSV file for the benchmark result :
$ ./bench_name | sed '2d;s/ \{1,\}//g' > bench_name.csv