rust-secp256k1-unsafe-fast/src/ecdh.rs

263 lines
8.1 KiB
Rust
Raw Normal View History

// Bitcoin secp256k1 bindings
// Written in 2015 by
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # ECDH
//! Support for shared secret computations
//!
use core::ptr;
use core::ops::{FnMut, Deref};
use key::{SecretKey, PublicKey};
use ffi::{self, CPtr};
use secp256k1_sys::types::{c_int, c_uchar, c_void};
/// A tag used for recovering the public key from a compact signature
#[derive(Copy, Clone)]
pub struct SharedSecret {
data: [u8; 256],
len: usize,
}
impl_raw_debug!(SharedSecret);
// This implementes `From<N>` for all `[u8; N]` arrays from 128bits(16 byte) to 2048bits allowing known hash lengths.
// Lower than 128 bits isn't resistant to collisions any more.
impl_from_array_len!(SharedSecret, 256, (16 20 28 32 48 64 96 128 256));
impl SharedSecret {
/// Create an empty SharedSecret
pub(crate) fn empty() -> SharedSecret {
SharedSecret {
data: [0u8; 256],
len: 0,
}
}
/// Get a pointer to the underlying data with the specified capacity.
pub(crate) fn get_data_mut_ptr(&mut self) -> *mut u8 {
self.data.as_mut_ptr()
}
/// Get the capacity of the underlying data buffer.
pub fn capacity(&self) -> usize {
self.data.len()
}
/// Get the len of the used data.
pub fn len(&self) -> usize {
self.len
}
/// True if the underlying data buffer is empty.
pub fn is_empty(&self) -> bool {
self.data.is_empty()
}
/// Set the length of the object.
pub(crate) fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.data.len());
self.len = len;
}
}
impl PartialEq for SharedSecret {
fn eq(&self, other: &SharedSecret) -> bool {
self.as_ref() == other.as_ref()
}
}
impl AsRef<[u8]> for SharedSecret {
fn as_ref(&self) -> &[u8] {
&self.data[..self.len]
}
}
impl Deref for SharedSecret {
type Target = [u8];
fn deref(&self) -> &[u8] {
&self.data[..self.len]
}
}
unsafe extern "C" fn c_callback(output: *mut c_uchar, x: *const c_uchar, y: *const c_uchar, _data: *mut c_void) -> c_int {
ptr::copy_nonoverlapping(x, output, 32);
ptr::copy_nonoverlapping(y, output.offset(32), 32);
1
}
impl SharedSecret {
/// Creates a new shared secret from a pubkey and secret key
#[inline]
pub fn new(point: &PublicKey, scalar: &SecretKey) -> SharedSecret {
let mut ss = SharedSecret::empty();
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
ss.get_data_mut_ptr(),
point.as_c_ptr(),
scalar.as_c_ptr(),
ffi::secp256k1_ecdh_hash_function_default,
ptr::null_mut(),
)
};
// The default `secp256k1_ecdh_hash_function_default` should always return 1.
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
debug_assert_eq!(res, 1);
ss.set_len(32); // The default hash function is SHA256, which is 32 bytes long.
ss
}
/// Creates a new shared secret from a pubkey and secret key with applied custom hash function
/// The custom hash function must be in the form of `fn(x: [u8;32], y: [u8;32]) -> SharedSecret`
/// `SharedSecret` can be easily created via the `From` impl from arrays.
/// # Examples
/// ```
/// # #[cfg(any(feature = "alloc", features = "std"))] {
/// # use secp256k1::ecdh::SharedSecret;
/// # use secp256k1::{Secp256k1, PublicKey, SecretKey};
/// # fn sha2(_a: &[u8], _b: &[u8]) -> [u8; 32] {[0u8; 32]}
/// # let secp = Secp256k1::signing_only();
/// # let secret_key = SecretKey::from_slice(&[3u8; 32]).unwrap();
/// # let secret_key2 = SecretKey::from_slice(&[7u8; 32]).unwrap();
/// # let public_key = PublicKey::from_secret_key(&secp, &secret_key2);
///
/// let secret = SharedSecret::new_with_hash(&public_key, &secret_key, |x,y| {
/// let hash: [u8; 32] = sha2(&x,&y);
/// hash.into()
/// });
/// # }
/// ```
pub fn new_with_hash<F>(point: &PublicKey, scalar: &SecretKey, mut hash_function: F) -> SharedSecret
where F: FnMut([u8; 32], [u8; 32]) -> SharedSecret {
let mut xy = [0u8; 64];
let res = unsafe {
ffi::secp256k1_ecdh(
ffi::secp256k1_context_no_precomp,
xy.as_mut_ptr(),
point.as_ptr(),
scalar.as_ptr(),
2020-12-22 21:17:31 +00:00
Some(c_callback),
ptr::null_mut(),
)
};
// Our callback *always* returns 1.
// and the scalar was verified to be valid(0 > scalar > group_order) via the type system
debug_assert_eq!(res, 1);
let mut x = [0u8; 32];
let mut y = [0u8; 32];
x.copy_from_slice(&xy[..32]);
y.copy_from_slice(&xy[32..]);
hash_function(x, y)
}
}
#[cfg(test)]
#[allow(unused_imports)]
mod tests {
use super::*;
use rand::thread_rng;
use super::super::Secp256k1;
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[test]
#[cfg(all(feature="rand-std", any(feature = "alloc", feature = "std")))]
fn ecdh() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
2018-11-06 22:04:02 +00:00
let sec1 = SharedSecret::new(&pk1, &sk2);
let sec2 = SharedSecret::new(&pk2, &sk1);
let sec_odd = SharedSecret::new(&pk1, &sk1);
assert_eq!(sec1, sec2);
assert!(sec_odd != sec2);
}
#[test]
#[cfg(all(feature="rand-std", any(feature = "alloc", feature = "std")))]
fn ecdh_with_hash() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let (sk2, pk2) = s.generate_keypair(&mut thread_rng());
let sec1 = SharedSecret::new_with_hash(&pk1, &sk2, |x,_| x.into());
let sec2 = SharedSecret::new_with_hash(&pk2, &sk1, |x,_| x.into());
let sec_odd = SharedSecret::new_with_hash(&pk1, &sk1, |x,_| x.into());
assert_eq!(sec1, sec2);
assert_ne!(sec_odd, sec2);
}
#[test]
#[cfg(all(feature="rand-std", any(feature = "alloc", feature = "std")))]
fn ecdh_with_hash_callback() {
let s = Secp256k1::signing_only();
let (sk1, pk1) = s.generate_keypair(&mut thread_rng());
let expect_result: [u8; 64] = [123; 64];
let mut x_out = [0u8; 32];
let mut y_out = [0u8; 32];
let result = SharedSecret::new_with_hash(&pk1, &sk1, |x, y| {
x_out = x;
y_out = y;
expect_result.into()
});
assert_eq!(&expect_result[..], &result[..]);
assert_ne!(x_out, [0u8; 32]);
assert_ne!(y_out, [0u8; 32]);
}
#[test]
fn test_c_callback() {
let x = [5u8; 32];
let y = [7u8; 32];
let mut output = [0u8; 64];
let res = unsafe { super::c_callback(output.as_mut_ptr(), x.as_ptr(), y.as_ptr(), ptr::null_mut()) };
assert_eq!(res, 1);
let mut new_x = [0u8; 32];
let mut new_y = [0u8; 32];
new_x.copy_from_slice(&output[..32]);
new_y.copy_from_slice(&output[32..]);
assert_eq!(x, new_x);
assert_eq!(y, new_y);
}
}
#[cfg(all(test, feature = "unstable"))]
mod benches {
use rand::thread_rng;
use test::{Bencher, black_box};
2015-09-20 20:18:53 +00:00
use super::SharedSecret;
use super::super::Secp256k1;
#[bench]
pub fn bench_ecdh(bh: &mut Bencher) {
let s = Secp256k1::signing_only();
let (sk, pk) = s.generate_keypair(&mut thread_rng());
bh.iter( || {
2018-11-06 22:04:02 +00:00
let res = SharedSecret::new(&pk, &sk);
black_box(res);
});
}
}